TLV2774

65
TLV277x, TLV277xA FAMILY OF 2.7ĆV HIGHĆSLEWĆRATE RAILĆTOĆRAIL OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS209G - JANUARY 1998 - REVISED FEBRUARY 2004 1 WWW.TI.COM D High Slew Rate . . . 10.5 V/µs Typ D High-Gain Bandwidth . . . 5.1 MHz Typ D Supply Voltage Range 2.5 V to 5.5 V D Rail-to-Rail Output D 360 µV Input Offset Voltage D Low Distortion Driving 600-0.005% THD+N D 1 mA Supply Current (Per Channel) D 17 nV/Hz Input Noise Voltage D 2 pA Input Bias Current D Characterized From T A = -55°C to 125°C D Available in MSOP and SOT-23 Packages D Micropower Shutdown Mode . . . I DD < 1 µA D Available in Q-Temp Automotive High Reliability Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards description The TLV277x CMOS operational amplifier family combines high slew rate and bandwidth, rail-to-rail output swing, high output drive, and excellent dc precision. The device provides 10.5 V/µs of slew rate and 5.1 MHz of bandwidth while only consuming 1 mA of supply current per channel. This ac performance is much higher than current competitive CMOS amplifiers. The rail-to-rail output swing and high output drive make these devices a good choice for driving the analog input or reference of analog-to-digital converters. These devices also have low distortion while driving a 600-load for use in telecom systems. These amplifiers have a 360-µV input offset voltage, a 17 nV/Hz input noise voltage, and a 2-pA input bias current for measurement, medical, and industrial applications. The TLV277x family is also specified across an extended temperature range (-40°C to 125°C), making it useful for automotive systems, and the military temperature range (-55°C to 125°C), for military systems. These devices operate from a 2.5-V to 5.5-V single supply voltage and are characterized at 2.7 V and 5 V. The single-supply operation and low power consumption make these devices a good solution for portable applications. The following table lists the packages available. FAMILY PACKAGE TABLE DEVICE NUMBER OF PACKAGE TYPES SHUTDOWN UNIVERSAL DEVICE OF CHANNELS PDIP CDIP SOIC SOT-23 TSSOP MSOP LCCC CPAK SHUTDOWN UNIVERSAL EVM BOARD TLV2770 1 8 8 8 Yes TLV2771 1 8 5 Refer to the EVM TLV2772 2 8 8 8 8 8 20 10 Refer to the EVM Selection Guide TLV2773 2 14 14 10 Yes Selection Guide (Lit# SLOU060) TLV2774 4 14 14 14 (Lit# SLOU060) TLV2775 4 16 16 16 Yes A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS DEVICE V DD (V) BW (MHz) SLEW RATE (V/µs) I DD (per channel) (µA) RAIL-TO-RAIL TLV277X 2.5 - 6.0 5.1 10.5 1000 O TLV247X 2.7 - 6.0 2.8 1.5 600 I/O TLV245X 2.7 - 6.0 0.22 0.11 23 I/O TLV246X 2.7 - 6.0 6.4 1.6 550 I/O All specifications measured at 5 V. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. This document contains information on products in more than one phase of development. The status of each device is indicated on the page(s) specifying its electrical characteristics. Copyright 1998-2004, Texas Instruments Incorporated On products compliant to MILĆPRFĆ38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

description

datasheet

Transcript of TLV2774

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    1WWW.TI.COM

    High Slew Rate . . . 10.5 V/s Typ High-Gain Bandwidth . . . 5.1 MHz Typ Supply Voltage Range 2.5 V to 5.5 V Rail-to-Rail Output 360 V Input Offset Voltage Low Distortion Driving 600-

    0.005% THD+N 1 mA Supply Current (Per Channel) 17 nV/Hz Input Noise Voltage

    2 pA Input Bias Current Characterized From TA = 55C to 125C Available in MSOP and SOT-23 Packages Micropower Shutdown Mode . . . IDD < 1 A Available in Q-Temp Automotive

    High Reliability Automotive ApplicationsConfiguration Control / Print SupportQualification to Automotive Standards

    descriptionThe TLV277x CMOS operational amplifier family combines high slew rate and bandwidth, rail-to-rail outputswing, high output drive, and excellent dc precision. The device provides 10.5 V/s of slew rate and 5.1 MHzof bandwidth while only consuming 1 mA of supply current per channel. This ac performance is much higherthan current competitive CMOS amplifiers. The rail-to-rail output swing and high output drive make thesedevices a good choice for driving the analog input or reference of analog-to-digital converters. These devicesalso have low distortion while driving a 600- load for use in telecom systems.These amplifiers have a 360-V input offset voltage, a 17 nV/Hz input noise voltage, and a 2-pA input biascurrent for measurement, medical, and industrial applications. The TLV277x family is also specified across anextended temperature range (40C to 125C), making it useful for automotive systems, and the militarytemperature range (55C to 125C), for military systems.These devices operate from a 2.5-V to 5.5-V single supply voltage and are characterized at 2.7 V and 5 V. Thesingle-supply operation and low power consumption make these devices a good solution for portableapplications. The following table lists the packages available.

    FAMILY PACKAGE TABLE

    DEVICENUMBER

    OFPACKAGE TYPES

    SHUTDOWN UNIVERSALDEVICE OFCHANNELS PDIP CDIP SOIC SOT-23 TSSOP MSOP LCCC CPAK

    SHUTDOWN UNIVERSALEVM BOARD

    TLV2770 1 8 8 8 YesTLV2771 1 8 5

    Refer to the EVMTLV2772 2 8 8 8 8 8 20 10 Refer to the EVMSelection Guide

    TLV2773 2 14 14 10 YesSelection Guide(Lit# SLOU060)

    TLV2774 4 14 14 14 (Lit# SLOU060)

    TLV2775 4 16 16 16 Yes

    A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS

    DEVICE VDD(V)BW

    (MHz)SLEW RATE

    (V/s)IDD (per channel)

    (A) RAIL-TO-RAIL

    TLV277X 2.5 6.0 5.1 10.5 1000 OTLV247X 2.7 6.0 2.8 1.5 600 I/OTLV245X 2.7 6.0 0.22 0.11 23 I/OTLV246X 2.7 6.0 6.4 1.6 550 I/O

    All specifications measured at 5 V.

    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

    !"#$% $%&$ $'("&%$ $ )(!% $ "(# %&$ $# )' #*#+)"#$% # %&%! ' #& #*# $&%# $ %# )&,#-.)#'/$, % #+#%(&+ &(&%#(%

    Copyright 19982004, Texas Instruments Incorporated

    $ )(!% ")+&$% % 01202 &++ )&(&"#%#( &(# %#%#!$+# %#(3# $%# $ &++ %#( )(!% )(!%$)(#$, # $% $##&(+/ $+!# %#%$, ' &++ )&(&"#%#(

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    2 WWW.TI.COM

    TLV2770 and TLV2771 AVAILABLE OPTIONS

    VIOmax AT 25CPACKAGED DEVICES

    TAVIOmax AT 25C

    (mV) SMALL OUTLINE(D)SOT-23(DBV)

    MSOP(DGK)

    PLASTIC DIP(P)

    0C to 70C 2.5 TLV2770CDTLV2771CD

    TLV2771CDBVTLV2770CDGK

    TLV2770CP

    40C to 125C2.5 TLV2770IDTLV2771ID

    TLV2771IDBVTLV2770IDGK

    TLV2770IP

    40C to 125C1.6 TLV2770AIDTLV2771AID

    TLV2770AIP

    This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

    TLV2772 and TLV2773 AVAILABLE OPTIONS

    VIOmax AT 25CPACKAGED DEVICES

    TAVIOmax AT 25C

    (mV) SMALL OUTLINE(D)MSOP(DGK)

    MSOP(DGS)

    PLASTIC DIP(N)

    PLASTIC DIP(P)

    0C to 70C 2.5 TLV2772CDTLV2773CDTLV2772CDGK

    TLV2773CDGS

    TLV2773CNTLV2772CP

    40C to 125C2.5 TLV2772IDTLV2773ID

    TLV2772IDGK

    TLV2773IDGS

    TLV2773INTLV2772IP

    40C to 125C1.6 TLV2772AIDTLV2773AID

    TLV2773AINTLV2772AIP

    TLV2774 and TLV2775 AVAILABLE OPTIONS

    VIOmax AT 25CPACKAGED DEVICES

    TAVIOmax AT 25C

    (mV) SMALL OUTLINE(D)PLASTIC DIP

    (N)PLASTIC DIP

    (P)TSSOP

    (PW)

    0C to 70C 2.7 TLV2774CDTLV2775CD

    TLV2775CNTLV2774CP

    TLV2774CPWTLV2775CPW

    40C to 125C2.7 TLV2774IDTLV2775ID

    TLV2775INTLV2774IP

    TLV2774IPWTLV2775IPW

    40C to 125C2.1 TLV2774AIDTLV2775AID

    TLV2775AINTLV2774AIP

    TLV2774AIPWTLV2775AIPW

    TLV2772M/Q AND TLV2772AM/Q AVAILABLE OPTIONSPACKAGED DEVICES

    TAVIOmax AT 25C

    (mV)SMALL

    OUTLINE(D)

    CHIP CARRIER(FK)

    CERAMIC DIP(JG)

    CERAMICFLATPACK

    (U)TSSOP

    (PW)

    40C to 125C2.5 TLV2772QD TLV2772QPW

    40C to 125C1.6 TLV2772AQD TLV2772AQPW

    55C to 125C2.5 TLV2772MD TLV2772MFK TLV2772MJG TLV2772MU

    55C to 125C1.6 TLV2772AMD TLV2772AMFK TLV2772AMJG TLV2772AMU

    Available in tape and reel

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    3WWW.TI.COM

    PACKAGE SYMBOLSPACKAGE TYPE PINS PART NUMBER SYMBOL

    SOT23 5 PinTLV2771CDBV VAMC

    SOT23 5 PinTLV2771IDBV VAMITLV2770CDGK xxTIABO

    8 PinTLV2770IDGK xxTIABP

    MSOP8 Pin

    TLV2772CDGK xxTIAAFMSOP

    TLV2772IDGK xxTIAAG

    10 PinTLV2773CDGS xxTIABQ

    10 Pin TLV2773IDGS xxTIABR xx represents the device date code.

    TLV277x PACKAGE PINOUT

    NC No internal connection

    3 2 1 20 19

    9 10 11 12 13

    45678

    1817161514

    NC2OUTNC2INNC

    NC1IN

    NC1IN+

    NC

    NC

    1OUT

    NC

    2IN

    +N

    CN

    C

    NC

    NC

    V DD

    +

    TLV2772M AND TLV2772AMFK PACKAGE(TOP VIEW)

    GND

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    4 WWW.TI.COM

    TLV277x PACKAGE PINOUTS(1)

    12345

    109876

    1OUT1IN1IN+GND

    1SHDN

    VDD2OUT2IN2IN+2SHDN

    3

    2

    4

    5

    (TOP VIEW)1OUT

    GND

    IN+

    VDD

    IN

    TLV2771DBV PACKAGE

    TLV2773DGS PACKAGE

    (TOP VIEW)

    1234

    8765

    1OUT1IN1IN+GND

    VDD2OUT2IN2IN+

    TLV2772D, DGK, JG, P, OR PW PACKAGE

    (TOP VIEW)

    1234

    8765

    NCININ+

    GND

    SHDNVDDOUTNC

    TLV2770D, DGK OR P PACKAGE

    (TOP VIEW)

    1234

    8765

    NCININ+

    GND

    NCVDDOUTNC

    TLV2771D PACKAGE(TOP VIEW)

    1234 567

    141312111098

    1OUT1IN1IN+GND

    NC1SHDN

    NC

    VDD2OUT2IN2IN+NC2SHDNNC

    (TOP VIEW)

    TLV2773D OR N PACKAGE

    1234 567

    141312111098

    1OUT1IN1IN+VDD2IN+2IN

    2OUT

    4OUT4IN4IN+GND3IN+3IN3OUT

    (TOP VIEW)

    TLV2774D, N, OR PW PACKAGE

    1234 5678

    161514131211109

    1OUT1IN1IN+VDD2IN+2IN

    2OUT1/2SHDN

    4OUT4IN4IN+GND3IN+3IN3OUT3/4SHDN

    (TOP VIEW)

    TLV2775D, N, OR PW PACKAGE

    NCVDD +2OUT2IN 2IN +

    NC1OUT1IN 1IN +GND

    109876

    (TOP VIEW)

    TLV2772M AND TLV2772AMU PACKAGE

    This device is in the Product Preview stage of development. Please contact your local TI sales office for availability.

    12345

    (1) SOT23 may or may not be indicated

    TYPICAL PIN 1 INDICATORS

    Printed orMolded Dot Bevel Edges

    Pin 1

    Molded U ShapePin 1

    StripePin 1 Pin 1

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    5WWW.TI.COM

    absolute maximum ratings over operating free-air temperature range (unless otherwise noted)Supply voltage, VDD (see Note 1) 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential input voltage, VID (see Note 2) VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input voltage range, VI (any input, see Note 1) 0.3 V to VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input current, II (any input) 4 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output current, IO 50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total current into VDD+ 50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total current out of GND 50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Duration of short-circuit current (at or below) 25C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating free-air temperature range, TA: C suffix 0C to 70C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    I suffix 40C to 125C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q suffix 40C to 125C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M suffix 55C to 125C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Storage temperature range, Tstg 65C to 150C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, andfunctional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is notimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

    NOTES: 1. All voltage values, except differential voltages, are with respect to GND.2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought

    below GND 0.3 V.3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum

    dissipation rating is not exceeded.

    DISSIPATION RATING TABLE

    PACKAGE TA 25C DERATING FACTOR TA = 70C TA = 85C TA = 125CPACKAGE TA 25 CPOWER RATINGDERATING FACTORABOVE TA = 25C

    TA = 70 CPOWER RATING

    TA = 85 CPOWER RATING

    TA = 125 CPOWER RATING

    D 725 mW 5.8 mW/C 464 mW 377 mW 145 mWDBV 437 mW 3.5 mW/C 280 mW 227 mW 87 mWDGK 424 mW 3.4 mW/C 271 mW 220 mW 85 mWDGS 424 mW 3.4 mW/C 271 mW 220 mW 85 mWFK 1375 mW 11.0 mW/C 672 mW 546 mW 210 mWJG 1050 mW 8.4 mW/C 880 mW 714 mW 275 mWN 1150 mW 9.2 mW/C 736 mW 598 mW 230 mWP 1000 mW 8.0 mW/C 640 mW 520 mW 200 mW

    PW 700 mW 5.6 mW/C 448 mW 364 mW 140 mWU 675 mW 5.4 mW/C 432 mW 350 mW 135 mW

    recommended operating conditionsC SUFFIX I SUFFIX Q SUFFIX M SUFFIX

    UNITMIN MAX MIN MAX MIN MAX MIN MAX

    UNIT

    Supply voltage, VDD 2.5 6 2.5 6 2.5 6 2.5 6 VInput voltage range, VI GND VDD+ 1.3 GND VDD+ 1.3 GND VDD+ 1.3 GND VDD+ 1.3 VCommon-mode input voltage, VIC GND VDD+ 1.3 GND VDD+ 1.3 GND VDD+ 1.3 GND VDD+ 1.3 VOperating free-air temperature, TA 0 70 40 125 40 125 55 125 C

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    6 WWW.TI.COM

    electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)PARAMETER TEST CONDITIONS TA

    TLV277xCUNITPARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT

    TLV2770/1/2 V = 0, V = 0,25C 0.48 2.5

    VIO Input offset voltageTLV2770/1/2 VIC = 0,

    RS = 50 ,VO = 0,VDD = 1.35 V,

    Full range 0.53 2.7mVVIO Input offset voltage

    TLV2773/4/5RS = 50 ,No load

    OVDD = 1.35 V, 25C 0.8 2.7 mV

    TLV2773/4/5 No loadFull range 0.86 2.9

    VIOTemperature coefficient of input 25C to

    2 V/CVIOTemperature coefficient of inputoffset voltage

    25 C to125C 2 V/C

    IIO Input offset currentVIC = 0, VO = 0, 25C 1 60 pAIIO Input offset currentVIC = 0,RS = 50

    VO = 0,VDD = 1.35 V Full range 2 100

    pA

    IIB Input bias current

    RS = 50 VDD = 1.35 V25C 2 60

    pAIIB Input bias current Full range 6 100 pA

    IOH = 0.675 mA25C 2.6

    VOH High-level output voltageIOH = 0.675 mA Full range 2.5

    VVOH High-level output voltageIOH = 2.2 mA

    25C 2.4 VIOH = 2.2 mA Full range 2.1

    VIC = 1.35 V, IOL = 0.675 mA25C 0.1

    VOL Low-level output voltageVIC = 1.35 V, IOL = 0.675 mA Full range 0.2

    VVOL Low-level output voltageVIC = 1.35 V, IOL = 2.2 mA

    25C 0.21 VVIC = 1.35 V, IOL = 2.2 mA Full range 0.6

    AVDLarge-signal differential voltage VIC = 1.35 V, RL = 10 k, 25C 20 380 V/mVAVDLarge-signal differential voltage amplification

    VIC = 1.35 V,VO = 0.6 V to 2.1 V

    RL = 10 k,Full range 13 V/mV

    ri(d) Differential input resistance 25C 1012 ci(c) Common-mode input capacitance f = 10 kHz 25C 8 pFzo Closed-loop output impedance f = 100 kHz, AV = 10 25C 25

    CMRR Common-mode rejection ratio VIC = 0 to 1.5 V, VO = VDD/2,25C 60 84

    dBCMRR Common-mode rejection ratio VIC = 0 to 1.5 V,RS = 50 VO = VDD/2,

    Full range 60 82 dB

    kSVRSupply voltage rejection ratio VDD = 2.7 V to 5 V, VIC = VDD/2, 25C 70 89 dBkSVRSupply voltage rejection ratio(VDD /VIO)

    VDD = 2.7 V to 5 V,No load

    VIC = VDD/2,Full range 70 84 dB

    IDD Supply current (per channel) VO = VDD/2, No load25C 1 2

    mAIDD Supply current (per channel) VO = VDD/2, No load Full range 2 mA

    IDD(SHDN) Supply current in shutdown (per25C 0.8 1.5

    AIDD(SHDN) Supply current in shutdown (perchannel) Full range 1.3 2 A

    Turnon voltage TLV2770 1.47

    V(ON)Turnon voltage level TLV2773 AV = 5 25C 1.43 VV(ON) level

    TLV2775AV = 5 25 C

    1.40V

    Turnoff voltage TLV2770 1.27

    V(OFF)Turnoff voltage level TLV2773 AV = 5 25C 1.21 VV(OFF) level

    TLV2775AV = 5 25 C

    1.20V

    Full range is 0C to 70C.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    7WWW.TI.COM

    operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)PARAMETER TEST CONDITIONS TA

    TLV277xCUNITPARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT

    VO(PP) = 0.8 V, CL = 100 pF,25C 5 9

    SR Slew rate at unity gain VO(PP) = 0.8 V,RL = 10 kCL = 100 pF, Full

    range 4.7 6V/s

    Vn Equivalent input noise voltagef = 1 kHz 25C 21

    nV/HzVn Equivalent input noise voltage f = 10 kHz 25C 17 nV/Hz

    VN(PP) Peak-to-peak equivalent input noise voltagef = 0.1 Hz to 1 Hz

    25C0.33

    VVN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 25C 0.86 V

    In Equivalent input noise current f = 100 Hz 25C 0.6 fA /Hz

    RL = 600 ,AV = 1 0.0085%

    THD + N Total harmonic distortion plus noise RL = 600 ,f = 1 kHz AV = 10 25C 0.025%THD + N Total harmonic distortion plus noise f = 1 kHzAV = 100

    25 C0.12%

    Gain-bandwidth product f = 10 kHz, CL = 100 pFRL = 600 , 25C 4.8 MHz

    ts Settling time

    AV = 1,Step = 1 V,

    0.1% 25C 0.186sts Settling time

    Step = 1 V,RL = 600 ,CL = 100 pF

    0.01% 25C 0.3s

    m Phase margin at unity gain RL = 600 , CL = 100 pF25C 46

    Gain margin RL = 600 , CL = 100 pF 25C 12 dB Full range is 0C to 70C.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    8 WWW.TI.COM

    electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)PARAMETER TEST CONDITIONS TA

    TLV277xCUNITPARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT

    TLV2770/1/2 V = 0, V = 0,25C 0.5 2.5

    VIO Input offset voltageTLV2770/1/2 VIC = 0,

    RS = 50 VO = 0,VDD = 2.5 V,

    Full range 0.6 2.7mVVIO Input offset voltage

    TLV2773/4/5RS = 50 ,No load

    OVDD = 2.5 V, 25C 0.7 2.5 mV

    TLV2773/4/5 No loadFull range 0.78 2.7

    VIOTemperature coefficient of input 25C to

    2 V/CVIOTemperature coefficient of input offset voltage

    25 C to125C 2 V/C

    IIO Input offset currentVIC = 0, VO = 0, 25C 1 60 pAIIO Input offset currentVIC = 0,RS = 50

    VO = 0,VDD = 2.5 V Full range 2 100

    pA

    IIB Input bias current

    RS = 50 VDD = 2.5 V25C 2 60

    pAIIB Input bias current Full range 6 100 pA

    IOH = 1.3 mA25C 4.9

    VOH High-level output voltageIOH = 1.3 mA Full range 4.8

    VVOH High-level output voltageIOH = 4.2 mA

    25C 4.7 VIOH = 4.2 mA Full range 4.4

    VIC = 2.5 V, IOL = 1.3 mA25C 0.1

    VOL Low-level output voltageVIC = 2.5 V, IOL = 1.3 mA Full range 0.2

    VVOL Low-level output voltageVIC = 2.5 V, IOL = 4.2 mA

    25C 0.21 VVIC = 2.5 V, IOL = 4.2 mA Full range 0.6

    AVDLarge-signal differential voltage VIC = 2.5 V, RL = 10 k, 25C 20 450 V/mVAVDLarge-signal differential voltage amplification

    VIC = 2.5 V,VO = 1 V to 4 V

    RL = 10 k,Full range 13 V/mV

    ri(d) Differential input resistance 25C 1012 ci(c) Common-mode input capacitance f = 10 kHz 25C 8 pFzo Closed-loop output impedance f = 100 kHz, AV = 10 25C 20

    CMRR Common-mode rejection ratio VIC = 0 to 3.7 V, VO = VDD/2, 25C 70 96

    dBCMRR Common-mode rejection ratio VIC = 0 to 3.7 V,RS = 50 VO = VDD/2,

    Full range 70 93 dB

    kSVRSupply voltage rejection ratio VDD = 2.7 V to 5 V, VIC = VDD/2, 25C 70 89 dBkSVRSupply voltage rejection ratio(VDD /VIO)

    VDD = 2.7 V to 5 V,No load

    VIC = VDD/2,Full range 70 84 dB

    IDD Supply current (per channel) VO = VDD/2, No load25C 1 2

    mAIDD Supply current (per channel) VO = VDD/2, No load Full range 2 mA

    IDD(SHDN)Supply current in shutdown (per 25C 0.8 1.5

    AIDD(SHDN)Supply current in shutdown (perchannel) Full range 1.3 2 A

    TLV2770 2.59V(ON) Turnon voltage level TLV2773 AV = 5 25C 2.47 VV(ON) Turnon voltage level

    TLV2775AV = 5 25 C

    2.48V

    TLV2770 2.41V(OFF) Turnoff voltage level TLV2773 AV = 5 25C 2.32 VV(OFF) Turnoff voltage level

    TLV2775AV = 5 25 C

    2.29V

    Full range is 0C to 70C.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    9WWW.TI.COM

    operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)PARAMETER TEST CONDITIONS TA

    TLV277xCUNITPARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT

    VO(PP) = 2 V, CL = 100 pF,25C 5 10.5

    SR Slew rate at unity gain VO(PP) = 2 V,RL = 10 kCL = 100 pF, Full

    range 4.7 6V/s

    Vn Equivalent input noise voltagef = 1 kHz 25C 17

    nV/HzVn Equivalent input noise voltage f = 10 kHz 25C 12 nV/Hz

    VN(PP) Peak-to-peak equivalent input noise voltagef = 0.1 Hz to 1 Hz

    25C0.33

    VVN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 25C 0.86 V

    In Equivalent input noise current f = 100 Hz 25C 0.6 fA /Hz

    RL = 600 ,AV = 1 0.005%

    THD + N Total harmonic distortion plus noise RL = 600 ,f = 1 kHz AV = 10 25C 0.016%THD + N Total harmonic distortion plus noise f = 1 kHzAV = 100

    25 C0.095%

    Gain-bandwidth product f = 10 kHz, CL = 100 pFRL = 600 , 25C 5.1 MHz

    ts Settling time

    AV = 1,Step = 2 V,

    0.1% 25C 0.335sts Settling time

    Step = 2 V,RL = 600 ,CL = 100 pF

    0.01% 25C 0.6s

    m Phase margin at unity gain RL = 600 , CL = 100 pF25C 46

    Gain margin RL = 600 , CL = 100 pF 25C 12 dBTLV2770

    AV = 5, RL = Open,1.2

    t(ON) Amplifier turnon time TLV2773AV = 5, RL = Open,Measured to 50% point 25C

    2.4 st(ON) Amplifier turnon timeTLV2775

    Measured to 50% point 25 C1.9

    s

    TLV2770AV = 5 RL = Open,

    335t(OFF) Amplifier turnoff time TLV2773

    AV = 5 RL = Open,Measured to 50% point 25C

    444 nst(OFF) Amplifier turnoff timeTLV2775

    Measured to 50% point 25 C345

    ns

    Full range is 0C to 70C.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    10 WWW.TI.COM

    electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)PARAMETER TEST CONDITIONS TA

    TLV277xI TLV277xAIUNITPARAMETER TEST CONDITIONS TA MIN TYP MAX MIN TYP MAX UNIT

    TLV2770/1/2 VIC = 0, VO = 0,25C 0.48 2.5 0.48 1.6

    VIOInput offset

    TLV2770/1/2 VIC = 0, VO = 0,RS = 50 Full range 0.53 2.7 0.53 1.9

    mVVIOInput offsetvoltage

    TLV2773/4/5

    RS = 50 VDD = 1.35 V,No load

    25C 0.8 2.7 0.8 2.1 mVvoltageTLV2773/4/5

    VDD = 1.35 V,No load Full range 0.86 2.9 0.86 2.2

    VIOTemperature coefficient of input 25C to

    2 2 V/CVIOTemperature coefficient of inputoffset voltage

    25 C to125C 2 2 V/C

    IIO Input offset currentVIC = 0, VO = 0, 25C 1 60 1 60 pAIIO Input offset currentVIC = 0, VO = 0,RS = 50 Full range 2 125 2 125

    pA

    IIB Input bias current

    RS = 50 25C 2 60 2 60

    pAIIB Input bias current Full range 6 350 6 350 pA

    IOH = 0.675 mA25C 2.6 2.6

    VOH High-level output voltageIOH = 0.675 mA Full range 2.5 2.5

    VVOH High-level output voltageIOH = 2.2 mA

    25C 2.4 2.4 VIOH = 2.2 mA Full range 2.1 2.1

    VIC = 1.35 V, 25C 0.1 0.1

    VOL Low-level output voltage

    VIC = 1.35 V, IOL = 0.675 mA Full range 0.2 0.2

    VVOL Low-level output voltage VIC = 1.35 V, 25C 0.21 0.21V

    VIC = 1.35 V, IOL = 2.2 mA Full range 0.6 0.6

    AVDLarge-signal differential voltage VIC = 1.35 V,RL = 10 k

    25C 20 380 20 380V/mVAVD

    Large-signal differential voltageamplification

    ICRL = 10 k,VO = 0.6 V to 2.1 V Full range 13 13

    V/mV

    ri(d) Differential input resistance 25C 1012 1012

    ci(c) Common-mode inputcapacitance f = 10 kHz, 25C 8 8 pF

    zo Closed-loop output impedancef = 100 kHz, AV = 10

    25C 25 25

    CMRR Common-mode rejection ratioVIC = 0 to 1.5 V,VO = VDD/2,

    25C 60 84 60 84dBCMRR Common-mode rejection ratio

    ICVO = VDD/2, RS = 50 Full range 60 82 60 82

    dB

    kSVRSupply voltage rejection ratio VDD = 2.7 V to 5 V,VIC = VDD/2,

    25C 70 89 70 89dBkSVR

    Supply voltage rejection ratio(VDD /VIO)

    DDVIC = VDD/2,No load Full range 70 84 70 84

    dB

    IDD Supply current (per channel) VO = VDD/2,25C 1 2 1 2

    mAIDD Supply current (per channel) VO = VDD/2,No load Full range 2 2 mA

    IDD(SHDN) Supply current in shutdown (per25C 0.8 1.5 0.8 1.5

    AIDD(SHDN) Supply current in shutdown (perchannel) Full range 1.3 2 1.3 2 A Full range is 40C to 125C.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    11WWW.TI.COM

    electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)(continued)PARAMETER TEST TA

    TLV277xI TLV277xAIUNITPARAMETER TESTCONDITIONS TA

    MIN TYP MAX MIN TYP MAX

    UNIT

    TLV2770 1.47 1.47V(ON) Turnon voltage level TLV2773 AV = 5 25C 1.43 1.43 VV(ON) Turnon voltage level

    TLV2775AV = 5 25 C

    1.40 1.4V

    TLV2770 1.27 1.27V(OFF) Turnoff voltage level TLV2773 AV = 5 25C 1.21 1.21 VV(OFF) Turnoff voltage level

    TLV2775AV = 5 25 C

    1.20 1.2V

    Full range is 40C to 125C.

    operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)PARAMETER TEST CONDITIONS TA

    TLV277xI TLV277xAIUNITPARAMETER TEST CONDITIONS TA MIN TYP MAX MIN TYP MAX UNIT

    VO(PP) = 0.8 V, CL = 100 pF,25C 5 9 5 9

    SR Slew rate at unity gain VO(PP) = 0.8 V,RL = 10 kCL = 100 pF, Full

    range 4.7 6 4.7 6V/s

    VnEquivalent input noise f = 1 kHz 25C 21 21

    nV/HzVnEquivalent input noisevoltage f = 10 kHz 25C 17 17 nV/Hz

    VN(PP)Peak-to-peakequivalent input noise

    f = 0.1 Hz to 1 Hz 25C 0.33 0.33 VVN(PP) equivalent input noise

    voltage f = 0.1 Hz to 10 Hz 25C 0.86 0.86 V

    InEquivalent input noisecurrent f = 100 Hz 25C 0.6 0.6 fA /Hz

    Total harmonic RL = 600 ,AV = 1 0.0085% 0.0085%

    THD + N Total harmonicdistortion plus noiseRL = 600 ,f = 1 kHz AV = 10 25C 0.025% 0.025%THD + N distortion plus noise f = 1 kHz

    AV = 10025 C

    0.12% 0.12%Gain-bandwidthproduct

    f = 10 kHz, CL = 100 pF

    RL = 600 , 25C 4.8 4.8 MHz

    ts Settling time

    AV = 1,Step = 0.85 V to 1.85 V,

    0.1% 25C 0.186 0.186sts Settling time 1.85 V,

    RL = 600 ,CL = 100 pF

    0.01% 25C 3.92 3.92s

    mPhase margin at unitygain RL = 600 , CL = 100 pF

    25C 46 46

    Gain marginRL = 600 , CL = 100 pF

    25C 12 12 dB Full range is 40C to 125C.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    12 WWW.TI.COM

    electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)PARAMETER TEST TA

    TLV277xI TLV277xAIUNITPARAMETER TESTCONDITIONS TA

    MIN TYP MAX MIN TYP MAX

    UNIT

    TLV2770/1/2 VIC = 0, No load25C 0.5 2.5 0.5 1.6

    VIO Input offset voltageTLV2770/1/2 VIC = 0, No load

    VO = 0, Full range 0.6 2.7 0.6 1.9mVVIO Input offset voltage

    TLV2773/4/5

    VO = 0,RS = 50 ,V = 2.5 V

    25C 0.7 2.5 0.7 2.1 mVTLV2773/4/5

    RS = 50 ,VDD = 2.5 V Full range 0.78 2.7 0.78 2.2

    VIOTemperature coefficient of input 25C to

    2 2 V/CVIOTemperature coefficient of inputoffset voltage VIC = 0,

    25 C to125C 2 2 V/C

    IIO Input offset current

    VIC = 0, VO = 0, 25C 1 60 1 60 pAIIO Input offset currentVO = 0,RS = 50 ,V = 2.5 V

    Full range 2 125 2 125 pA

    IIB Input bias current

    RS = 50 ,VDD = 2.5 V 25C 2 60 2 60

    pAIIB Input bias currentDD

    Full range 6 350 6 350 pA

    IOH = 1.3 mA25C 4.9 4.9

    VOH High-level output voltageIOH = 1.3 mA Full range 4.8 4.8

    VVOH High-level output voltageIOH = 4.2 mA

    25C 4.7 4.7 VIOH = 4.2 mA Full range 4.4 4.4

    VIC = 2.5 V, 25C 0.1 0.1

    VOL Low-level output voltage

    VIC = 2.5 V, IOL = 1.3 mA Full range 0.2 0.2

    VVOL Low-level output voltage VIC = 2.5 V, 25C 0.21 0.21V

    VIC = 2.5 V, IOL = 4.2 mA Full range 0.6 0.6

    AVDLarge-signal differential voltage VIC = 2.5 V,RL = 10 k

    25C 20 450 20 450V/mVAVD

    Large-signal differential voltageamplification

    ICRL = 10 k,VO = 1 V to 4 V Full range 13 13

    V/mV

    ri(d) Differential input resistance 25C 1012 1012 ci(c) Common-mode input capacitance f = 10 kHz 25C 8 8 pF

    zo Closed-loop output impedancef = 100 kHz, AV = 10

    25C 20 20

    CMRR Common-mode rejection ratioVIC = 0 to 3.7 V,VO = VDD/2,

    25C 60 96 70 96dBCMRR Common-mode rejection ratio

    ICVO = VDD/2, RS = 50 Full range 60 93 70 93

    dB

    kSVRSupply voltage rejection ratio VDD = 2.7 V to 5 V,VIC = VDD/2,

    25C 70 89 70 89dBkSVR

    Supply voltage rejection ratio(VDD /VIO)

    DDVIC = VDD/2,No load Full range 70 84 70 84

    dB

    IDD Supply current (per channel) VO = VDD/2, 25C 1 2 1 2

    mAIDD Supply current (per channel) VO = VDD/2, No load Full range 2 2 mA

    IDD(SHDN)Supply current shutdown (per 25C 0.8 1.5 0.8 1.5

    AIDD(SHDN)Supply current shutdown (perchannel) Full range 1.3 2 1.3 2 A

    Full range is 40C to 125C.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    13WWW.TI.COM

    electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)(continued)PARAMETER TEST TA

    TLV277xI TLV277xAIUNITPARAMETER TESTCONDITIONS TA

    MIN TYP MAX MIN TYP MAX

    UNIT

    TLV2770 2.59 2.59V(ON) Turnon voltage level TLV2773 AV = 5 25C 2.47 2.47 VV(ON) Turnon voltage level

    TLV2775AV = 5 25 C

    2.48 2.48V

    TLV2770 2.41 2.41V(OFF) Turnoff voltage level TLV2773 AV = 5 25C 2.32 2.32 VV(OFF) Turnoff voltage level

    TLV2775AV = 5 25 C

    2.29 2.29V

    Full range is 40C to 125C.

    operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)PARAMETER TEST CONDITIONS TA

    TLV277xI TLV277xAIUNITPARAMETER TEST CONDITIONS TA MIN TYP MAX MIN TYP MAX UNIT

    VO(PP) = 1.5 V, CL = 100 pF,25C 5 10.5 5 10.5

    SR Slew rate at unity gain VO(PP) = 1.5 V,RL = 10 kCL = 100 pF, Full

    range 4.7 6 4.7 6V/s

    VnEquivalent input noise f = 1 kHz 25C 17 17

    nV/HzVnEquivalent input noisevoltage f = 10 kHz 25C 12 12 nV/Hz

    VN(PP)Peak-to-peak equivalent input

    f = 0.1 Hz to 1 Hz 25C 0.33 0.33 VVN(PP) equivalent input

    noise voltage f = 0.1 Hz to 10 Hz 25C 0.86 0.86 V

    InEquivalent input noisecurrent f = 100 Hz 25C 0.6 0.6 fA /Hz

    Total harmonic RL = 600 ,AV = 1 0.005% 0.005%

    THD + N Total harmonicdistortion plus noiseRL = 600 ,f = 1 kHz AV = 10 25C 0.016% 0.016%THD + N distortion plus noise f = 1 kHz

    AV = 10025 C

    0.095% 0.095%Gain-bandwidth product

    f = 10 kHz, CL = 100 pF

    RL = 600 , 25C 5.1 5.1 MHz

    ts Settling time

    AV = 1,Step = 1.5 V to 3.5 V,

    0.1% 25C 0.134 0.134sts Settling time 3.5 V,

    RL = 600 ,CL = 100 pF

    0.01% 25C 1.97 1.97s

    mPhase margin at unitygain RL = 600 , CL = 100 pF

    25C 46 46

    Gain marginRL = 600 , CL = 100 pF

    25C 12 12 dB

    Amplifier TLV2770 AV = 5,1.2 1.2

    t(ON)Amplifierturnontime

    TLV2773AV = 5,RL = Open,Measured to 50% point

    25C 2.4 2.4 st(ON) turnontime TLV2775

    RL = Open,Measured to 50% point

    25 C1.9 1.9

    s

    Amplifier TLV2770 AV = 5,335 335

    t(OFF)Amplifierturnofftime

    TLV2773AV = 5,RL = Open,Measured to 50% point

    25C 444 444 nst(OFF) turnofftime TLV2775

    RL = Open,Measured to 50% point

    25 C345 345

    ns

    Full range is 40C to 125C.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    14 WWW.TI.COM

    electrical characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)

    PARAMETER TEST CONDITIONS TATLV2772QTLV2772M

    TLV2772AQTLV2772AM UNITPARAMETER TEST CONDITIONS TA

    MIN TYP MAX MIN TYP MAXUNIT

    VIO Input offset voltage25C 0.44 2.5 0.44 1.6

    mVVIO Input offset voltage Full range 0.47 2.7 0.47 1.9 mV

    VIOTemperature coefficient of input V = 1.35 V,

    25Cto 2 2 V/CVIO coefficient of input

    offset voltageVDD = 1.35 V,VIC = 0,

    VO = 0,to

    125C2 2 V/C

    IIO Input offset current

    VIC = 0,RS = 50

    O25C 1 60 1 60

    pAIIO Input offset currentRS = 50

    Full range 2 125 2 125 pA

    IIB Input bias current25C 2 60 2 60

    pAIIB Input bias current Full range 6 350 6 350 pA

    0 0.3 0 0.325C

    0to

    0.3to

    0to

    0.3to

    VICRCommon-mode CMRR > 60 dB, RS = 50

    25 C to1.4

    to1.7

    to1.4

    to1.7

    VVICRCommon-modeinput voltage range CMRR > 60 dB, RS = 50 0 0.3 0 0.3

    Vinput voltage rangeFull range

    0to

    0.3to

    0to

    0.3toFull range to

    1.4to

    1.7to

    1.4to

    1.7

    IOH = 0.675 mA25C 2.6 2.6

    VOHHigh-level output

    IOH = 0.675 mA Full range 2.45 2.45VVOH

    High-level outputvoltage

    IOH = 2.2 mA25C 2.4 2.4 Vvoltage

    IOH = 2.2 mA Full range 2.1 2.1

    VIC = 1.35 V, IOL = 0.675 mA25C 0.1 0.1

    VOLLow-level output

    VIC = 1.35 V, IOL = 0.675 mA Full range 0.2 0.2VVOL

    Low-level outputvoltage

    VIC = 1.35 V, IOL = 2.2 mA25C 0.21 0.21 Vvoltage

    VIC = 1.35 V, IOL = 2.2 mA Full range 0.6 0.6

    AVDLarge-signal differential voltage VIC = 1.35 V, RL = 10 k,

    25C 20 380 20 380V/mVAVD differential voltage

    amplification

    VIC = 1.35 V,VO = 0.6 V to 2.1 V

    RL = 10 k,Full range 13 13

    V/mV

    ri(d) Differential inputresistance 25C 1012 1012

    ci(c) Common-mode input capacitance f = 10 kHz, 25C 8 8 pF

    zoClosed-loopoutput impedance f = 100 kHz, AV = 10 25C 25 25

    CMRR Common-mode VIC = VICR (min), VO = 1.5 V, 25C 60 84 60 84

    dBCMRR Common-moderejection ratioVIC = VICR (min),RS = 50

    VO = 1.5 V, Full range 60 82 60 82 dB

    kSVRSupply voltage rejection ratio VDD = 2.7 V to 5 V, VIC = VDD/2,

    25C 70 89 70 89dBkSVR rejection ratio(VDD /VIO)

    VDD = 2.7 V to 5 V,No load

    VIC = VDD/2,Full range 70 84 70 84

    dB

    IDDSupply current VO = 1.5 V, No load

    25C 1 2 1 2mAIDD

    Supply current(per channel) VO = 1.5 V, No load Full range 2 2 mA

    Full range is 40C to 125C for Q level part, 55C to 125C for M level part. Referenced to 1.35 V

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    15WWW.TI.COM

    operating characteristics at specified free-air temperature, VDD = 2.7 V (unless otherwise noted)

    PARAMETER TEST CONDITIONS TATLV2772QTLV2772M

    TLV2772AQTLV2772AM UNITPARAMETER TEST CONDITIONS TA

    MIN TYP MAX MIN TYP MAXUNIT

    VO(PP) = 0.8 V, CL = 100 pF,25C 5 9 5 9

    SR Slew rate at unity gain VO(PP) = 0.8 V,RL = 10 kCL = 100 pF, Full

    range 4.7 6 4.7 6V/s

    VnEquivalent input f = 1 kHz 25C 21 21

    nV/HzVnEquivalent input noise voltage f = 10 kHz 25C 17 17 nV/Hz

    VN(PP)Peak-to-peak equivalent input

    f = 0.1 Hz to 1 Hz 25C 0.33 0.33 VVN(PP) equivalent input

    noise voltage f = 0.1 Hz to 10 Hz 25C 0.86 0.86 V

    InEquivalent inputnoise current f = 100 Hz 25C 0.6 0.6 fA /Hz

    Total harmonic RL = 600 ,AV = 1 0.0085% 0.0085%

    THD + N Total harmonicdistortion plus noiseRL = 600 ,f = 1 kHz AV = 10 25C 0.025% 0.025%THD + N distortion plus noise f = 1 kHz

    AV = 10025 C

    0.12% 0.12%Gain-bandwidth product

    f = 10 kHz, CL = 100 pF

    RL = 600 , 25C 4.8 4.8 MHz

    ts Settling time

    AV = 1,Step = 0.85 V to 1.85 V,

    0.1% 25C 0.186 0.186sts Settling time 1.85 V,

    RL = 600 ,CL = 100 pF

    0.01% 25C 3.92 3.92s

    mPhase margin atunity gain RL = 600 , CL = 100 pF

    25C 46 46

    Gain marginRL = 600 , CL = 100 pF

    25C 12 12 dB Full range is 40C to 125C for Q level part, 55C to 125C for M level part.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    16 WWW.TI.COM

    electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)

    PARAMETER TEST CONDITIONS TATLV2772QTLV2772M

    TLV2772AQTLV2772AM UNITPARAMETER TEST CONDITIONS TA

    MIN TYP MAX MIN TYP MAXUNIT

    VIO Input offset voltage25C 0.36 2.5 0.36 1.6

    mVVIO Input offset voltage Full range 0.4 2.7 0.4 1.9 mV

    VIOTemperature coefficient of input

    25Cto 2 2 V/CVIO coefficient of input

    offset voltage VDD = 2.5 V, VIC = 0,

    VO = 0,RS = 50

    to125C

    2 2 V/C

    IIO Input offset current

    DDVIC = 0,

    ORS = 50 25C 1 60 1 60

    pAIIO Input offset current Full range 2 125 2 125 pA

    IIB Input bias current25C 2 60 2 60

    pAIIB Input bias current Full range 6 350 6 350 pA

    0 0.3 0 0.325C

    0to

    0.3to

    0to

    0.3to

    VICRCommon-mode CMRR > 60 dB, RS = 50

    25 C to3.7

    to3.8

    to3.7

    to3.8

    VVICRCommon-modeinput voltage range CMRR > 60 dB, RS = 50 0 0.3 0 0.3

    Vinput voltage rangeFull range

    0to

    0.3to

    0to

    0.3toFull range to

    3.7to

    3.8to

    3.7to

    3.8

    IOH = 1.3 mA25C 4.9 4.9

    VOHHigh-level output

    IOH = 1.3 mA Full range 4.8 4.8VVOH

    High-level outputvoltage

    IOH = 4.2 mA25C 4.7 4.7 Vvoltage

    IOH = 4.2 mA Full range 4.4 4.4

    VIC = 2.5 V, IOL = 1.3 mA25C 0.1 0.1

    VOLLow-level output

    VIC = 2.5 V, IOL = 1.3 mA Full range 0.2 0.2VVOL

    Low-level outputvoltage

    VIC = 2.5 V, IOL = 4.2 mA25C 0.21 0.21 Vvoltage

    VIC = 2.5 V, IOL = 4.2 mA Full range 0.6 0.6

    AVDLarge-signal differential voltage VIC = 2.5 V, RL = 10 k,

    25C 20 450 20 450V/mVAVD differential voltage

    amplification

    VIC = 2.5 V,VO = 1 V to 4 V

    RL = 10 k,Full range 13 13

    V/mV

    ri(d) Differential inputresistance 25C 1012 1012

    ci(c) Common-mode input capacitance f = 10 kHz, 25C 8 8 pF

    zoClosed-loopoutput impedance f = 100 kHz, AV = 10 25C 20 20

    CMRR Common-mode VIC = VICR (min), VO = 3.7 V, 25C 60 96 60 96

    dBCMRR Common-moderejection ratioVIC = VICR (min),RS = 50

    VO = 3.7 V, Full range 60 93 60 93 dB

    kSVRSupply voltage rejection ratio VDD = 2.7 V to 5 V, VIC = VDD/2,

    25C 70 89 70 89dBkSVR rejection ratio(VDD /VIO)

    VDD = 2.7 V to 5 V,No load

    VIC = VDD/2,Full range 70 84 70 84

    dB

    IDDSupply current VO = 1.5 V, No load

    25C 1 2 1 2mAIDD

    Supply current(per channel) VO = 1.5 V, No load Full range 2 2 mA

    Full range is 40C to 125C for Q level part, 55C to 125C for M level part. Referenced to 2.5 V

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    17WWW.TI.COM

    operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)

    PARAMETER TEST CONDITIONS TATLV2772QTLV2772M

    TLV2772AQTLV2772AM UNITPARAMETER TEST CONDITIONS TA

    MIN TYP MAX MIN TYP MAXUNIT

    VO(PP) = 1.5 V, CL = 100 pF,25C 5 10.5 5 10.5

    SR Slew rate at unity gain VO(PP) = 1.5 V,RL = 10 kCL = 100 pF, Full

    range 4.7 6 4.7 6V/s

    VnEquivalent input f = 1 kHz 25C 17 17

    nV/HzVnEquivalent input noise voltage f = 10 kHz 25C 12 12 nV/Hz

    VN(PP)Peak-to-peakequivalent input

    f = 0.1 Hz to 1 Hz 25C 0.33 0.33 VVN(PP) equivalent input

    noise voltage f = 0.1 Hz to 10 Hz 25C 0.86 0.86 V

    InEquivalent inputnoise current f = 100 Hz 25C 0.6 0.6 fA /Hz

    Total harmonic RL = 600 ,AV = 1 0.005% 0.005%

    THD + N Total harmonicdistortion plus noiseRL = 600 ,f = 1 kHz AV = 10 25C 0.016% 0.016%THD + N distortion plus noise f = 1 kHz

    AV = 10025 C

    0.095% 0.095%Gain-bandwidthproduct

    f = 10 kHz, CL = 100 pF

    RL = 600 , 25C 5.1 5.1 MHz

    ts Settling time

    AV = 1,Step = 1.5 V to 3.5 V,

    0.1% 25C 0.134 0.134sts Settling time 3.5 V,

    RL = 600 ,CL = 100 pF

    0.01% 25C 1.97 1.97s

    mPhase margin at unitygain RL = 600 , CL = 100 pF

    25C 46 46

    Gain marginRL = 600 , CL = 100 pF

    25C 12 12 dB Full range is 40C to 125C for Q level part, 55C to 125C for M level part.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    18 WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Table of GraphsFIGURE

    VIO Input offset voltageDistributionvs Common-mode input voltage

    1,23,4VIO Input offset voltage vs Common-mode input voltage

    Distribution3,45,6

    IIB/IIO Input bias and input offset currents vs Free-air temperature 7VOH High-level output voltage vs High-level output current 8,9VOL Low-level output voltage vs Low-level output current 10,11VO(PP) Maximum peak-to-peak output voltage vs Frequency 12,13

    IOS Short-circuit output currentvs Supply voltagevs Free-air temperature

    1415

    VO Output voltage vs Differential input voltage 16AVD Large-signal differential voltage amplification and phase margin vs Frequency 17,18

    AVD Differential voltage amplificationvs Load resistancevs Free-air temperature

    1920,21

    zo Output impedance vs Frequency 22,23

    CMRR Common-mode rejection ratio vs Frequencyvs Free-air temperature

    2425

    kSVR Supply-voltage rejection ratio vs Frequency 26,27IDD Supply current (per channel) vs Supply voltage 28

    SR Slew rate vs Load capacitance 29SR Slew rate vs Load capacitancevs Free-air temperature

    2930

    VO Voltage-follower small-signal pulse response 31,32VO Voltage-follower large-signal pulse response 33,34VO Inverting small-signal pulse response 35,36VO Inverting large-signal pulse response 37,38Vn Equivalent input noise voltage vs Frequency 39,40

    Noise voltage (referred to input) Over a 10-second period 41THD + N Total harmonic distortion plus noise vs Frequency 42,43

    Gain-bandwidth product vs Supply voltage 44B1 Unity-gain bandwidth vs Load capacitance 45m Phase margin vs Load capacitance 46

    Gain margin vs Load capacitance 47

    Amplifier with shutdown pulse turnon/off characteristics 48 50Supply current with shutdown pulse turnon/off characteristics 51 53Shutdown supply current vs Free-air temperature 54Shutdown forward/reverse isolation vs Frequency 55, 56

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    19WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 1

    2.5

    30

    20

    10

    02 1.5 1 0 0.5

    VIO Input Offset Voltage mV0.5

    35

    Perc

    enta

    ge o

    f Am

    plifi

    ers

    %

    25

    15

    5

    1

    40VDD = 2.7 VRL = 10 kTA = 25C

    DISTRIBUTION OF TLV2772INPUT OFFSET VOLTAGE

    1.5 2.52

    Figure 2

    2.5

    30

    20

    10

    02 1.5 1 0 0.5

    VIO Input Offset Voltage mV0.5

    35

    Perc

    enta

    ge o

    f Am

    plifi

    ers

    %

    25

    15

    5

    1

    40VDD = 5 VRL = 10 kTA = 25C

    DISTRIBUTION OF TLV2772INPUT OFFSET VOLTAGE

    1.5 2.52

    Figure 3

    VDD = 2.7 VTA = 25C

    INPUT OFFSET VOLTAGEvs

    COMMON-MODE INPUT VOLTAGE2

    1

    0

    1

    2

    1.5

    0.5

    0.5

    1.5

    1 0.5 0 0.5 2VIC Common-Mode Input Voltage V

    1.51 2.5 3

    V IO

    In

    put O

    ffset

    Vo

    ltage

    m

    V

    Figure 4

    INPUT OFFSET VOLTAGEvs

    COMMON-MODE INPUT VOLTAGE

    1

    0

    1

    21 0 0.5

    VIC Common-Mode Input Voltage V0.5

    1.5

    0.5

    0.5

    1.5

    1

    2

    1.5 2.52 3 3.5 4.54

    VDD = 5 VTA = 25C

    V IO

    In

    put O

    ffset

    Vo

    ltage

    m

    V

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    20 WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 5

    VIO Temperature Coefficient V/C6

    30

    20

    10

    03 0 3 9 126

    35

    Perc

    enta

    ge o

    f Am

    plifi

    ers

    %

    25

    15

    5

    VDD = 2.7 VTA = 25C to 125C

    DISTRIBUTION OF TLV2772INPUT OFFSET VOLTAGE

    Figure 6

    6

    30

    20

    10

    03 0 3 9 12

    VIO Temperature Coefficient V/C6

    35

    Perc

    enta

    ge o

    f Am

    plifi

    ers

    %

    25

    15

    5

    VDD = 5 VTA = 25C to 125C

    DISTRIBUTION OF TLV2772INPUT OFFSET VOLTAGE

    Figure 7

    VDD = 5 VVIC = 0VO = 0RS = 50

    INPUT BIAS AND OFFSET CURRENTvs

    FREE-AIR TEMPERATURE0.20

    0.10

    0

    0.15

    0.05

    75 50 25 0 75TA Free-Air Temperature C

    5025 100 125I IB

    and

    I IO

    In

    put B

    ias

    and

    Inpu

    t Offs

    et C

    urre

    nts

    nA

    IIB

    IIO

    Figure 8

    HIGH-LEVEL OUTPUT VOLTAGEvs

    HIGH-LEVEL OUTPUT CURRENT3

    2

    1

    0

    2.5

    1.5

    0.5

    0 5 10 15IOH High-Level Output Current mA

    2520

    V OH

    H

    igh-

    Leve

    l Out

    put V

    olta

    ge

    V

    VDD = 2.7 V

    TA = 125C

    TA = 40C

    TA = 25C

    TA = 85C

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    21WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 9

    HIGH-LEVEL OUTPUT VOLTAGEvs

    HIGH-LEVEL OUTPUT CURRENT

    3

    2

    1

    00 10 15

    IOH High-Level Output Current mA5

    3.5

    2.5

    1.5

    0.5

    20

    4

    25 3530 40 45 5550

    VDD = 5 VTA = 25C

    V OH

    H

    igh-

    Leve

    l Out

    put V

    olta

    ge

    V

    4.5

    5

    TA = 40C

    TA = 85C

    TA = 25C

    TA = 125C

    Figure 10

    LOW-LEVEL OUTPUT VOLTAGEvs

    LOW-LEVEL OUTPUT CURRENT3

    2

    1

    0

    2.5

    1.5

    0.5

    0 5 10 15IOL Low-Level Output Current mA

    3020V O

    L

    Lo

    w-L

    evel

    Out

    put V

    olta

    ge

    V

    VDD = 2.7 V

    TA = 125C

    25

    TA = 85C

    TA = 25C

    TA = 40C

    Figure 11

    2

    1

    00 10

    IOL Low-Level Output Current mA

    2.5

    1.5

    0.5

    20

    3

    30 40 50

    VDD = 5 V

    LOW-LEVEL OUTPUT VOLTAGEvs

    LOW-LEVEL OUTPUT CURRENT

    TA = 125C

    TA = 85C

    TA = 40C

    TA = 25C

    V OL

    Lo

    w-L

    evel

    Out

    put V

    olta

    ge

    V

    Figure 12

    MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGEvs

    FREQUENCY

    3

    1

    01000

    f Frequency kHz

    5

    10000100

    4

    RL = 10 k

    V O(P

    P)

    M

    axim

    um P

    eak-

    to-P

    eak

    Out

    put V

    olta

    ge

    V

    2

    VDD = 5 V1% THD

    VDD = 2.7 V2% THD

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    22 WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 13

    THD = 5%RL = 600 TA = 25C

    MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGEvs

    FREQUENCY

    3

    2

    1

    0

    2.5

    1.5

    0.5

    100f Frequency kHz

    1000 10000

    VDD = 5 V

    VDD = 2.7 V

    5

    4

    4.5

    3.5

    M

    axim

    um P

    eak-

    to-P

    eak

    Out

    put V

    olta

    ge

    VV O

    (PP)

    Figure 14

    SHORT-CIRCUIT OUTPUT CURRENTvs

    SUPPLY VOLTAGE

    30

    0

    30

    602 4 5

    VDD Supply Voltage V3

    45

    15

    15

    45

    6

    60

    7

    VO = VDD /2VIC = VDD /2TA = 25C

    I OS

    Sh

    ort-C

    ircui

    t Out

    put C

    urre

    nt

    mA

    VID = 100 mV

    VID = 100 mV

    Figure 15

    VDD = 5 VVO = 2.5 V

    SHORT-CIRCUIT OUTPUT CURRENTvs

    FREE-AIR TEMPERATURE60

    20

    20

    60

    40

    0

    40

    75 50 25 0 75TA Free-Air Temperature C

    5025 100 125

    I OS

    Sh

    ort-C

    ircui

    t Out

    put C

    urre

    nt

    mA VID = 100 mV

    VID = 100 mV

    Figure 16

    RL = 600 TA = 25C

    OUTPUT VOLTAGEvs

    DIFFERENTIAL INPUT VOLTAGE

    4

    2

    0

    5

    3

    1

    1000 750 500 250 500VID Differential Input Voltage V

    2500 750 1000

    V O

    O

    utpu

    t Vo

    ltage

    V

    VDD = 2.7 V

    VDD = 5 V

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    23WWW.TI.COM

    TYPICAL CHARACTERISTICS

    100

    60

    20

    20

    80

    40

    0

    100f Frequency Hz

    10k 10M

    AVD

    Phase

    LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATIONAND PHASE MARGIN

    vsFREQUENCY

    La

    rge-

    Sign

    al D

    iffer

    entia

    l Am

    plifi

    catio

    n

    dBA

    VD

    m

    Ph

    ase

    Mar

    gin

    de

    gree

    s

    300

    180

    60

    60

    240

    120

    0

    1k 100k 1M40 90

    VDD = 2.7 VRL = 600 CL = 600 pFTA = 25C

    Figure 17

    300

    180

    60

    60

    240

    120

    0

    90

    100

    60

    20

    20

    80

    40

    0

    40100

    f Frequency Hz10k 10M

    AVD

    Phase

    VDD = 5 VRL = 600 CL = 600 pFTA = 25C

    LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATIONAND PHASE MARGIN

    vsFREQUENCY

    La

    rge-

    Sign

    al D

    iffer

    entia

    l Am

    plifi

    catio

    n

    dBA

    VD

    m

    Ph

    ase

    Mar

    gin

    de

    gree

    s

    1k 100k 1M

    Figure 18

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    24 WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 19

    DIFFERENTIAL VOLTAGE AMPLIFICATIONvs

    LOAD RESISTANCE

    200

    100

    010

    RL Load Resistance k

    250

    150

    50

    1 100 10000.1

    TA = 25C

    D

    iffer

    entia

    l Vo

    ltage

    Am

    plifi

    catio

    n

    V/m

    VA

    VD

    VDD = 2.7 VVDD = 5 V

    Figure 20

    DIFFERENTIAL VOLTAGE AMPLIFICATIONvs

    FREE-AIR TEMPERATURE1000

    10

    0.1

    100

    1

    D

    iffer

    entia

    l Vo

    ltage

    Am

    plifi

    catio

    n

    V/m

    VA

    VD

    TA Free-Air Temperature C75 50 25 0 755025 100 125

    VDD = 2.7 VVIC = 1.35 VVO = 0.6 V to 2.1 V

    RL = 1 M

    RL = 600

    RL = 10 k

    Figure 21

    50

    DIFFERENTIAL VOLTAGE AMPLIFICATIONvs

    FREE-AIR TEMPERATURE1000

    10

    0.1

    100

    1

    D

    iffer

    entia

    l Vo

    ltage

    Am

    plifi

    catio

    n

    V/m

    VA

    VD

    TA Free-Air Temperature C

    VDD = 5 VVIC = 2.5 VVO = 1 V to 4 V

    RL = 1 M

    RL = 600

    75 25 0 755025 100 125

    RL = 10 k

    Figure 22

    OUTPUT IMPEDANCEvs

    FREQUENCY100

    1

    0.01

    10

    0.10

    100 1k 10k 100kf Frequency Hz

    1M

    Z O

    O

    utpu

    t Im

    peda

    nce

    AV = 100

    AV = 10

    AV = 1

    VDD = 2.7 VTA = 25C

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    25WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 23

    OUTPUT IMPEDANCEvs

    FREQUENCY100

    1

    0.01

    10

    0.1

    f Frequency Hz100 1k 10k 100k 1M

    VDD = 2.5 VTA = 25C

    Av = 100

    O

    utpu

    t Im

    peda

    nce

    Z o

    Av = 10

    Av = 1

    Figure 24

    VIC = 1.35 Vand 2.5 VTA = 25C

    COMMON-MODE REJECTION RATIOvs

    FREQUENCY90

    80

    60

    40

    70

    50

    10 100 1kf Frequency Hz

    10k 100k 10M

    VDD = 5 V

    VDD = 2.7 V

    CMRR

    C

    omm

    on-M

    ode

    Rejec

    tion R

    atio

    dB1M

    Figure 25

    2040 0 20 806040 100 120

    COMMON-MODE REJECTION RATIOvs

    FREE-AIR TEMPERATURE

    110

    100

    90

    80

    105

    95

    85

    TA Free-Air Temperature C

    CMRR

    C

    omm

    on-M

    ode

    Rejec

    tion R

    atio

    dB

    120

    115

    VDD = 5 V

    VDD = 2.7 V

    140

    Figure 26

    SUPPLY-VOLTAGE REJECTION RATIOvs

    FREQUENCY120

    60

    010 100 1k 10k

    f Frequency Hz10M

    k SVR

    Su

    pply

    -Vo

    ltage

    Reje

    ction

    Rati

    o dB

    kSVR

    VDD = 2.7 VTA = 25C

    100k 1M

    kSVR+100

    40

    80

    20

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    26 WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 27

    SUPPLY VOLTAGE REJECTION RATIOvs

    FREQUENCY120

    80

    40

    0

    100

    60

    20

    10 100 1 k 10 k 10 Mf Frequency Hz

    1 M100 k

    k SVR

    Su

    pply

    Vo

    ltage

    Reje

    ction

    Rati

    o dB kSVR+

    kSVR

    VDD = 5 VTA = 25C

    Figure 28

    SUPPLY CURRENT (PER CHANNEL)vs

    SUPPLY VOLTAGE

    1.2

    0.8

    0.4

    0

    1

    0.6

    0.2

    2.5 3 3.5 4VDD Supply Voltage V

    74.5

    I DD

    Su

    pply

    Cur

    rent

    (Per

    Chan

    nel)

    mA

    TA = 0C

    1.6

    1.4

    5 5.5 6 6.5

    TA = 125C

    TA = 85C

    TA = 25C

    TA = 40C

    Figure 29

    SLEW RATEvs

    LOAD CAPACITANCE

    1kCL Load Capacitance pF

    100 10k 100k10

    VDD = 5 VAV = 1TA = 25C

    SR+

    12

    8

    4

    0

    10

    6

    2

    16

    14

    SR

    Sle

    w R

    ate

    V/

    s

    SR

    Figure 30

    5075 25 0 755025 100 125

    SLEW RATEvs

    FREE-AIR TEMPERATURE14

    12

    10

    8

    13

    11

    9

    TA Free-Air Temperature C

    VDD = 2.7 VRL = 10 kCL = 100 pFAV = 1

    SR

    Sle

    w R

    ate

    s

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    27WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 31t Time s

    VOLTAGE-FOLLOWERSMALL-SIGNAL PULSE RESPONSE

    VDD = 2.7 VRL = 600 CL = 100 pFAV = 1TA = 25C

    40

    0

    20

    20VO

    O

    utpu

    t Vo

    ltage

    m

    V

    80

    60

    0 1.510.5 2 2.5 3.53 4 4.5 5

    100

    40

    60

    Figure 32t Time s

    VDD = 5 VRL = 600 CL = 100 pFAV = 1TA = 25C

    VOLTAGE-FOLLOWERSMALL-SIGNAL PULSE RESPONSE

    40

    0

    20

    20VO

    O

    utpu

    t Vo

    ltage

    m

    V

    80

    60

    0 1.510.5 2 2.5 3.53 4 4.5 5

    100

    40

    60

    Figure 33t Time s

    VOLTAGE-FOLLOWERLARGE-SIGNAL PULSE RESPONSE

    VDD = 2.7 VRL = 600 CL = 100 pFAV = 1TA = 25C

    1.5

    0.5

    1

    0VO

    O

    utpu

    t Vo

    ltage

    V

    2.5

    2

    0 1.510.5 2 2.5 3.53 4 4.5 5

    3

    0.5

    1

    Figure 34t Time s

    VDD = 5 VRL = 600 CL = 100 pFAV = 1TA = 25C

    VOLTAGE-FOLLOWERLARGE-SIGNAL PULSE RESPONSE

    3

    1

    2

    0VO

    O

    utpu

    t Vo

    ltage

    V

    5

    4

    0 1.510.5 2 2.5 3.53 4 4.5 5

    6

    1

    2

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    28 WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 35t Time s

    VDD = 2.7 VRL = 600 CL = 100 pFAV = 1TA = 25C

    INVERTING SMALL-SIGNALPULSE RESPONSE

    40

    0

    20

    20VO

    O

    utpu

    t Vo

    ltage

    m

    V

    80

    60

    0 1.510.5 2 2.5 3.53 4 4.5 5

    100

    40

    60

    Figure 36t Time s

    VDD = 5 VRL = 600 CL = 100 pFAV = 1TA = 25C

    INVERTING SMALL-SIGNALPULSE RESPONSE

    40

    0

    20

    20VO

    O

    utpu

    t Vo

    ltage

    m

    V

    80

    60

    0 1.510.5 2 2.5 3.53 4 4.5 5

    100

    40

    60

    Figure 37t Time s

    VDD = 2.7 VRL = 600 CL = 100 pFAV = 1TA = 25C

    INVERTING LARGE-SIGNALPULSE RESPONSE

    1.5

    0.5

    1

    0VO

    O

    utpu

    t Vo

    ltage

    V

    2.5

    2

    0 1.510.5 2 2.5 3.53 4 4.5 5

    3

    0.5

    1

    Figure 38t Time s

    VDD = 5 VRL = 600 CL = 100 pFAV = 1TA = 25C

    INVERTING LARGE-SIGNALPULSE RESPONSE

    2.5

    1.5

    2

    1VO

    O

    utpu

    t Vo

    ltage

    V

    3.5

    3

    0 1.510.5 2 2.5 3.53 4 4.5 5

    4

    0.5

    1

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    29WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 39

    EQUIVALENT INPUT NOISE VOLTAGEvs

    FREQUENCY

    120

    80

    40

    0100 10kf Frequency Hz

    140

    100

    60

    20

    1k

    160

    10

    VDD = 2.7 VRS = 20 TA = 25C

    In

    put N

    oise

    Vo

    ltage

    V n

    nV/

    Hz

    Figure 40

    EQUIVALENT INPUT NOISE VOLTAGEvs

    FREQUENCY

    100f Frequency Hz

    1k 10k10

    VDD = 5 VRS = 20 TA = 25C120

    80

    40

    0

    100

    60

    20

    140

    In

    put N

    oise

    Vo

    ltage

    n

    VH

    zV n

    t Time s

    VDD = 5 Vf = 0.1 Hz to 10 HzTA = 25C

    NOISE VOLTAGEOVER A 10 SECOND PERIOD

    0 1 2 3 4 5 6 7 8 9 10

    Noi

    se V

    olta

    ge

    nV

    300

    100

    100

    300

    200

    GND

    200

    Figure 41

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    30 WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 42

    TOTAL HARMONIC DISTORTION PLUS NOISEvs

    FREQUENCY10

    0.1

    0.001

    1

    0.01

    f Frequency Hz10 100 1k 10k 100k

    VDD = 2.7 VRL = 600 TA = 25C

    THD

    +N

    To

    tal H

    arm

    onic

    Dis

    torti

    on P

    lus

    Nois

    e

    %

    Av = 100

    Av = 10

    Av = 1

    Figure 43

    10

    0.1

    0.001

    1

    0.01

    f Frequency Hz10 100 1k 10k 100k

    VDD = 5 VRL = 600 TA = 25C

    THD

    +N

    To

    tal H

    arm

    onic

    Dis

    torti

    on P

    lus

    Nois

    e

    %

    Av = 100

    Av = 10

    Av = 1

    TOTAL HARMONIC DISTORTION PLUS NOISEvs

    FREQUENCY

    Figure 44

    GAIN-BANDWIDTH PRODUCTvs

    SUPPLY VOLTAGE5.2

    4.8

    4.4

    4

    5

    4.6

    4.2

    2 2.5 3 3.5 5VDD Supply Voltage V

    4.54 5.5 6

    Gai

    n-Ba

    ndw

    idth

    Pro

    duct

    M

    Hz

    RL = 600 CL = 100 pFf = 10 kHzTA = 25C

    Figure 45

    UNITY-GAIN BANDWIDTHvs

    LOAD CAPACITANCE

    4

    2

    01k

    CL Load Capacitance pF

    5

    3

    1

    100 10k 100k10

    Unity

    -Gai

    n Ba

    ndw

    idth

    M

    Hz

    Rnull = 0

    Rnull = 20

    Rnull = 50

    Rnull = 100

    VDD = 5 VRL = 600 TA = 25C

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    31WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 46

    60

    40

    20

    0

    50

    30

    10

    10CL Load Capacitance pF

    1k

    VDD = 5 VRL = 600 TA = 25C

    m

    Ph

    ase

    Mar

    gin

    de

    gree

    s

    100 10k 100K

    PHASE MARGINvs

    LOAD CAPACITANCE90

    70

    80

    Rnull = 0

    Rnull = 20

    Rnull = 50

    Rnull = 100

    Figure 47

    15

    25

    35

    40

    20

    30

    10CL Load Capacitance pF

    1k

    VDD = 5 VRL = 600 TA = 25C

    Gai

    n M

    argi

    n

    dB100 10k 100K

    GAIN MARGINvs

    LOAD CAPACITANCE0

    10

    5

    Rnull = 0

    Rnull = 20

    Rnull = 50

    Rnull = 100

    Figure 48

    VDD = 5 VAV = 5TA = 25C

    TLV2770AMPLIFIER WITH SHUTDOWN PULSE

    TURNON/OFF CHARACTERISTICS6

    0

    4

    8

    12

    2

    2

    6

    10

    4 2 0 2 8t Time s

    64 10 14

    Shut

    dow

    n Si

    gnal

    V

    12

    O

    utpu

    t Vo

    ltage

    V

    V O

    8

    6

    5

    4

    3

    2

    1

    0

    1

    4 7SHDN = VDD

    SHDN = GND

    VO

    Figure 49

    TLV2773AMPLIFIER WITH SHUTDOWN PULSE

    TURNON/OFF CHARACTERISTICS8

    2

    2

    6

    10

    4

    0

    4

    8

    2.5 0 2.5 7.5t Time s

    5 10 15

    Shut

    dow

    n Si

    gnal

    V

    12.5

    O

    utpu

    t Vo

    ltage

    V

    V O

    8

    6

    5

    4

    3

    2

    1

    0

    1

    6 7SHDN = VDD

    VO

    Channel 1

    VDD = 5 VAV = 5TA = 25CChannel 1 SwitchedChannel 2 SHDN MODE

    SHDN = GND

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    32 WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 50

    TLV2775 CHANNEL 1AMPLIFIER WITH SHUTDOWN PULSE

    TURNON/OFF CHARACTERISTICS8

    2

    2

    6

    10

    4

    0

    4

    8

    2.5 0 2.5 7.5t Time s

    5 10 15

    Shut

    dow

    n Si

    gnal

    V

    12.5

    O

    utpu

    t Vo

    ltage

    V

    V O

    8

    6

    5

    4

    3

    2

    1

    0

    1

    6 7SHDN = VDD

    VO

    Channel 1

    VDD = 5 VAV = 5TA = 25CChannel 1/2 SwitchedChannel 3/4 SHDN MODE

    SHDN = GND

    TLV2770SUPPLY CURRENT WITH SHUTDOWN PULSE

    TURNON/OFF CHARACTERISTICS6

    0

    4

    8

    12

    2

    2

    6

    10

    4 2 0 4t Time s

    2 6 14

    Shut

    dow

    n Si

    gnal

    V

    8

    24

    18

    15

    12

    9

    6

    3

    0

    3

    4 21

    Figure 51

    I DD

    Su

    pply

    Cur

    rent

    m

    A

    10 12

    VDD = 5 VAV = 5TA = 25C

    SHDN = GND

    SHDN = VDD

    IDD

    Figure 52

    TLV2773SUPPLY CURRENT WITH SHUTDOWN PULSE

    TURNON/OFF CHARACTERISTICS6

    3

    9

    18

    0

    6

    12

    15

    5 2.5 0 5t Time s

    2.5 7.5 15

    Shut

    dow

    n Si

    gnal

    V

    10

    70

    50

    40

    30

    20

    10

    0

    3

    3 60

    I DD

    Su

    pply

    Cur

    rent

    m

    A

    12.5

    VDD = 5 VAV = 5TA = 25CChannel 1 SwitchedChannel 2 SHDN MODE

    SHDN = GND

    SHDN = VDD

    IDD

    Figure 53

    TLV2775SUPPLY CURRENT WITH SHUTDOWN PULSE

    TURNON/OFF CHARACTERISTICS6

    3

    9

    18

    0

    6

    12

    15

    5 2.5 0 5t Time s

    2.5 7.5 15

    Shut

    dow

    n Si

    gnal

    V

    10

    70

    50

    40

    30

    20

    10

    0

    3

    3 60

    I DD

    Su

    pply

    Cur

    rent

    m

    A

    12.5

    VDD = 5 VAV = 5TA = 25CChannel 1/2 SwitchedChannel 3/4 SHDN MODE

    SHDN = GND

    SHDN = VDD

    IDD

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    33WWW.TI.COM

    TYPICAL CHARACTERISTICS

    Figure 54

    7

    4

    2

    0

    5

    3

    1

    75 50 25 25TA Free-Air Temperature C

    0 50 12575

    6

    100

    AV = 5RL = OPENSHDN = GND

    VDD 5 V

    SHUTDOWN SUPPLY CURRENTvs

    FREE-AIR TEMPERATURE

    VDD 2.7 V

    DD

    ISh

    utdo

    wn

    Supp

    ly C

    urre

    nt

    A

    Figure 55

    TLV2770SHUTDOWN FORWARD ISOLATION

    vsFREQUENCY

    140

    20

    20

    40

    0

    f Frequency Hz10 102 103 104 106

    Shut

    dow

    n Fo

    rwar

    d Is

    olat

    ion

    dB

    SHDN MODEAV = 1VDD = 2.7 VRL = 10 kCL = 20 pFTA = 25C

    VI(PP) = 2.7 V

    105

    100

    120

    80

    60

    VI(PP) = 0.1 V

    Figure 56

    TLV2770SHUTDOWN REVERSE ISOLATION

    vsFREQUENCY140

    20

    20

    40

    0

    f Frequency Hz10 102 103 104 106

    Shut

    dow

    n Re

    vers

    e Is

    olat

    ion

    dB

    SHDN MODEAV = 1VDD = 2.7 VRL = 10 kCL = 20 pFTA = 25C

    VI(PP) = 2.7 V

    105

    100

    120

    80

    60 VI(PP) = 0.1 V

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    34 WWW.TI.COM

    PARAMETER MEASUREMENT INFORMATION

    _

    +

    Rnull

    RL CL

    Figure 57

    driving a capacitive loadWhen the amplifier is configured in this manner, capacitive loading directly on the output will decrease thedevices phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greaterthan 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, asshown in Figure 58. A minimum value of 20 should work well for most applications.

    CLOAD

    RF

    InputOutput

    RG RNULL_

    +

    Figure 58. Driving a Capacitive Load

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    35WWW.TI.COM

    APPLICATION INFORMATION

    offset voltageThe output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) timesthe corresponding gains. The following schematic and formula can be used to calculate the output offsetvoltage:

    VOO VIO1RFRG IIB RS1RFRG IIB RF

    +

    VI+

    RG

    RS

    RF

    IIB

    VO

    IIB+

    Figure 59. Output Offset Voltage Model

    general configurationsWhen receiving low-level signals, limiting the bandwidth of the incoming signals into the system is oftenrequired. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier(see Figure 60).

    VIVO

    C1

    +

    RG RF

    R1

    f3dB

    12R1C1

    VOVI

    1 RFRG 11 sR1C1

    Figure 60. Single-Pole Low-Pass Filter

    If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for thistask. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.Failure to do this can result in phase shift of the amplifier.

    VI

    C2R2R1

    C1

    RFRG

    R1 = R2 = RC1 = C2 = CQ = Peaking Factor(Butterworth Q = 0.707)

    (= 1Q2 )RGRF

    _

    +

    f3dB

    12RC

    Figure 61. 2-Pole Low-Pass Sallen-Key Filter

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    36 WWW.TI.COM

    APPLICATION INFORMATION

    using the TLV2772 as an accelerometer interfaceThe schematic, shown in Figure 62, shows the ACH04-08-05 interfaced to the TLV1544 10-bit analog-to-digitalconverter (ADC).The ACH04-08-05 is a shock sensor designed to convert mechanical acceleration into electrical signals. Thesensor contains three piezoelectric sensing elements oriented to simultaneously measure acceleration in threeorthogonal, linear axes (x, y, z). The operating frequency is 0.5 Hz to 5 kHz. The output is buffered with aninternal JFET and has a typical output voltage of 1.80 mV/g for the x and y axis and 1.35 mV/g for the z axis.Amplification and frequency shaping of the shock sensor output is done by the TLV2772 rail-to-rail operationalamplifier. The TLV2772 is ideal for this application as it offers high input impedance, good slew rate, andexcellent dc precision. The rail-to-rail output swing and high output drive are perfect for driving the analog inputof the TLV1544 ADC.

    _

    +

    1 Axis ACH040805

    Shock Sensor

    3 V

    1.23 V

    R1100 k

    C10.22 F

    R21 M

    R310 k

    1.23 V C22.2 nF

    R4100 k

    3 VR5

    1 k

    C30.22 F

    1/2TLV2772

    Signal Conditioning

    Output toTLV1544 (ADC)

    R62.2 k1.23 V

    3 V

    TLV431

    C

    RA

    4

    81

    2

    3

    Voltage Reference

    Figure 62. Accelerometer Interface Schematic

    The sensor signal must be amplified and frequency-shaped to provide a signal the ADC can properly convertinto the digital domain. Figure 62 shows the topology used in this application for one axis of the sensor. Thissystem is powered from a single 3-V supply. Configuring the TLV431 with a 2.2-k resistor produces a referencevoltage of 1.23 V. This voltage is used to bias the operational amplifier and the internal JFETs in the shocksensor.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    37WWW.TI.COM

    APPLICATION INFORMATION

    gain calculationSince the TLV2772 is capable of rail-to-rail output using a 3-V supply, VO = 0 (min) to 3 V (max). With no signalfrom the sensor, nominal VO = reference voltage = 1.23 V. Therefore, the maximum negative swing from nominalis 0 V 1.23 V = 1.23 V and the maximum positive swing is 3 V 1.23 V = 1.77 V. By modeling the shock sensoras a low impedance voltage source with output of 2.25 mV/g (max) in the x and y axis and 1.70 mV/g (max) inthe z axis, the gain of the circuit is calculated by equation 1.

    Gain Output SwingSensor Signal Acceleration (1)

    To avoid saturation of the operational amplifier, the gain calculations are based on the maximum negative swingof 1.23 V and the maximum sensor output of 2.25 mV/g (x and y axis) and 1.70 mV/g (z axis).

    Gain (x, y) 1.23 V2.25 mVg 50 g 10.9 (2)

    Gain (z) 1.23 V1.70 mVg 50 g 14.5 (3)and

    By selecting R3 = 10 k and R4 = 100 k, in the x and y channels, a gain of 11 is realized. By selectingR3 = 7.5 k and R4 = 100 k, in the z channel, a gain of 14.3 is realized. The schematic shows the configurationfor either the x- or y-axis.

    bandwidth calculationTo calculate the component values for the frequency shaping characteristics of the signal conditioning circuit,1 Hz and 500 Hz are selected as the minimum required 3-dB bandwidth.To minimize the value of the input capacitor (C1) required to set the lower cutoff frequency requires a large valueresistor for R2 is required. A 1-M resistor is used in this example. To set the lower cutoff frequency, the requiredcapacitor value for C1 is:

    C1 12 fLOW R2 0.159 F (4)

    Using a value of 0.22 F, a more common value of capacitor, the lower cutoff frequency is 0.724 Hz.To minimize the phase shift in the feedback loop caused by the input capacitance of the TLV2772, it is best tominimize the value of the feedback resistor R4. However, to reduce the required capacitance in the feedbackloop a large value for R4 is required. Therefore, a compromise for the value of R4 must be made. In this circuit,a value of 100 k has been selected. To set the upper cutoff frequency, the required capacitor value for C2 is:

    C2 12 fHIGH R4 3.18 F (5)

    Using a 2.2-nF capacitor, the upper cutoff frequency is 724 Hz.R5 and C3 also cause the signal response to roll off. Therefore, it is beneficial to design this roll-off point to beginat the upper cutoff frequency. Assuming a value of 1 k for R5, the value for C3 is calculated to be 0.22 F.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    38 WWW.TI.COM

    APPLICATION INFORMATION

    circuit layout considerationsTo achieve the levels of high performance of the TLV277x, follow proper printed-circuit board design techniques.A general set of guidelines is given in the following. Ground planesIt is highly recommended that a ground plane be used on the board to provide all

    components with a low inductive ground connection. However, in the areas of the amplifier inputs andoutput, the ground plane can be removed to minimize the stray capacitance.

    Proper power supply decouplingUse a 6.8-F tantalum capacitor in parallel with a 0.1-F ceramiccapacitor on each supply terminal. It may be possible to share the tantalum among several amplifiersdepending on the application, but a 0.1-F ceramic capacitor should always be used on the supply terminalof every amplifier. In addition, the 0.1-F capacitor should be placed as close as possible to the supplyterminal. As this distance increases, the inductance in the connecting trace makes the capacitor lesseffective. The designer should strive for distances of less than 0.1 inches between the device powerterminals and the ceramic capacitors.

    SocketsSockets can be used but are not recommended. The additional lead inductance in the socket pinswill often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit boardis the best implementation.

    Short trace runs/compact part placementsOptimum high performance is achieved when stray seriesinductance has been minimized. To realize this, the circuit layout should be made as compact as possible,thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input ofthe amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance atthe input of the amplifier.

    Surface-mount passive componentsUsing surface-mount passive components is recommended for highperformance amplifier circuits for several reasons. First, because of the extremely low lead inductance ofsurface-mount components, the problem with stray series inductance is greatly reduced. Second, the smallsize of surface-mount components naturally leads to a more compact layout thereby minimizing both strayinductance and capacitance. If leaded components are used, it is recommended that the lead lengths bekept as short as possible.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    39WWW.TI.COM

    APPLICATION INFORMATION

    general power dissipation considerationsFor a given JA, the maximum power dissipation is shown in Figure 63 and is calculated by the following formula:

    PD TMAXTAJA Where:

    PD = Maximum power dissipation of TLV277x IC (watts)TMAX= Absolute maximum junction temperature (150C)TA = Free-ambient air temperature (C)JA = JC + CA

    JC = Thermal coefficient from junction to caseCA = Thermal coefficient from case to ambient air (C/W)

    1

    0.75

    0.5

    05540 25 10 5

    Max

    imum

    Pow

    er D

    issi

    patio

    n

    W

    1.25

    1.5

    MAXIMUM POWER DISSIPATIONvs

    FREE-AIR TEMPERATURE

    1.75

    20 35 50

    0.25

    TA Free-Air Temperature C

    2

    65 80 95 110 125

    MSOP PackageLow-K Test PCBJA = 260C/W

    TJ = 150CPDIP PackageLow-K Test PCBJA = 104C/W

    SOIC PackageLow-K Test PCBJA = 176C/W

    SOT-23 PackageLow-K Test PCBJA = 324C/W

    NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.

    Figure 63. Maximum Power Dissipation vs Free-Air Temperature

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    40 WWW.TI.COM

    APPLICATION INFORMATION

    shutdown function

    Three members of the TLV277x family (TLV2770/3/5) have a shutdown terminal for conserving battery life inportable applications. When the shutdown terminal is tied low, the supply current is reduced to 0.8 A/channel,the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, theshutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, careneeds to be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently placethe operational amplifier into shutdown. The shutdown terminal threshold is always referenced to VDD/2.Therefore, when operating the device with split supply voltages (e.g. 2.5 V), the shutdown terminal needs tobe pulled to VDD (not GND) to disable the operational amplifier.The amplifiers output with a shutdown pulse is shown in Figures 48, 49, and 50. The amplifier is powered witha single 5-V supply and configured as a noninverting configuration with a gain of 5. The amplifier turnon andturnoff times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform.The times for the single, dual, and quad are listed in the data tables. The bump on the rising edge of the TLV2770output waveform is due to the start-up circuit on the bias generator. For the dual and quad (TLV2773/5), thisbump is attributed to the bias generators start-up circuit as well as the crosstalk between the other channel(s),which are in shutdown.Figures 55 and 56 show the amplifiers forward and reverse isolation in shutdown. The operational amplifier ispowered by 1.35-V supplies and configured as a voltage follower (AV = 1). The isolation performance is plottedacross frequency for both 0.1 VPP and 2.7 VPP input signals. During normal operation, the amplifier would notbe able to handle a 2.7-VPP input signal with a supply voltage of 1.35 V since it exceeds the common-modeinput voltage range (VICR). However, this curve illustrates that the amplifier remains in shutdown even undera worst case scenario.

  • SLOS209G JANUARY 1998 REVISED FEBRUARY 2004

    41WWW.TI.COM

    APPLICATION INFORMATIONmacromodel information

    Macromodel information provided was derived using Microsim Parts Release 8, the model generationsoftware used with Microsim PSpice. The Boyle macromodel (see Note 4) and subcircuit in Figure 64 aregenerated using the TLV2772 typical electrical and operating characteristics at TA = 25C. Using thisinformation, output simulations of the following key parameters can be generated to a tolerance of 20% (in mostcases):

    Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification

    Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit

    NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, Macromodeling of Integrated Circuit Operational Amplifiers, IEEE Journalof Solid-State Circuits, SC-9, 353 (1974).

    OUT

    +

    +

    +

    +

    +

    +

    +

    +

    VDD+

    rp

    IN2

    IN+1

    GND

    rd1

    11

    j1 j210

    rss iss

    3

    12

    rd2

    ve

    54 de

    dpvc

    dc

    4

    C1

    53

    r26

    9

    egnd

    vb

    fb

    C2

    gcm ga vlim

    8

    5ro1

    ro2hlim

    90dlp

    91

    dln

    92

    vlnvlp

    99

    7

    css

    * TLV2772 operational amplifier macromodel subcircuit* created using Parts release 8.0 on 12/12/97 at 10:08* Parts is a MicroSim product.*

    * connections: noninverting input* | inverting input* | | positive power supply* | | | negative power supply* | | | | output* | | | | |.subckt TLV2772 1 2 3 4 5*

    c1 11 12 2.8868E-12c2 6 7 10.000E12css 10 99 2.6302E12dc 5 53 dyde 54 5 dydlp 90 91 dxdln 92 90 dxdp 4 3 dx

    egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0

    15.513E6 1E3 1E3 16E6 16E6 ga 6 0 11 12 188.50E6 gcm 0 6 10 99 9.4472E9

    iss 3 10 dc 145.50E6 hlim 90 0 vlim 1K j1 11 2 10 jx1 j2 12 1 10 jx2 r2 6 9 100.00E3 rd1 4 11 5.3052E3 rd2 4 12 5.3052E3 ro1 8 5 17.140 ro2 7 99 17.140 rp 3 4 4.5455E3

    rss 10 99 1.3746E6 vb 9 0 dc 0 vc 3 53 dc .82001 ve 54 4 dc .82001 vlim 7 8 dc 0 vlp 91 0 dc 47 vln 0 92 dc 47

    .model dx D(Is=800.00E18)

    .model dy D(Is=800.00E18 Rs=1m Cjo=10p)

    .model jx1 PJF(Is=2.2500E12 Beta=244.20E6+ Vto=.99765)

    .model jx2 PJF(Is=1.7500E12 Beta=244.20E6+ Vto=1.002350)

    .ends*$

    Figure 64. Boyle Macromodel and SubcircuitPSpice and Parts are trademarks of MicroSim Corporation.

  • PACKAGING INFORMATION

    Orderable Device Status (1) PackageType

    PackageDrawing

    Pins PackageQty

    Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)

    5962-9858801Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type5962-9858801QHA ACTIVE CFP U 10 1 TBD A42 SNPB N / A for Pkg Type5962-9858801QPA ACTIVE CDIP JG 8 1 TBD A42 SNPB N / A for Pkg Type5962-9858802Q2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type5962-9858802QHA ACTIVE CFP U 10 1 TBD A42 SNPB N / A for Pkg Type5962-9858802QPA ACTIVE CDIP JG 8 1 TBD A42 SNPB N / A for Pkg Type

    TLV2770AID ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770AIDG4 ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770AIP ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2770AIPE4 ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2770CD ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770CDG4 ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770CDR ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770CP ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2770CPE4 ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2770ID ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770IDG4 ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770IDGKR ACTIVE MSOP DGK 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770IDGKRG4 ACTIVE MSOP DGK 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770IDR ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2770IP ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2770IPE4 ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2771AIDR ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771CD ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    PACKAGE OPTION ADDENDUMwww.ti.com 8-Dec-2008

    Addendum-Page 1

  • Orderable Device Status (1) PackageType

    PackageDrawing

    Pins PackageQty

    Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)

    TLV2771CDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771CDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771CDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771CDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771CDG4 ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771CDR ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771ID ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771IDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771IDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771IDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771IDG4 ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771IDR ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2771IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772AID ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772AIDG4 ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772AIDR ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772AIP ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2772AIPE4 ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2772AMD ACTIVE SOIC D 8 75 TBD CU NIPDAU Level-1-220C-UNLIMTLV2772AMDG4 ACTIVE SOIC D 8 75 Green (RoHS &

    no Sb/Br)CU NIPDAU Level-1-260C-UNLIM

    TLV2772AMDR ACTIVE SOIC D 8 2500 TBD CU NIPDAU Level-1-220C-UNLIMTLV2772AMDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &

    no Sb/Br)CU NIPDAU Level-1-260C-UNLIM

    TLV2772AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg TypeTLV2772AMJGB ACTIVE CDIP JG 8 1 TBD A42 SNPB N / A for Pkg TypeTLV2772AMUB ACTIVE CFP U 10 1 TBD A42 SNPB N / A for Pkg Type

    PACKAGE OPTION ADDENDUMwww.ti.com 8-Dec-2008

    Addendum-Page 2

  • Orderable Device Status (1) PackageType

    PackageDrawing

    Pins PackageQty

    Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)

    TLV2772AQD ACTIVE SOIC D 8 75 Pb-Free(RoHS)

    CU NIPDAU Level-2-250C-1 YEAR/Level-1-235C-UNLIM

    TLV2772AQDG4 ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772AQDR ACTIVE SOIC D 8 2500 Pb-Free(RoHS)

    CU NIPDAU Level-2-250C-1 YEAR/Level-1-235C-UNLIM

    TLV2772AQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772AQPW ACTIVE TSSOP PW 8 150 TBD CU NIPDAU Level-1-220C-UNLIMTLV2772AQPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS &

    no Sb/Br)CU NIPDAU Level-1-260C-UNLIM

    TLV2772AQPWR ACTIVE TSSOP PW 8 2000 TBD CU NIPDAU Level-1-220C-UNLIMTLV2772AQPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS &

    no Sb/Br)CU NIPDAU Level-1-260C-UNLIM

    TLV2772CD ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772CDG4 ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772CDGK ACTIVE MSOP DGK 8 80 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772CDGKG4 ACTIVE MSOP DGK 8 80 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772CDGKR ACTIVE MSOP DGK 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772CDGKRG4 ACTIVE MSOP DGK 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772CDR ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772CP ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2772CPE4 ACTIVE PDIP P 8 50 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2772ID ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772IDG4 ACTIVE SOIC D 8 75 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772IDGK ACTIVE MSOP DGK 8 80 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772IDGKG4 ACTIVE MSOP DGK 8 80 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772IDGKR ACTIVE MSOP DGK 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772IDGKRG4 ACTIVE MSOP DGK 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772IDR ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772IP ACTIVE PDIP P 8 50 Pb-Free CU NIPDAU N / A for Pkg Type

    PACKAGE OPTION ADDENDUMwww.ti.com 8-Dec-2008

    Addendum-Page 3

  • Orderable Device Status (1) PackageType

    PackageDrawing

    Pins PackageQty

    Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)

    (RoHS)TLV2772IPE4 ACTIVE PDIP P 8 50 Pb-Free

    (RoHS)CU NIPDAU N / A for Pkg Type

    TLV2772MD ACTIVE SOIC D 8 75 TBD CU NIPDAU Level-1-220C-UNLIMTLV2772MDG4 ACTIVE SOIC D 8 75 Green (RoHS &

    no Sb/Br)CU NIPDAU Level-1-260C-UNLIM

    TLV2772MDR ACTIVE SOIC D 8 2500 TBD CU NIPDAU Level-1-220C-UNLIMTLV2772MDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &

    no Sb/Br)CU NIPDAU Level-1-260C-UNLIM

    TLV2772MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg TypeTLV2772MJGB ACTIVE CDIP JG 8 1 TBD A42 SNPB N / A for Pkg TypeTLV2772MUB ACTIVE CFP U 10 1 TBD A42 SNPB N / A for Pkg TypeTLV2772QD ACTIVE SOIC D 8 75 Pb-Free

    (RoHS)CU NIPDAU Level-2-250C-1 YEAR/

    Level-1-235C-UNLIMTLV2772QDG4 ACTIVE SOIC D 8 75 Green (RoHS &

    no Sb/Br)CU NIPDAU Level-1-260C-UNLIM

    TLV2772QDR ACTIVE SOIC D 8 1500 Pb-Free(RoHS)

    CU NIPDAU Level-2-250C-1 YEAR/Level-1-235C-UNLIM

    TLV2772QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2772QPW ACTIVE TSSOP PW 8 150 TBD CU NIPDAU Level-1-220C-UNLIMTLV2772QPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS &

    no Sb/Br)CU NIPDAU Level-1-260C-UNLIM

    TLV2772QPWR ACTIVE TSSOP PW 8 2000 TBD CU NIPDAU Level-1-220C-UNLIMTLV2772QPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS &

    no Sb/Br)CU NIPDAU Level-1-260C-UNLIM

    TLV2773AIN ACTIVE PDIP N 14 25 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2773AINE4 ACTIVE PDIP N 14 25 Pb-Free(RoHS)

    CU NIPDAU N / A for Pkg Type

    TLV2773CD ACTIVE SOIC D 14 50 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2773CDG4 ACTIVE SOIC D 14 50 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2773CDGS ACTIVE MSOP DGS 10 80 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2773CDGSG4 ACTIVE MSOP DGS 10 80 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2773CDGSR ACTIVE MSOP DGS 10 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2773CDGSRG4 ACTIVE MSOP DGS 10 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2773CDR ACTIVE SOIC D 14 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2773CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2773IDGS ACTIVE MSOP DGS 10 80 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    TLV2773IDGSG4 ACTIVE MSOP DGS 10 80 Green (RoHS &no Sb/Br)

    CU NIPDAU Level-1-260C-UNLIM

    PACKAGE OPTION ADDENDUMwww.ti.com 8-Dec-2008

    Addendum-Page 4

  • Orderable Device Status (1) PackageType

    PackageDrawing

    Pins PackageQty

    Eco Plan (2) Lead/Ba