THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg,...

53
Terahertz Electronics Michael S. Shur Michael S. Shur Electrical, Computer, and Systems Engineering and Center for Integrated Electronics Rm 9015, CII, Rensselaer Polytechnic Institute 110 8-th Street, Troy, New York 12180-3590 http://www.ecse.rpi.edu/shur/ Presented at Nano and Giga Challenges in Electronics, Photonics, and Renewable Energy Conference McMaster University 1 Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur McMaster University August 14, 2009

Transcript of THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg,...

Page 1: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Terahertz Electronics

Michael S. ShurMichael S. Shur

Electrical, Computer, and Systems Engineering andCenter for Integrated Electronics

Rm 9015, CII, Rensselaer Polytechnic Institute110 8-th Street, Troy, New York 12180-3590

http://www.ecse.rpi.edu/shur/

Presented at Nano and Giga Challenges in Electronics, Photonics, and Renewable Energy Conference

McMaster University

1Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

McMaster UniversityAugust 14, 2009

Page 2: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Outline•THz applications and “THz gap”

•State-of-the-art of THz electronics and THz transistorState of the art of THz electronics and THz transistor

•Ballistic transport -> unavoidable in modern transistors–Ballistic “mobility” I

d = 5mA, V

gs=-0.4 V

–Ballistic admittance

•Plasma wave THz electronics300

400

500

( μm

)

– Instability and THz generation–Resonant and non-resonant THz detection–Subwavelength imaging 0 100 200 300 400 500

0

100

200

Y

–Plasma wave THz arrays

•Conclusions and future work

X (μm)

From Veksler, D.B. Muraviev, A.V. Elkhatib, T.A. Salama, K.N. Shur, M.S. , Plasma wave FET for sub-wavelength THz imaging

2Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

•Conclusions and future work wavelength THz imaging, International Semiconductor Device Research Symposium December 12-14, 2007 College Park, Maryland, USA

Page 3: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

THz applications

THz detection of concealed

1 ©(200 )Hidden art revealed by

h 2THz image of ozone hole.3

©(200 )weapons. 1 IEEE©(2007) Terahertz.2 IEEE©(2007)

1 R. Appleby and H.B. Wallace, “Standoff detection of weapons and contraband in 100 GHz to 1 THz

Region”, IEEE Trans. Antennas Prop. Vol. 55, p. 2944 (2007). 2 ScienceDaily (Feb. 5, 2008), http://www.sciencedaily.com/releases/2008/02/080204111732.htm. 3 F. Pieternel, E. Levelt, G. W. Hilsenrath, C.H.J. Leppelmeier, P.K. van den Oord, J. Bhartia, J. F.

Tamminen, J.P. de Hann, and J.P. Veefkind, “Science objectives of the ozone monitoring instrument”,

3Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

IEEE Trans. On Geoscience And Remote Sensing, Vol. 44, No. 5, pp. 1199-1208 (2006).

Page 4: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

THz Applications

THz cancer detection.1 THz applications in

dentistry.2 Explosive detection using THz radiation.3

1 PTBnews: http://www.ptb.de/en/publikationen/news/html/news021/artikel/02104.htm. 2 BBC News, Monday, June 14, 1999, news.bbc.co.uk/1/hi/sci/tech/368558.stm. 3 Y. Chen, H. Liu, M.J. Fitch, R. Osiander, J.B. Spicer, M.S. Shur, X.-C. Zhang, “THz diffuse reflectance

spectra of selected explosives and related compounds” Passive Millimeter Wave Imaging Technology

4Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

spectra of selected explosives and related compounds , Passive Millimeter-Wave Imaging Technology VIII. Edited by R.J. Hwa, D.L. Woolard, and M.J. Rosker, Proc. of SPIE, Vol. 5790, p. 19 (2005).

Page 5: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

THz gap From W.J. Stillman and M.S. Shur, Closing the Gap: Plasma Wave Electronic Terahertz Detectors, Journal of Nanoelectronics and Optoelectronics, Vol. 2, Number 3, pp. 209-221, December 2007

5Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Page 6: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

THz Schottky Diode

100 GHz – 2.5 THz100 GHz 2.5 THz

From http://www acst de/images/company diode jpg

6Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

From http://www.acst.de/images/company_diode.jpg

Page 7: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Mm wave Schottky diode in 0.13 micron process

O ll l tOne cell layout Diode cross section

From S. Sankaran, and K. K. O, “Schottky Barrier Diodes for mm-Wave and D t ti i F d CMOS P ” IEEE El D L tt l 26 7

7Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Detection in a Foundry CMOS Process,” IEEE Elec. Dev. Letts., vol. 26, no. 7, pp. 492-494, July 2005

Page 8: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Resonant Tunneling Diodes

(Color online) Fundamental structure of the RTD oscillatorof the RTD oscillator

. (a) Slot resonator and RTD, (b) potential profile and current–voltage characteristics of RTD, and (c) equivalent circuit of (a)(a).

Fundamental oscillation up to 0.65 THz and harmonic oscillation up to 1.02 THz

8Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

From Masahiro ASADA, Safumi SUZUKI, and Naomichi KISHIMOTO“Resonant Tunneling Diodes for Sub-Terahertz and Terahertz Oscillators”Japanese Journal of Applied Physics. Vol. 47, No. 6, 2008, pp. 4375–4384

Expected up to 60 microwatt at 2 THz

Page 9: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

0.41 THz Si 45 nm CMOS VCO

F S L B J thFrom S. Lee, B. Jagannathan, S. Narasimha, Anthony Chou, N. Zamdmer, J. Johnson, R. Williams, L. Wagner, J. Kim, J.-O. Plouchart, J. Pekarik, S. Springer and G Freeman

After E. Y. Seok et al., “410-GHz CMOS Push-push Oscillator with a Patch Antenna,” 2008 International Solid-State Circuits Conference,pp 472-473 Feb 2008 San Francisco CA

9Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Springer and G. Freeman, IEDM Technical Digest, p. 225 (2007)

pp. 472-473, Feb. 2008, San Francisco, CA

Page 10: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Northrop Grumman fmax is higher than 1 THz

From R. Lai, X. B. Mei, W.R. Deal, W. Yoshida, Y. M. Kim, P.H. Liu, J. Lee, J. Uyeda, V. Radisic, M. Lange, T. Gaier, L. Samoska, A. Fung, Sub 50 nmT. Gaier, L. Samoska, A. Fung, Sub 50 nm InP HEMT Device with Fmax Greater than 1 THz, IEDM Technical Digest, p. 609 (2007)

InGaAs/InP Based HEMT

35 nm gate device cross section

10Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

g

Page 11: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Room Temperature Tunable Emission

3.0

V)

1.5

2.0

2.5

200

300

(1/T

Hz)

ecto

r Sig

nal (

mV

0 0 0 2 0 4 0 6 0 80.0

0.5

1.0

00

100 1/f 0

(

InSb

Det

e

0.0 0.2 0.4 0.6 0.80Usd (V)

From D. B. Veksler, A. El Fatimy, N. Dyakonova, F. Teppe, W. Knap, N. Pala, S. Rumyantsev, M. S. Shur, D. Seliuta, G. Valusis, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, in Proceedings of 14th Int. Symp.

From W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. Popov, and M. S. Shur, Appl. Phys. Lett. 84, No 13, 2331-2333, March 29 (2004)

11Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

ppy, g y p"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333

Appl. Phys. Lett. 84, No 13, 2331 2333, March 29 (2004)

Page 12: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

THz transistors: issues

•Effective gate length is longer•Parasitics are important•Matching is difficult•Device physics is different

–In THz transistors, electrons experience very few collisions–Electron inertia is very important–Electrons behave as a fluid

12Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Page 13: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Effective gate length

13Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

From V. O. Turin, M. S. Shur, and D. B. Veksler, IJHSES, vol. 17, No. 1 pp. 19-23 (2007)

Page 14: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Effect of gate extension

14Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

From V. O. Turin, M. S. Shur, and D. B. Veksler, IJHSES, vol. 17, No. 1 pp. 19-23 (2007)

Page 15: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Five-terminal HFET with additional biased capacitively coupled contacts

5VS1 VD1

GateDielectric

Source C3 Drain C3

5VS1 VD1

GateDielectric

Source C3 Drain C3

VDVS

G

VDVS

G

DrainSource2DEG AlGaN

DrainSource2DEG AlGaN

GaNGaN

From G Simin M Shur and R Gaska IJHSES Vol 19 No 7 14 1 (2009)

15Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

From G. Simin, M. Shur and R. Gaska, IJHSES Vol. 19, No. 7–14, 1 (2009)

Page 16: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Capacitively coupled contact with additional DC bias

V1 Capacitively-coupled contact (C3)V1 Capacitively-coupled contact (C3) 1

Dielectric

p y p ( )1

Dielectric

p y p ( )

V0Dielectric

S i d t

V0Dielectric

S i d t

Ohmic or Schottky contact

Semiconductor

Ohmic or Schottky contact

Semiconductor

16Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

After G. Simin, M. Shur, R. Gaska, Patent pending 2/12/2007

Page 17: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Novel THz Device design:5-terminal THz GaN HFET

3035

HFET5-term

3035

HFET5 term

10152025

5 term MOSHFET

21, d

B

152025

5-term MOSHFET

G/M

UG

, dB

505

10H2

505

10

MS

G

10 100 1000-5

Frequency, GHz10 100 1000

-5

Frequency, GHz

Cut-off frequencies for regular (dash) and 5-terminal (solid) GaN HFETs with 30-nm long gate (ADS simulations).

17Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

G. Simin, M. Shur and R. Gaska, ISDRS, accepted for publication (2009)

Page 18: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Product Half Pitch, Gate length (nm)Prod1000 duct half-p

100

1000

pitch, gat

100

e length (

10Ballisticsilicon

(nm)1

18Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

FROM INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2007 EDITION EXECUTIVE SUMMARY

Page 19: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

THz Performance Using Ballistic Transport

M. S. Shur and L. F. Eastman (1979)

From http://www.bell-labs.com/news/1999/december/6/1.htmlBallistic Transistor Has Virtually Unimpeded Current Flow (Dec. 6, 1999)

Intel Itanium 'leapfrog' to 32-nmColleen Taylor, Contributing Editor -- Electronic News, 6/14/2007

If the 25 nm node predicted by ITRS is reached in 2009 - 2010, all transistors will be ballistic

19Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

2009 2010, all transistors will be ballistic

Page 20: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Energy band, field, and concentration profiles of n+-n-n+ sample in equilibrium

Fermi level

Di t

~LD

Distance

Distance

~LD

20Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Distance

Page 21: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Drude Equation and Equivalent Circuit

σσ 0

ωτσ

i+=

10

o =e n S

LL =e2 n S

L m3D o L e2 n S

Co = e ns W L =e2 ns W

m2D

21Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

s

Page 22: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Energy band diagram for a ballistic sample

Ec

quasi-Fermi levels

c

V/2Fermi levelin equilibrium

V/2V/2Vin equilibrium

Distance

C d ti b d dConduction band edgein equilibrium

In the dashed energy region electron are moving only

22Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

In the dashed energy region electron are moving only from the left to the right

Page 23: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

DC Ballistic mobility

baleLmv

μ α=

Values of constant α and thermal and Fermi velocities for 2D and 3D geometries (see Eq. (1)). kB is the Boltzmann constant, T is temperature (K).

mv

Geometry Degenerate Non-degenerate

2D πα 2

= sF nm

v π2h= [8] 1

2α =

1/ 2

2B

thk Tv π⎛ ⎞= ⎜ ⎟

⎝ ⎠[4] π m 2 2m⎜ ⎟

⎝ ⎠

3D 3/ 4α = ( ) 4/323 sF nm

v πh= 2α

π=

2/18⎟⎠⎞

⎜⎝⎛=

mTkv B

th π[3]

[3]A. van der Ziel, M. S. Shur, K. Lee, T. H. Chen and K. Amberiadis, IEEE Transactions on Electron Devices, Vol. ED-30, No. 2, pp. 128-137, February (1983) [4] M. Dyakonov and M. S. Shur, in, The Physics of Semiconductors ed. by M. Scheffler and R. Zimmermann (World Scientific, 1996), pp. 145-148, (1996)[8] S Rumyantsev M S Shur W Knap N Dyakonova F Pascal A Hoffman Y Ghuel C Gaquiere and D

23Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

[8] S. Rumyantsev, M. S. Shur, W. Knap, N. Dyakonova, F. Pascal, A. Hoffman, Y Ghuel, C. Gaquiere, and D. in Noise in Devices and Circuits II, Proceedings of SPIE Vol. 5470 , pp. 277-285 (2004)

Page 24: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Experimental Evidence for Ballistic Mobility (after Shur (2002)

2 /V

-s)

50000100000

77 KGaAs

5000obilit

y (c

m2

300 K10000

0.2 0.5 1 2 5 10

Mo

200.1Length (micron)

From M S Shur IEEE EDL Vol 23 No 9 pp 511 513

24Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

From M. S. Shur, IEEE EDL, Vol. 23, No 9, pp. 511 -513, September (2002)

Page 25: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Ballistic Admittance in Quantum Wires

0 81

Re(Y)

0.4

0.6

0.8However in 1D systems e-einteraction might completelydestroy these oscillations

5 10 15 20

0.2

L/v0

Im(Y) L/vFIm(Y)

After M. Buttiker, J. Phys CondPhys. Cond. Matter, vol. 5, 93-61 (1993)

25Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

L/vF

Page 26: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Ballistic Admittance versus Frequency

1

Re(Y)

00.4

0.6

0.8

Im Imd Y d yQ ω θ

5 10 15 20

0.2

L/vF

0Im(Y)

Re ReyQ

Y d y dω θ= =

Q ~ 7L/vF

Q ~ 7

26Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

After A. P. Dmitriev and M. S. Shur, Appl. Phys. Lett., 89, 142102, (2006)

Page 27: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Oscillation frequency

GaAsGaN Si

Device length ( m)

27Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

After A. P. Dmitriev and M. S. Shur, Appl. Phys. Lett., 89, 142102, (2006)

Page 28: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Dispersion of Plasma Waves

3D 2D ungated 2D gated+ - d

Er

+ - ++++

Er -

- Er d

23N D

peω =

22N D

pe kω =

E

kdNe D22

ω = kd<<1

pω pω0

p mεε 02p mεεk

mp0εε

ω kd 1

28Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

k k k

Page 29: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Plasma wave electronicsLTHz

29

•Plasma wave instability(D k Sh i bili ) Source Gate

L

(Dyakonov‐Shur instability) can be used for generation of THz radiation**)

Drain

Source

2D Channel:sn

•Nonlinearity of plasma wave excitations can be used for THz

DrainδU~P

Hokusai Printexcitations can be used for THz detection*)

*)M. Dyakonov and M. S. Shur, IEEE Trans. Elec. Dev. 43 380 (1996)

29Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

43, 380 (1996)

**)M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993). 

Water wave analogy

Page 30: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Plasma Wave THz Electronics

(Courtesy of W. Knap)

30Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Page 31: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

2D Plasmonic Devices for THz Applications

THz Detectors and Mixers

THz Generatorsand Mixers

M. Dyakonov and M. Shur, IEEE T-ED (1996)

K G l PRB (199 )M. Dyakonov, M. Shur, PRL (1993)

K. Guven et al., PRB (1997)V. Ryzhii et al., JAP (2002)W. Knap et al., APL, JAP

(2002)X G P l l PL (2002)

y , , ( )K. Hirakawa, APL (1995)K. D. Maranowski, APL (1996) V.V. Popov et al., Physica A (1997)S.A. Mikhailov, PRB (1998); APL (1998)

X.G. Peralta et al., APL (2002)A. Satou et al., SST (2003)V.V. Popov et al., JAP (2003)V. Ryzhii et al., JAP (2003) F T l APL (2005)

( ) ( )P. Bakshi et al., APL (1999)N. Sekine at al., APL (1999)R. Bratshitsch et al., APL (2000)Y. Deng at al., APL (2004)

F. Teppe et al., APL (2005)I.V. Kukushkin et al., APL

(2005)D. Veksler et al., PRB (2006)K l APL (2008)

g ( )W. Knap et al., APL (2004)M. Dyakonov and M.S .Shur, APL (2005)N. Dyakonova et al., APL (2006)Otsuji APL (2006) DRC 2007

31Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Knap et al APL (2008)Stillman et al (2008)

jOtsuji LEC (2008)

Page 32: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Plasma THz Electronics Advantages

•Small size (easy to fabricate matrixes/arrays)

•Compatible with VLSI technology

•For detectors:400

500

Id = 5mA, V

gs=-0.4 V

–High sensitivity –Broad spectral range

Band selectivity and tunability100

200

300

Y ( μ

m)

–Band selectivity and tunability–Fast temporal response

0 100 200 300 400 5000

X (μm)

Veksler, D.B. Muraviev, A.V. Elkhatib, T.A. Salama, K.N. Shur, M.S. , Plasma wave FET for sub-wavelength THz imaging

32Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

wavelength THz imaging, International Semiconductor Device Research Symposium December 12-14, 2007 College Park, Maryland, USA

Page 33: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Plasma Waves in a Field Effect Transistor

GaNGaAs

50

)

•Plasma frequency can be tuned by GaN

Si

GaAs10

5 Plasma modes

ncy

(TH

z )can be tuned by gate‐to‐channel voltage

Si

0.51

Transit modeFreq

uen

•FET channel plays a role of a resonant 

0.02 0.05 0.1 0.2 0.5 1

cavity for plasma waves

Gate Length (micron)•Plasma waves can propagate much faster than electrons

33Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

From V. Ryzhii and M.S. Shur, Plasma Wave Electronics Devices, ISDRS Digest, WP7-07-10, pp 200-201, Washington DC (2003)

faster than electrons

Page 34: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Radiation intensity from 1.5 micron GaN HFET at 8 K

.

4.0

5.0

)

8 GHz cutoff

2.0

3.0

ensi

ty (a

.u.)

From Y. Deng, R. Kersting, J. Xu, R. Ascazubi, X. C. Zhang, M. S. Shur, R. Gaska, G S Simin and M A Khan and V Ryzhii

0 0

1.0

2.0In

teG. S. Simin and M. A. Khan, and V. Ryzhii, Millimeter Wave Emission from GaN HEMT, Appl. Phys. Lett. Vol. 84, No 15, pp. 70-72, January 2004

50 75 100 125 150 175 200 225 250

0.0

Frequency (GHz)

34Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Page 35: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Room Temperature Tunable Emission

3.0

V)

1.5

2.0

2.5

200

300

(1/T

Hz)

ecto

r Sig

nal (

mV

0 0 0 2 0 4 0 6 0 80.0

0.5

1.0

00

100 1/f 0

(

InSb

Det

e

0.0 0.2 0.4 0.6 0.80Usd (V)

From D. B. Veksler, A. El Fatimy, N. Dyakonova, F. Teppe, W. Knap, N. Pala, S. Rumyantsev, M. S. Shur, D. Seliuta, G. Valusis, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, in Proceedings of 14th Int. Symp.

From W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. Popov, and M. S. Shur, Appl. Phys. Lett. 84, No 13, 2331-2333, March 29 (2004)

35Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

ppy, g y p"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333

Appl. Phys. Lett. 84, No 13, 2331 2333, March 29 (2004)

Page 36: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

THz response of CMOS (non-resonant)

NFETs PFETs

First demonstration of terahertz and sub‐terahertz response in silicon CMOS

• Extension earlier work on n‐channel Si FET response to p‐channel devices.

• Compare and contrast n and p‐channel responsivity, detectivity and response speed in open drain and drain current enhanced response configurations.

36Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

From W. Stillman, F. Guarin, V. Yu. Kachorovskii, N. Pala, S. Rumyantsev, M.S. Shur, and D. Veksler, Nanometer Scale Complementary Silicon MOSFETs as Detectors of Terahertz and Sub-terahertz Radiation,

in Abstracts of IEEE sensors Conference, Atlanta, GA, October 2007, pp. 479-480

Page 37: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Non-resonant detection (ωτ<<1)

25

30

nits

) Ugs=-100 mV

Ugs=-200 mV

f = 0.2 THz; T=300 K250 nm GaAs FET

25

15

20

se (A

rb. U

n g

Ugs=-300 mV

Ugs=-350 mV15

20

25

Ugs = -100 mV

Ugs = 0 mV

U = 200 mVnt I d

, mA

5

10

Res

pons

5

10

15

Ugs = -300 mV

U 400 V

Ugs = -200 mV

rain

cur

ren

10-4 10-3 10-20

Drain Current Id(A)0 1 2

0

5 Ugs = -400 mVDr

Drain voltage Ud , Vg ds,Symbols – experimentColored curves - theory

2

1/ 24( )(1 / )a

responsegs th d sat

UVU U j j

=− − d satj j<<

37Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

D. Veksler et al , Phys. Rev. B 73, 125328 (2006).

Page 38: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

HEMT for Resonant THz detection

2.53.0

f=0.761 THz

. uni

tsTheory: 1) 2)Experiment:d

1.01.52.0

20K4 K

nse

ΔV, a

rb.

AlGaN/GaN

3

Hz)

-5 -4 -3 -2 -1 00.00.5 70 K

20 K

Res

pon

2

3

quen

cy (T

H24 d

5 4 3 2 1 00

1

plas

ma

freq

1) M. Dyakonov and M. S. Shur, Phys. Rev. Lett. 71, 2465 (1993)2) A. El Fatimy, N. Dyakonova, F. Teppe, W. Knap, N. Pala, R. Gaska, Q. Fareed X Hu D B Veksler S Rumyantsev M S Shur D Seliuta G

2224

pe n d km

πωε

=

38Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

-5 -4 -3 -2 -1 0 gate voltage (V)

pFareed, X. Hu, D. B. Veksler, S. Rumyantsev, M. S. Shur, D. Seliuta, G. Valusis, S. Bollaert, A. Shchepetov, Y. Roelens, C. Gaquiere, D. Theron, and A. Cappy, Electronics letters, Vol. 42 No. 23, 9 November (2006)

Page 39: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Resonant detection near instability threshold

0.15Id=22mAId=8mA

0 05

0.10

δU, m

V f = 0.6 THz; T=300 KGaAs FET 250 nm

0 3 0 2 0 1 0 0 0 10.00

0.05

ω0τ <1, but ω0τeff >>1 -0.3 -0.2 -0.1 0.0 0.1

Gate voltage Vgs, V ( )1 12 2

d

eff

vLτ τ= −Instability increment

( )ff

The decrement decreases with electron velocity or drain current due to approaching to the threshold of the plasma wave instability.

39Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

F. Teppe, W. Knap, D. Veksler, et al, Appl. Phys. Lett. 87, 052107 (2005)

Page 40: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Homodyne detection by plasma FET: Mixing of laser modes Heterodyne detection has a much higher

-0.10.00.1

a)2.52 THz

Heterodyne detection has a much higher sensitivity and is usable for diffuse

reflection imaging

-0.5-0.4-0.3-0.2

nse,

mV

S I F I R - 5 0 F P L ( 1 T H z – 7 T H z ) S I F I R - 5 0 F P L ( 1 T H z – 7 T H z ) Oscilloscope

2.52 THz

Lens

ChopperTHz laser

Single mode regime

-0.2-0.10.00.1

b)Resp

on

Mode mixing

u.)

0.1

e, m

V

0 1 2 3 4 5 6 7 8 9-0.5-0.4-0.31

plitu

de (a

. u

10.00 20.00 30.00-0.1

0.0

Resp

onse

Time, μs

Time, ms

0 1 2 3 40

Freq enc (MH )

Am

p

Spectrum of laser mode beatings

From Dmitry Veksler, Andrey Muravjov, William Stillman, Nezih Pala, and Michael Shur, Detection and Homodyne Mixing of Terahertz

40Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Frequency (MHz) Gas Laser Radiation by Submicron GaAs/AlGaAs FETs, in Abstracts

of IEEE sensors Conference, Atlanta, GA, October 2007

Page 41: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Comparison of THz Detection Devices (300 K)

Detector NEP(W/Hz½)

Response time

Si MOS

10-7 10-10

2 /Hz

(W/Hz½) (Hz)

Microbolometer 10-11 – 10-12 1μsNot tunable

10-8

50 60 70 80 9010-18

10-16

10-14

10-12

Hz0.

5

Spe

ctra

l den

sity

, V2

Pyroelectric 10-7 - 10-9 1 ms

Schottky Diode 10-9 – 10-11 < 10 ps

Not tunable

Not tunable

10-9

50 60 70 80 90

Lg=120nm

200nm 300nm

NE

P, W

/H

Frequency f, Hz

y

Plasma Wave Detector 10-6 – 10-10 < 10 ps ?

Advantages of Plasma wave detector:

Tunable0.0 0.2 0.4 0.6 0.8

10-10

Gate voltage Vg, V

Advantages of Plasma wave detector:•Band selectivity and tunability (resonant detection)•Fast temporal response •Small size (easy to fabricate matrixes/arrays)

El Fatimy, N. Dyakonova, F. Teppe, W. Knap,D. B. Veksler, S. Rumyantsev, M. S. Shur, N. Pala, R. Gaska, Q. Fareed, X. Hu, D. Seliuta, G. Valusis, C. Gaquiere, D. Theron, and A. Cappy, IElec. Lett. (2006).

41Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Small size (easy to fabricate matrixes/arrays)•Compatible with VLSI technology •Broad spectral range

Theron, and A. Cappy, IElec. Lett. (2006).

Table courtesy of D. Veksler, RPI

Page 42: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Achieved Detector Performance

GaAs :1 THz detection demonstrated n = 2×1011 cm-2 L = 0.2 µm. Detection 120 GHz - 2.5 THz

R ~ 10 - 103 V/W

GaN :1 THz detection demonstrated n = 2 ×1013 cm-2 & L =2 µmRoom temperature generation(Knap et al Veksler et al (2006)(Knap et al Veksler et al (2006)Si : 120 GHz – 3 THz detection demonstrated

NEP 10 10 W/H

42Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

NEP ~ 10-10 W/Hz

Page 43: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Subwavelength Imaging: coupling of THz radiation into transistor

Chopper

Lock-in

SR8300λ=184 μm

FIR Laser

PolarizerVgs

The spatial images are obtained byrecording radiation induced drain-to source voltage as a function of

VdsRload

Displacement 5 10 μmto-source voltage as a function ofthe transistor position with respectto the focused THz beam 3d NanoMax 341

43Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Veksler, D.B. Muraviev, A.V. Elkhatib, T.A. Salama, K.N. Shur, M.S. , Plasma wave FET for sub-wavelength THz imaging, International Semiconductor Device Research Symposium December 12-14, 2007 College Park, Maryland, USA

Page 44: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Transistor responsivity pattern exhibits two spots of maximum response with different signsp g

δUd, V

Source: Terahertz gas laser SIFIR-

50 at 1.63 THz (184 μm) 0.50

0.75

1.00

1000

Intensity

Beam profile in the focal spot:

200

300

400 d

-2.9E-5-2.4E-5-1.9E-5-1.5E-5

DVgs = 0.45V, jd = 0

0

200

400

600

800

0.00

0.25

200

400

600

800

ty (a.u.)

Y (μ

m)

X (μm)

-100

0

100

-9.7E-6-4.8E-604.8E-69 7E 6Y,

μm

SG

-400

-300

-200 9.7E-61.5E-51.9E-52.4E-52.9E-5Fujitsu FHX06X

S

-400 -300 -200 -100 0 100 200 300 400-500

X, μm

Fujitsu FHX06X GaAs/AlGaAs HEMTLg=0.25μmW=200μm

44Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Veksler, D.B. Muraviev, A.V. Elkhatib, T.A. Salama, K.N. Shur, M.S. , Plasma wave FET for sub-wavelength THz imaging, International Semiconductor Device Research Symposium December 12-14, 2007 College Park, Maryland, USA

Page 45: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

TheoryHydrodynamic equations for 2D gas in the FET channel:

v v v e U∂ ∂ ∂ZgdZgs

0v v v e Uvt x m xτ

∂ ∂ ∂+ + + =

∂ ∂ ∂( )n nv∂ ∂

Ub

~

Ua ~

( ) 0n nvt x

∂ ∂+ =

∂ ∂Boundary conditions:en CU=

.)()( ,=)0()0( ba UZLjLUUZjU =+− ωωωω

We see that the response might have different signsdepending on the ratio 22 ||/|| UU ( ) ( ) 3/2depending on the ratio ||/|| ba UU

*LiZ ω−≈

( ) ( ) 3/2*3/10

−−= CLU gμω

( ) ( ) ⎟⎟⎠

⎞⎜⎜⎝

−−

−⎟⎠⎞

⎜⎝⎛

−− 2/3

2

2/1

230

/1||

/1||

41=

satd

b

satd

a

thgs jjU

jjU

UUV

ωωδ

45Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Veksler, D.B. Muraviev, A.V. Elkhatib, T.A. Salama, K.N. Shur, M.S. , Plasma wave FET for sub-wavelength THz imaging, International Semiconductor Device Research Symposium December 12-14, 2007 College Park, Maryland, USA

Page 46: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Transistor THz responsivity vs. drain current and gate voltage

Theory: Experiment: Vgs=-0.63 V Vgs=-0.45 V Vgs=-0.30 V

2 α=0, Isat=5e-2α=0 2 I =1e-2

Response=1/(1-Id/Isat)1/2-α/(1-Id/Isat)

3/2

0.6 Vgs=-0.15 V Vgs= 0.0 V

V

α=0.2, Isat=1e-2 α=0.7, Isat=5e-3

, a.u

.

0.0

δUd,

mV

0

espo

nse,

1 10

-0.6

j ma1 10

Re

j ma

46Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

1 10 jd, majd, maVeksler, D.B. Muraviev, A.V. Elkhatib, T.A. Salama, K.N. Shur, M.S. , Plasma wave FET for sub-wavelength THz imaging, International Semiconductor Device Research Symposium December 12-14, 2007 College Park, Maryland, USA

Page 47: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

THz Imaging with plasma FET

•THz image is a result of superposition of the responses from different parts of the transistor

•Drain current leads to increase in th ti b t ti d

different parts of the transistor.

the ratio between negative and positive responses. As a result the maximum of the response shifts in XY planeXY plane.

Sub-wavelength THz resolution is typically reached using a needle or sub-l h di h d i ll i d d di hwavelength diaphragms and optically induced diaphragms

Here sub-wavelength resolution might be achieved due to variation of the responsivities driving the transistor with the drain current

47Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Veksler, D.B. Muraviev, A.V. Elkhatib, T.A. Salama, K.N. Shur, M.S. , Plasma wave FET for sub-wavelength THz imaging, International Semiconductor Device Research Symposium December 12-14, 2007 College Park, Maryland, USA

Page 48: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Grating Gate Devices and FET Arrays

0.25

0.15

0.20

banc

e (A

U)

0 05

0.10Abs

orb

LS=0.1μm LS=0.2μm

•grating-gate of a large area serves as an aerial matched THz antenna

•due to constructive interference

0 1 2 3 4 5 6 70.00

0.05 LS=0.3μm LS=0.5μm

between the gates the plasmons in all FET-units are excited in phase

•higher-order plasmon resonances (up to 7th order) b ff ti l it d ith lit ti t

Plasmon absorption in a slit-grating gate device is 103 timest th i f i t ti FET it

Frequency (THz)can be effectively excited with a slit-gating gate due to strong electric-field harmonics generated in slits

48Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

V. Popov, M. Shur, G. Tsymbalov, D. Fateev, IJHSES, September 2007

stronger than in array of non-interacting FET units

Page 49: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Electronic island at the surface of semiconductor grain in pyroelectric matrix

Inversion electron and hole islands at the surface of pyroelectric grain in semiconductor matrix

PoPyroelectric

PoSemiconductor

Hole inversion island

pyroelectric grain in semiconductor matrix

Semiconductor Pyroelectric

Electronic island

Control by external field – Zero dimensional Field Effect (ZFE)

Electronic islandElectronic inversion island

49Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Control by external field Zero dimensional Field Effect (ZFE)

After V. Kachorovskii and M. S. Shur, APL, March 29 (2004)

Page 50: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Terahertz oscillations

2D island might oscillate as a whole over grain surface. The oscillations can be exited by AC field perpendicular to Po

04 eP=πω

Oscillation frequency

00 ( 2 )p mR

=+

ωε ε

MOVABLE QUANTUM DOTS (MQD)

Oscillation frequency is of the order of a terahertz

CAN SWITCH OR SHIFT FREQUENCY BY EXTERNAL FIELD OR BY LIGHT

1 THz to 30 THz0 2~ω π/

50Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

BY EXTERNAL FIELD OR BY LIGHT

After V. Kachorovskii and M. S. Shur, APL, March 29 (2004)

Page 51: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

Conclusions•Silicon penetrated THz range •C3 contacts reduce parasitics in THz transistorsC contacts reduce parasitics in THz transistors•Transport is ballistic in submicron transistors, and the physics is very different•Ultra short channel transistors support plasma waves in THz range with the channel acting as a resonance cavity•Plasma waves can be used for detection and generation of THz radiation•A plasma wave FET can achieve THz resolution at•A plasma wave FET can achieve THz resolution at nanometer scale•Arrays of THz plasma wave transistors promise x1,000

51Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

ays o p as a a e t a s sto s p o se ,000increase in performance

Page 52: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

I am grateful to my THz colleagues for their hard work, inspiration, and contributions

Dr. Dyakonova and Prof. Dyakonov

Dr. Veksler Dr. Kachorovskii Prof. Pala Dr. KnapDr. Rumyantsev

y

Dr. Deng Prof. M. RyzhiiDr. Dmitriev

Prof. Zhang Prof. V. Ryzhii Dr. Stillman

52Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur

Dr. Muraviev Dr. Satou T. ElkhatibDr. Levinshtein Dr. Popov Prof. Xu

Page 53: THz Electronics 08 14 09NANOGIGA - ASDN"Nanostructures: Physics and Technology" St Petersburg, Russia, June 26-30, 2006, pp 331-333 ... (2009) Product Half Pitch, Gate length (nm)

AcknowledgmentThis work has been supported

by NSF, ONR, and DARPA (MTO)by NSF, ONR, and DARPA (MTO)

53Michael Shur ([email protected]) http://nina.ecse.rpi.edu/shur