titolo

35
Genova, September 1 2004 Routes to Colloidal Gel Formation CCP2004 laboration with deryev, E. La Nave, A. Moreno, sa, I. Saika-Voivod, P. Tartaglia, E. Zaccar o the organizers and to Carlo Pierleone

description

Genova, September 1 2004. titolo. CCP2004. Routes to Colloidal Gel Formation. In collaboration with S. Bulderyev, E. La Nave, A. Moreno, S. Mossa, I. Saika-Voivod, P. Tartaglia, E. Zaccarelli. Thanks to the organizers and to Carlo Pierleone . Outline. Outline and Motivations. - PowerPoint PPT Presentation

Transcript of titolo

Page 1: titolo

Genova, September 1 2004

Routes to Colloidal Gel Formation

CCP2004

In collaboration with S. Bulderyev, E. La Nave, A. Moreno, S. Mossa, I. Saika-Voivod, P. Tartaglia, E. Zaccarelli

Thanks to the organizers and to Carlo Pierleone

Page 2: titolo

Outline and Motivations

Brief Review of Short-Range Attractive Colloidal Glass (asymmetric colloid-polymer mixtures)

How to model disordered arrested states at low packing fraction (gels)

Routes: Interrupted phase separation (irreversible gels) Long Range Repulsive interactions (reversible) Geometrical constraints (reversible)

Differences between gel and glasses

Page 3: titolo

Depletion Interactions:A (C. Likos) Cartoon

V(r )

r

Page 4: titolo

MCT IDEAL GLASS LINES (PY) - SQUARE WELL MODEL - CHANGING

PRE-63-011401-2001

A4

V(r)

A3

Large Small

Page 5: titolo

F. Sciortino, Nat. Mat. 1, 145 (2002).

Page 6: titolo

confirmed by experiments Mallamace et al. PRL (2000)

Pham et al. Science (2002) Eckert and Bartsch PRL (2002)

and simulations Puertas et al PRL (2002)Zaccarelli et al PRE (2002)

Page 7: titolo

Pham et al 2004

Page 8: titolo

Phase Diagram for Square Well (3%)

RepulsiveGlass

AttractiveGlassLiquid+Gas Coexistence

A3

Spinodal AHS (Miller&Frenkel)

Iso-diffusivity

lines

Percolation Line

Spinodal (and Baxter)

Page 9: titolo

Virial Scaling in the dynamics:

Toward the Baxter Limit

G. Foffi and C. De Michele,preprint

Page 10: titolo

Gelation as a result of phase separation

(interrupted by the glass transition)

T T

Page 11: titolo

The quest for the ideal (thermoreversible) gel….model1) Long Living reversible bonds

2)No Phase Separation3) No Crystallization

Are 1 and 2 mutually exclusive ?LowTemperatur

e

Condensation

Long Bond Lifetime

Page 12: titolo

Surface Tension

How to stay at low T without condensation ?

Reasons for condensation (Frank, Hill, Coniglio)

Physical Clusters at low T

if the infinite cluster is the lowest (free)energy state

How to make the surface as stable as the bulk (or more)?

Page 13: titolo

Short Range Attraction

Long Range Repulsion

Competition Between Short Range Attraction and Long Range Repulsion

FS et al, PRL 2004

Page 14: titolo

Groenewold

and Kegel

Upper Limit

Optimal Size

How to make negative ?

Page 15: titolo

lowering T

Increasing packing fraction

Page 16: titolo

Geometric Constraint: Maximum Valency

SW if # of bonded particles <= Nmax

HS if # of bonded particles > Nmax

V(r)

r

Page 17: titolo

Phase Diagram

Page 18: titolo

Bond Lifetime.. Several more decades..

Page 19: titolo

Gel vs Glass - MSD

T=0.1

Typical Glass Value

Page 20: titolo

Gel vs Glass: Density Autocorrelation Functions

fq

Page 21: titolo

Fq gel vs glass

Page 22: titolo

Summary….

• Designig Thermoreversible Gels: •Models with small surface tension (charged colloids, sticky points)

• A simple model for thermoreversible gel

• Gels and Glasses:•Differences in localization length •Differences in experimental observables

Page 23: titolo
Page 24: titolo
Page 25: titolo
Page 26: titolo

Ground State Energy Known !

It is possible to equilibrate at low T !

Page 27: titolo
Page 28: titolo
Page 29: titolo
Page 30: titolo
Page 31: titolo

How to stay at low T without condensation ?

Reasons for condensation (Frank, Hill, Coniglio)

Physical Clusters at low T

if the infinite cluster is the lowest energy state

How to make the surface more stable than the bulk ?

Page 32: titolo

Thermodynamics in the IS formalism Stillinger-Weber

F(T)=-T Sconf(<eIS>, T) +fbasin(<eIS>,T)

with

fbasin(eIS,T)= eIS+fvib(eIS,T)and

Sconf(T)=kBln[(<eIS>)]

Basin depth and shape

Number of explored basins

Free energy

Page 33: titolo

It is possible to calculate exactly the basin free energy !

Page 34: titolo

Viscosity and Diffusivity: Arrhenius

Page 35: titolo

Stoke-Einstein Relation