ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

download ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

of 16

Transcript of ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    1/16

    Geotextiles and Geom embranes

    I I (1992) 535-550

    T h e R o l e o f G e o s y n t h e t i c s i n E r o s i o n a n d S e d i m e n t

    C o n t r o l A n O v e r v ie w

    M . S . T h e i s e n

    Erosion C ontrol M aterials, Synthetic Industries, Con struction Products D ivision,

    4019 Industry Drive, Chattanooga, Ten nessee 37416, USA

    A B S T R A C T

    Th e u se o fgeosynthetic erosion an d sed im ent materials continues to ex pa nd at

    a rap id pace. F ro m their early beginnings in the late 1950s geosynthetic

    materials today are the bac kbo ne o f the erosion an d sedim ent control

    industry. Geosynthetic com ponents are an integral par t o f erosion and

    sedim ent materials ranging fr om temporary pro ducts such as hydraulic

    m ulc h geofibers plastic erosion control mesh es an d nettings erosion control

    blanke ts a nd si l t fence s to high perform ance tur f reinforcement mats

    geocellular con finem ent systems erosion control geotexti les and abr ic or m ed

    revetments. Th is pa pe r provides a b rie f overview of these materials an d

    concepts.

    I N T R O D U C T I O N

    H o p e f u l l y w e a r e e n t e r in g a n e w e n v i r o n m e n t a l e r a w h e r e c o n c e r n f o r

    t h e p r o t e c t i o n o f o u r p l a n e t 's n a t u r a l r e s o u r c e s w il l r e a c h g l o b a l

    p r o p o r t i o n s . C o n t i n u e d t e c h n o l o g i c a l a d v a n c e s h a v e l ed to i m p r o v e d

    m o n i t o r i n g o f E a r t h 's v i t al s ig n s. A s s u c h , p r i o r t h e o r e t i c a l m o d e l i n g o f

    e n v i r o n m e n t a l c o n c e r n s s u c h a s t h e g r e e n h o u s e e ff ec t, o z o n e d e p l e t i o n ,

    r i s i n g s e a l e v e l s , d e f o r e s t a t i o n , d r o u g h t , a c c e l e r a t e d e r o s i o n , s e d i m e n t

    l o a d i n g o f w a t e r w a y s , sp e c ie s e x t in c t i o n a n d t h e e v e n t u a l d o w n f a l l o f

    m a n k i n d a p p e a r c h i l l in g l y r ea li st ic .

    535

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    2/16

    536 M S The i sen

    Slogans such as 'Think globally, act locally', 'Love your mother' and

    'Someone always lives downstream' are spearheading the efforts of

    numerous preservation groups. With the continued demise of oppressive

    governments, optimism for world peace and an unprecedented feeling

    of global unity, a spirit of environmental cooperation is beginning to

    prevail.

    The term 'non-point pollution' hopefully is heading toward obsolescence

    with groups such as Stream Watch sloshing their way up muddy creeks to

    pinpoint sources of unchecked sediment. Improved methods to detect

    and monitor rates of erosion and sedimentation via high tech satellite

    imagery or even the actions of the Stream Watchers of the world lends

    credence to the old saying 'you can run but you can't hide'. Generators of

    sediment and other pollutants can and will be identified.

    Cumulative research suggests excessive sediment in our waterways is

    the planet's most prevalent contaminant. Increscent economic and

    social losses from reductions in arable farmland, timber production,

    fishery yields, species diversity and navigable waterways exceed those

    caused by pollutants in the public eye such as nuclear and hazardous

    wastes, smog or ground water contamination. Worse yet, the problem is

    exasperated as one moves downstream toward our coastlines and

    population centers.

    Recently a number of laws have been manda ted in the United States to

    combat excessive erosion. Such legislation ranges from local erosion and

    sediment control ordinances to numerous state and federal agricultural,

    waste containment and surface mining acts, to the broadly encompassing

    Environmental Protection Agency's Clean Water Act and The Farm Bill

    administered by the Department of Agriculture. These actions are only

    the tip of the iceberg as more and more government agencies and entities

    get with the program.

    Just what is erosion control? To control erosion is to curb or restrain

    (not completely stop) the gradual or sudden wearing away of soils. One

    has seen extreme examples of excessive erosion such as gullied hill

    slopes or stream channels choked with debris, but often erosion goes

    unchecked on fiat to moderately sloping terrain. Soil loss is a continually

    occurring process in natural ecosystems as well as successfully reclaimed

    sites--without it our scenery would be very boring. The goal of any

    revegetation or erosion control project should be to stabilize soils and

    manage erosion in an economical manner (Theisen, 1988).

    In this era of shrinking budgets, decision makers are hard pressed to

    reclaim disturbed sites at minimu m costs. Given site conditions such as

    slope angles, climate, runoff, soil profile and ultimate land use, a

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    3/16

    eosynthetics in erosion an d sed im ent control 537

    specifier must select with confidence a technique he (she) feels will

    perform up to expectations at the lowest cost. Over the past 25 years the

    erosion control industry has experienced rapid growth and is becoming

    more sophisticated. Materials developed for erosion and sediment

    control (E & SC) are becoming increasingly effective. Improved design

    and installation guidelines are directing the use of E & SC products

    toward more specific and cost effective applications. The industry has

    evolved from the seed drills, straw blowers, hydroseeders, excelsior, jute,

    concrete channe l liners and rip rap of the sixties into a diverse hierarchy

    of techniques and materials. It seems as if every month a new product is

    introduced to control erosion and sediment in more specific situations.

    Numerous materials have come and gone in the survival of the fittest,

    most cost competitive products.

    i s tor ical perspect ive

    Many of us perceive the use of geosynthetic materials for erosion and

    sediment control as a new horizon. However, geosynthetics have played

    a major role in the E & SC industry for over 30 years, particularly in the

    case of rolled goods. In 1958 a geosynthetic component was incorporated

    into an erosion control system which has changed the course of slope,

    channel and embankmen t protection. A'plastic cloth' was used in lieu of

    a granular filter to prevent sand from washing out behind concrete

    blocks used for shoreline protection (Richardson & Koerner, 1990). The

    significant cost savings realized when a 0.4-mm thick plastic filter cloth

    could replace up to a meter of soil peaked the interest of the US Army

    Corps of Engineers. Subsequent successful installations of woven plastic

    cloth filters in coastal Structures led to the birth of the geotextile industry

    as is practiced today. Through the years millions of square yards of

    woven and non woven geotextiles have been installed as part of hard

    armor systems.

    Another geosynthetic breakthrough was initiated about 10 years later.

    In the mid 1960s only one type of erosion control blanket existed. A state

    soil conservationist discovered the material used for wrapping cotton

    bales could be used to prevent soil erosion. The material was jute, a

    woven mesh of thick natural yarns, when applied on the soil surface

    provided thousands of tiny check dams to help keep soil from washing

    away. Jute blankets allow vegetation to become establ ished on steeper

    slopes and in higher flowing swales than traditional straw and hay

    mulches. A similar material remains in use today.

    However, jute has its drawbacks: its open weave construction leaves

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    4/16

    538 M S Theisen

    s o il e x p o s e d , th e o r g a n i c m a t e r i a l te n d s t o s h r i n k a n d s w e l l u n d e r f ie l d

    c o n d i t i o n s , a n d it is e x tr e m e l y f l a m m a b l e . T o a c h i e v e o p t i m u m r es u lt s

    s t ra w o r h a y m u l c h s ti ll m u s t b e p l a c e d b e n e a t h t h e j u te .

    W h a t w a s n e e d e d w a s a o n e s te p , r o ll o u t m u l c h b l a n k e t . T h e f ir st

    a t te m p t s i n v o l v e d a v e r y d e n s e m a t o f c u r le d , b a r b e d a s p e n w o o d

    ( e x c e ls i o r) f ib e rs . T h e m a t e r i a l s t a y e d t o g e t h e r b u t w a s t o o d e n s e t o a l l o w

    v e g e t a ti v e g r o w t h . N e x t , a t w i s te d k r a ft p a p e r n e t w a s p l a c e d a b o v e a

    t h i n n e r m a t o f e x c e ls i o r f ib er s. V e g e ta t io n g re w t h r o u g h t h e b l a n k e t b u t

    p e r f o r m a n c e o f th e p a p e r n e t t in g w a s v e ry i n c o n s i st e n t; o ft e n b r e a k i n g

    d o w n t o o q u i c k l y a n d b e i n g l i ft ed b y t h e v e g e t a t i o n or , w o r s e ye t, a l l o w i n g

    t h e b l a n k e t t o b e w a s h e d a w a y b e f o re v e g e t at iv e e s t a b l i s h m e n t . A

    s t ro n g e r , n o n - m o i s t u r e s e ns i ti v e , m o r e d u r a b l e n e t t i n g w a s n e e d e d .

    P o l y p r o p y l e n e n e t t i n g w a s t h e a n s w e r .

    C o m b i n i n g a d e n s e m a t o f e x c e ls i o r w i t h a p l a s ti c n e t l e a d t o th e f ir st

    s u c c e s s f u l e x c e l s i o r e r o s i o n c o n t r o l b l a n k e t s . F i e l d tr ia l s w i t h v a r i o u s

    n e ts , fi b e r le n g t h s a n d g l u e p a t t e r n s r e s u l t e d i n e s s e n t i a l ly t h e s a m e

    b l a n k e t s w e s ee to d a y. T h e k e y to t h e i m p r o v e d p e r f o r m a n c e o f ex c e l si o r

    o v e r j u t e b l a n k e t s is th e p l a s t ic n e t b a c k b o n e o f t h e p r o d u c t .

    i a x i a l l y o r i e n t e d p r o c e s s n e t s

    B i a x i a ll y o r i e n t e d p r o c e s s ( B O P ) n e t s a r e ty p i c a l ly m a n u f a c t u r e d f r o m

    p o l y p r o p y l e n e o r p o l y e t h y l e n e re s in s . B O P n e t s a re e x t r e m e l y v e r s a ti l e

    i n t h a t c o m p o s i t i o n , s t re n g t h , e l o n g a t i o n , a p e r t u r e s i ze a n d s h a p e , c o l o r

    a n d u l t r a v i o l e t s t a b i l i t y c a n e a s i l y b e d e s i g n e d i n t o t h e p r o d u c t f o r

    s p e c if i c s it e r e q u i r e m e n t s . S i n c e t h e y d o n o t a b s o r b m o i s t u re , th e s e n e t s

    d o n o t s h r i n k a n d s w e ll l ik e k ra ft p a p e r n e ts a n d j u t e b la n k e t s. B O P n e t s

    h a v e p r o v e n t o b e s o a d a p t a b l e t h e y a r e b e i n g u s e d t o c r e a t e m o r e

    c o m p l e x p r o d u c ts a n d a re e v e n u s e d a lo n e t o a n c h o r l o o se f ib e r m u l c h e s

    s u c h a s s t ra w , h a y a n d w o o d c h i p s. T h e l i g h t w e i g h t n e t t i n g s p l a c e d o v e r

    m u l c h e s c o m e i n r o ll s w h i c h a r e 3 - 4. 5 m i n w i d th , w e i g h o n l y a b o u t

    5 5 k g a n d w i l l c o v e r 0 .4 h (1 a c r e ) o r m o r e . I n s t a l l a t i o n o f t h e s e p r o d u c t s

    is le ss l a b o r i n t e n s i v e t h a n t r a d i t i o n a l n e t t i n g p r o d u c t s .

    E r o s i o n c o n t r o l m e s h e s

    A s te p u p f r o m B O P n e t ti n g s a r e w o v e n p o l y p r o p y l e n e g e o te x ti le e r o s i o n

    c o n t r o l m e s h e s . I n f ac t, t h e n e w e r t w i s t ed f ib e r e r o s i o n c o n t r o l m e s h e s

    c a n p r o v i d e c o m p a r a b l e p e r f o r m a n c e t o e r o s io n c o n t r o l b l a n k e ts . T h e s e

    p h o t o b i o d e g r a d a b l e , n a tu r a l l o o k in g , h i g h s t r en g t h p o l y p r o p y l e n e

    m e s h e s p r o t e c t t h e s o i l s u r f a c e f r o m w a t e r a n d w i n d e r o s i o n w h i l e

    a c c e l e r a t i n g v e g e ta t iv e d e v e l o p m e n t . F o u r m e t e r , l ig h t w e i g h t r o ll s

    f a c i l i t a t e i n s t a l l a t i o n o n s l o p e s a n d c h a n n e l s . E r o s i o n c o n t r o l m e s h e s

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    5/16

    eosynthetics in erosion an d sedim ent control 539

    m a y b e u s e d a l o n e , w i t h d r y m u l c h e s o r a s a s t a b i li z in g u n d e r l a y f or so d

    r e i n f o r c e m e n t . T h e y a l s o s h o w p r o m i s e a s a n o p e n w e a v e g e o t e x t i l e

    f a c i n g f o r fo s t e r in g v e g e t a t io n o n g e o s y n t h e t i c a l l y r e i n f o r c e d s t e e p e n e d

    s l o p e s o r b i o e n g i n e e r i n g i n s t a l l a t i o n s .

    E r o s i o n c o n tr o l b l a n k e t s E C B s )

    B O P n e t ti n g s o r w o v e n m e s h e s o f v a r y i n g c h a ra c t er is t ic s a r e n o w p l a c e d

    o n o n e o r b o t h s id e s o f f in e l y t u n e d e r o s io n c o n t ro l b l a n k e t s a d a p t e d t o

    a n t i c i p a t e d s i t e c o n d i t i o n s . T h e s e 1 - 2 - m w i d e b i o d e g r a d a b l e f i b e r

    e r o s i o n c o n t r o l b l a n k e t s ( E C B s ) a r e c o m p o s e d o f s tr aw , e x c e ls io r , c o t to n ,

    c o c o n u t , p o l y p r o p y l e n e o r b l e n d s t h e r e o f . N e t t i n g s o r m e s h e s m a y

    c o n t a i n U V s t a b i l i z e r s f o r c o n t r o l l e d d e g r a d a t i o n o r l o n g c h a i n

    i n t e r ru p t e r s to a c c e l e r a te p h o t o d e g r a d a t i o n . C o l o r s v a r y f ro m c l ea r , t a n ,

    g r e e n t o b l a c k . M e t h o d s o f h o l d i n g t h e f i be r s in p l a c e r a n g e f r o m g l u es

    a n d g l u e s tr ip s t o m o r e s u p e r i o r p a r a l l e l l o c k s t it c h i n g w i t h c o t t o n ,

    p o l y e s t e r o r p o l y o l e f i n t h r e a d s . A p p l i c a t i o n s f o r t h e w i d e v a r i e t y o f

    b l a n k e t s r a n g e f r o m p r o t e c t i o n o f g r a d u a l t o s te e p s lo p e s to l o w o r

    m o d e r a t e ly f l o w i n g c h a n n e l s . T h e s e b l a n k e t s m a y p r o v i d e te m p o r a r y

    re s i s t ance t o f l ow ve loc i t i e s o f up t o nea r l y t h r ee me t e r s pe r s econd .

    F i n a l l y a n d p e r h a p s o f m o s t c o n c e r n t o t h e e n v i r o n m e n t , t h e se

    m e s h e s a n d n e t ti n g s m a y u l t i m a t e l y b e c o m e b i o d e g r a d a b le . A s p h o t o -

    d e g r a d a t i o n p r o g r e s s e s th e p l a s t ic c h a i n s a r e c u t i n t o s h o r t e r a n d s h o r t e r

    s e g m e n t s d o w n t o a p l a s t ic ' s a n d ' w h i c h b e c o m e s p a r t o f t h e s o il . T h e s e

    s h o r t s e g m e n t s b e c o m e b i o l o g i c a l ly d e g r a d a b l e a n d a r e a tt a c k e d b y s o il

    m i c r o o r g a n i s m s a n d c o n v e r t e d t o c a r b o n d i o x i d e a n d w a t e r ( G u i l l e t ,

    1 97 4). I t is u n f o r t u n a t e t h a t e m o t i o n a l , u n i n f o r m e d a n t i - p l a s ti c s t ig m a s

    s o m e t i m e s p r e c l u d e t h e u s e o f t h e s e e x t r e m e l y c o s t ef fe c ti v e t e m p o r a r y

    ma te r i a l s .

    T E R M s v er su s P E R M s

    A t t h is p o i n t a n i m p o r t a n t d i s t in c t i o n m u s t b e p r e s e n t e d r e g a r d i n g t h e

    i n t e n d e d u s e o f E & S C m a t e r ia l s. F o r m a n y i n s t a l l a t io n s v e g et a ti o n

    a l o n e w i ll p r o v i d e a d e q u a t e l o n g t e rm e r o s i o n p r o t e c ti o n . H o w e v e r ,

    g e t t in g v e g e t a ti o n e s t a b l i s h e d r e q u i r e s a v a r i e t y o f t e c h n i q u e s . M a t e r i a l s

    o f a t e m p o r a r y n a t u r e w h i c h f a c i l i t a t e v e g e t a t i v e e s t a b l i s h m e n t , t h e n

    d e g r a d e , m a y b e t e r m e d T E R M s ( t e m p o r a r y e r o s i o n a n d r e v e g e t a t i o n

    mater ia l s ) .

    B a s i c a l ly T E R M s c o n s i s t o f d e g r a d a b l e n a t u r a l a n d / o r s y n t h e t i c

    c o m p o n e n t s w h i c h p r o v i d e t e m p o r a r y e r o s i o n c o n t r o l a n d f a c i l t a t e

    v e g e t a t i v e e s t a b l i s h m e n t . T h e s e s h o r t t e r m m a t e r i a l s d e g r a d e l e a v i n g

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    6/16

    540 M S The i sen

    TABLE 1

    General TERM Techniques

    Straw, hay and hydraulic mulches

    Tackifiers and soil stabilizers

    Hydraulic mulch geofibers

    Erosion control meshes and nets (ECMNs)

    Erosion control blankets (ECBs)

    Fiber roving systems (FRSs)

    o n l y v e g e t a ti o n f o r lo n g t e r m l o w t o m e d i u m f lo w r e si s ta n c e . Ta b l e 1 l is ts

    v a r i o u s T E R M t e c h n i q u e s .

    S it e c o n d i t i o n s r e q u i r i n g r e i n f o r c e d v e g e t a t i o n o r r e v e t m e n t sy st e m s

    w i ll re q u i re P E R M s ( p e r m a n e n t e r o s i o n a n d r e v e g et a ti o n m a t e ri al s) .

    P E R M s m a y b e s u b d iv i d e d i n to

    b io techn ic l compos i te s

    w h e n v e g e t a t io n

    i s r e i n f o r c e d o r r m o r s y st e m s w h e n n o n - v e g e t a te d i n e r t m a t e r ia l s a r e

    ins ta l l ed .

    B i o t e c h n i ca l c o m p o s i t e s ar e c o m p o se d o f n o n - d e g r a d a b l e c o m p o n e n t s

    w h i c h f u r n i sh t e m p o r a r y e r o s i o n p r o t e c t i o n , a c c e l e r a t e v e g e t a t i v e

    g r o w t h a n d u l t im a t e l y b e c o m e s y n e r g is t ic a l lye n t a n g l e d w i t h l i v in g p l a n t

    t is su e t o e x t e n d t h e p e r f o r m a n c e l i m i t s o f v e g e ta t io n . Th i s r e i n f o r c e d

    v e g e t a ti o n p r o v i d e s 'p e r m a n e n t ' m e d i u m t o h i g h f lo w re s i st a n ce s o l o n g

    a s b i o t e c h n i c a l c o m p o s i t es a r e p r o t e ct e d f r o m s u n l i g h t v i a s h a d i n g a n d

    so i l c o ve r. Ta b l e 2 o u t l i n e s e x a m p l e s o f b i o t e c h n i c a l c o m p o s i t e s . H a r d

    a r m o r s y st em s g e n e r a l l y e m p l o y i n e r t m a t e r i a ls u s e d t o p r o v i d e h i g h t o

    m a x i m u m f lo w re s is t a n ce w h e r e c o n d i t i o n s e x ce e d p e r f o r m a n c e l i m i t s

    o f r e i n f o r c e d v e g e t a t i o n sy s t e m s . S u m m a r i z e d i n Ta b l e 3 a r e sy s t e m s

    u s e d t o p r o v i d e p e r m a n e n t e r o s i o n p r o t e c t io n o f a re a s s u b j e c t to h i g h

    f lows , waves and /o r scour a t t ack .

    Fiber roving systems FR Ss)

    A n o t h e r g e o s y n t h e t i c c o n c e p t p r o v i d i n g m o d e r a t e e r o s i o n p r o t e c t i o n

    a re f ibe r rov in g sys tems (FRSs) . D eve lope d in the l a t e 1960s rov ings a re

    a p p l i e d i n a c o n t i n u o u s s t r a n d f o r p r o t e c t io n o f d r a in a g e s w a le s a n d

    slopes .

    F i b e r g l a ss r o v i n g is a m a t e r i a l f o r m e d f r o m f i b e rs d r a w n f r o m m o l t e n

    g l a ss a n d g a t h e r e d i n t o s t r a n d s t o f o r m a s i n g le r i b b o n . P o l y p r o p y l e n e

    r o v in g is f o r m e d f r o m c o n t i n u o u s s t ra n d s o f f ib r i ll a te d y a r n s w o u n d

    o n t o c y l i n d r ic a l p a c k a g es s o t h a t t h e m a t e r i a l c a n b e f ed c o n t i n u o u s l y

    f r o m t h e o u t s i d e o f th e p a c k a g e . U se o f fi b e rg l a ss r o v i n g h a s b e e n

    d e c l i n i n g d u e t o it s c a r c i n o g e n i c p r o p e r t i e s a n d is b e i n g d i sp l a c e d b y

    e n v i r o n m e n t a l l y f r ie n d l y p o l y p r o p y l e n e r o vi ng .

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    7/16

    Geosynthetics in erosion an d sediment control 541

    T A B L E

    Types of BiotechnicalComposites(PERMs)

    UV stabilized fiber roving systems (FRSs)

    Erosion control revegetationmats (ECRMs)

    Tuff reinforcementmats fiRMs)

    Sports turf geofibers

    Vegetatedgeocellularcontainmentsystems(GCSs)

    Vegetatedconcreteblock systems

    T A B L E 3

    Types of Armor Systems (PERMs)

    Geocellular containmentsystems (GCSs)

    Fabric formed revetments(FFRs)

    Concrete block systems

    Gabions

    i p r a p

    Composites and hybrids

    Erosion control roving is unique because of the flexibility of

    application, allowing for any width or thickness of material to be applied

    (Agnew, 1991). Other erosion control materials, such as blankets or mats

    require the user to apply the width or thickness of material supplied.

    Fiber rovings may be viewed as an in-situ erosion control geosynthetic

    with reduced labor and material costs over traditional blanket materials.

    Using compressed air, roving is applied through a nozzle and then

    anchored in place using emulsified asphalt or other natural or synthetic

    soil stabilizers. The biodegradable polypropylene roving may be used for

    temporary applications (TERM) or when UV stabilized is appropriate

    for extended use situations (PERM).

    T R M v e r s u s E C R M

    Turf reinforcement is a me thod or system by which the natural ability of

    plants to protect soil from erosion is enhanced through the use of

    geosynthetic materials. A flexible three dimensional matrix retains seeds

    and soil, stimulates seed germination, accelerates seedling development

    and most importantly, synergistically meshes with developing plant

    roots and shoots. In laboratory and field analyses, biotechnically

    reinforced systems have resisted flow rates in excess of four meters per

    second for durations of up to two days, providing twice the erosion

    protection of unreinforced vegetation (Carroll e t a l . 1991). Such

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    8/16

    542

    M S Theisen

    performance has resulted in the widespread practice of turf reinforce-

    ment as an alternative to concrete, rip rap and other armor systems in the

    protection of open channels, drainage ditches, detention basins and

    steepened slopes.

    Permanent geosynthetic mattings are composed of durable synthetic

    materials stabilized against ultraviolet degradation and inert to chemicals

    normally encountered in a natural soil environment. These mattings

    consist of a lofty web of mechanical ly or melt bonded polymer nettings,

    monofilaments or fibers which are entangled to form a strong and

    dimensionally stable matrix. Polymers include polypropylene, poly-

    ethylene, nylon and polyvinyl chloride.

    Geosynthetic mattings generally fall into two categories: tu r f r e in force -

    m e n t m a t s T R M s )

    or

    eros ion con t ro l r evegetat ion m a ts EC RM s) .

    Higher

    strength TRMs provide sufficient thickness and void space to permit soil

    filling/retention and the development of vegetation within the matrix.

    TRMs are installed first, then seeded and filled with soil. Seeded prior to

    installation, ECRMs are denser, lower profile mats designed to provide

    long term ground cover and erosion protection, By their nature of

    installation TRMs can be expected to provide more vegetative entangle-

    ment and long term performance than ECRMs. However, denser ECRMs

    may provide superior temporary erosion protection.

    Geoceilular containm ent system s G C Ss)

    Geocellular containment systems work in a unique fashion in that

    strength or stabilization by confinement is achieved by a series of three-

    dimensional cells up to 20 cm deep. When expanded into position, the

    polyethyleneor polyester cells have the appearance of a large honeycomb,

    one of nature's most efficient structures. The cells are then backfilled

    with soil, sand or gravel depending upon application. For revegetation,

    the soil-backfilled cells are seeded, fertilized and covered with a variety

    of TERM or PERM techniques. The mulches provide surface protection

    while the cells greatly reduce the chances of subsurface failure and act as

    a deeper rooted biotechnical composite. Vegetated GCSs are limited to

    flow velocities of two to three meters/second because of the tendency of

    the nearly impermeable cells to sustain scouring under high flow

    velocities (Chen & Anderson, 1986).

    For higher flow condit ions GCSs may be also filled with concrete or

    gravel to create a hard armor system. Typically a geotextile will be placed

    beneath the expanded web to provide separation and/or filtration.

    Erosion control applications for GCSs are many including steep slope

    revegetation, channel liners, shoreline revetments, retaining walls, boat

    ramps, and low flow stream crossings.

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    9/16

    eosynthetics in erosion an d sedim ent control 543

    F a b r ic f o r m e d r e v e tm e n t s

    Fabric forming systems are mattresses typically constructed of water

    permeable, double layer woven geotextiles which are posit ioned on the

    area to be protected and filled with a structural grout. The two layers of

    geotextile are joined at discrete points to create a form which when filled

    with grout will conform to most subsoil conditions. Thickness and

    geometry are determined by internal spacer threads woven into the

    upper and lower sheets of fabric. In many cases the mattresses may be

    installed for less cost than conventional armor systems since all

    construction is conducted in place (Richardson & Koerner, 1990).

    o n c r e t e b l o c k s y st e m s

    Concrete block systems consist of prefabricated concrete panels of

    various geometries which may be attached to and laid upon a woven

    monofilament or non-woven geotextile. Bending and torsion are

    accommodated by having the concrete blocks articulated with joints,

    weaving patterns or connection devices. Concrete block systems may be

    subdivided into three groups: non-tied interlocking blocks, cable-tied

    blocks, or in-situ concrete (Hewlett

    e t a l .

    1987). In some cases the entire

    erosion control section may be manufactured, trucked to the job site and

    placed as a unit.

    G a b i o n s

    Gabions are compar tmented rectangular containers made of galvanized

    steel hexagonal wire mesh and filled with hand-sized stone. Cells of

    equal capacity are formed by factory-inserted wire netting diaphragms or

    partitions which add strength to the container and help maintain its

    shape during the placement of stone. In highly corrosive conditions a

    polyvinyl chloride coating is used over the galvanized wire.

    Advantages of gabions include flexibility, durability, strength, per-

    meability and economy versus rigid structures. The growth of native

    plants is promoted as gabions collect sediment in the stone fill. A high

    percentage of installations are under lain by woven monofilament and

    nonwoven geotextiles to facilitate sediment capture and prevent wash

    out from behind the structure.

    R i p r a p

    Rip rap consists of stone dumped in place on a filter blanket or prepared

    slope to form a well graded mass with a minimum of voids. Stone used for

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    10/16

    544 M S The i sen

    r i p r a p i s h a r d , d u r a b l e , a n g u l a r i n sh a p e ; r e s i s ta n t to w e a t h e r i n g a n d t o

    w a t e r a c t i o n ; a n d f r e e f r o m o v e r b u r d e n , s p o i l , s h a l e a n d o r g a n i c

    m a t e r i a l . Th e r i p r a p m a t e r i a l is g e n e r a l l y p l a c e d o n a g r a v e l b e d d i n g

    l a y e r a n d / o r a w o v e n m o n o f i l a m e n t o r n o n w o v e n g e ot ex ti le fa b ri c.

    e r f o r m a n c e o f e r o s i o n c o n t ro l m a t e r ia l s

    S e v e ra l t es t p r o c e d u r e s h a v e b e e n p r o p o s e d t o q u a n t i f y p e r f o r m a n c e o f

    e r o s i o n c o n t r o l m a t e r i a l s . I n i t i a l c o n c e r n f o r v e g e t a t e d sy s t e m s i s

    t e m p o r a r y e r o s io n p r o t e c ti o n p r io r t o a n d d u r i n g s e ed g e r m i n a t i o n a n d

    se e d l i n g d e v e l o p m e n t . Ty p i c a l ly , t h i s l e v e l o f p e r f o r m a n c e i s m e a su r e d

    b y t h e m a t e r i a l 's a b i l i t y t o m i n i m i z e so i l l o ss w h e n su b j e c t e d t o v a r i o u s

    f l o w r a t e s a n d / o r r a i n f a l l a m o u n t s . T e m p o r a r y e r o s i o n p r o t e c t i o n i s

    i m p o r t a n t b u t t h e l o n g t e r m g o a l o f a n y e r o s i o n c o n t r o l m a t r i x i s t o

    p r o v id e p e r m a n e n t e r o s i o n p r o t e ct io n v i a p e r m a n e n t v e g e ta t io n a n d / o r

    s u b s e q u e n t r o o t r e in f o r c e m e n t . T h e m o r e r a p i d l y v e g e t a ti o n b e c o m e s

    e s t a b l i s h e d t h e m o r e r a p i d l y l o n g t e r m e r o s i o n c o n t r o l m a y b e

    a c c o m p l i sh e d . Th u s , t h e m a t e r i a l' s a b i l i t y to f a c i li t a te v e g e ta t iv e

    e s t a b l i s h m e n t is e q u a l l y i m p o r t a n t . T o o m u c h e m p h a s i s o n a n e r o s i o n

    c o n t r o l p r o d u c t' s t e m p o r a r y p r o t e c t i o n m a y i n h i b i t t h e g r o w th o f n e w l y

    e m e r g i n g s e e d li n g s .

    P e r h a p s t h e m o s t c r it ic a l p a r a m e t e r i n a n e n g i n e e r i n g d e s ig n i s fl o w

    r e s i s ta n c e b e f o r e , d u r i n g a n d l o n g a f t e r v e g et a ti v e e s t a b l i sh m e n t . S o m e

    e r o s i o n c o n t r o l m a t e r i a l s m a y b e w a s h e d a w a y b e f o r e t h e v e g e t a t i o n

    t a k e s h o l d w h i l e o t h e r s m a y t e m p o r a r i l y e x h i b i t e x c e l l e n t f lo w r e s is t a n c e

    o n l y t o lo se t h e i r e f fe c ti v e n es s a s t h e y d e g r a d e o r d e c o m p o se o v e r t im e .

    S p e c i f i e r s m u s t t a k e i n t o a c c o u n t i m m e d i a t e a n d l o n g t e r m f l o w

    r e s is t a n ce b a s e d u p o n l o n g e v it y o f t h e m a t e r ia l w h e n d e s i g n i n g g ra s s ed

    s l o p e s a n d w a t e rw a y s .

    T w o b a s ic d e s i g n c o n c e p t s a re u s e d t o e v a lu a t e a n d d e f i n e a c h a n n e l

    c o n f i g u r a t i o n t h a t w i l l p e r f o r m w i t h i n a c c e p t e d l i m i t s o f s ta b i li ty . Th e se

    m e t h o d s a r e d e f i n e d a s th e p e r m i s s ib l e v e l o ci ty a p p r o a c h a n d t h e

    p e r m i s s i b l e tr a c ti v e f o r ce ( sh e a r s tr es s ) a p p r o a c h . U n d e r t h e p e r m i s s i b l e

    v e l o c it y a p p r o a c h t h e c h a n n e l is a s s u m e d s t ab l e i f t h e a d o p t e d v e l o c it y is

    l o w e r t h a n t h e m a x i m u m p e r m i s s i b l e v e lo c it y . Th e t r a c ti v e f o rc e

    ( b o u n d a r y sh e a r s t r e s s ) a p p r o a c h f o c u se s o n s t r e s se s d e v e l o p e d a t t h e

    i n te r f ac e b e tw e e n f lo w i n g w a t e r a n d t h e m a t e r ia l s f o r m i n g t h e c h a n n e l

    b o u n d a r y ( C h e n & C o t to n , 1 988).

    T h e p e r m i s s i b le v el o c it y a p p r o a c h u s es M a n n i n g ' s e q u a t i o n w h e r e

    w i t h g i v e n d e p t h o f flo w , D , t h e m e a n v e l o c i ty m a y b e c a l c u l a t e d a s :

    V = R 2 3 S l 2 n

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    11/16

    eosynthetics in erosion an d sediment co ntrol 5 4 5

    w h e r e

    V =

    n - -

    R

    a v e r a g e v e l o c i t y i n t h e c r o ss s e c t i o n

    M a n n i n g ' s r o u g h n e s s c o e f f ic i en t

    h y d r a u l i c r a d iu s , e q u a l t o t h e c r o s s - se c t io n a l a r e a ,A , d i v i d e d b y

    t h e w e t te d p e r i m e t e r , P

    S = f r ic t io n s l o pe o f t h e c h a n n e l , a p p r o x i m a t e d b y t h e a v e ra g e b e d

    s l o p e f o r u n i f o r m f lo w c o n d i t i o n s

    Th e t r a c t iv e f o rc e a p p r o a c h u se s a s i m p l i f i e d sh e a r s tr es s a n a l y s i s

    w h i c h i s e q u a l t o :

    w h e r e

    =

    y =

    D

    S

    yDS

    t rac t ive force

    u n i t w e i g h t o f w a t e r

    m a x i m u m d e p th o f f lo w

    a v e r a g e b e d s l o p e o r e n e r g y s lo p e

    D e s i g n c r it e ri a b a s e d o n f lo w v e lo c i ty m a y b e l i m i t e d b e c a u s e

    m a x i m u m v e lo c it ie s v a r y w i d e ly w i th c h a n n e l l e n g t h ( L), s h a p e (R ), a n d

    rou ghn ess coe f f i c i en t s (n ). In rea l i ty i t i s the fo rce deve lo ped by the f low,

    n o t t h e f lo w v e l o c it y i ts e lf , t h a t c h a l l e n g e s t h e p e r f o r m a n c e o f e r o s i o n

    c o n t r o l sy s te m s . T r a c t iv e f o r ce s c a u se d b y f l o w i n g w a t e r o v e r t h e g r o u n d

    su r f a c e c r e a t e sh e a r s t r e s se s w h i c h c a n b e u se d a s a d e s i g n p a r a m e t e r

    i n d e p e n d e n t o f c h a n n e l s h a p e a n d r o u g hn e s s. M o r eo v e r, th e h i g h e r

    s tr es se s d e v e lo p e d i n c h a n n e l b e n d s o r o t h e r c h a n g e s i n s t r e a m c h a n n e l

    g e o m e t r y c a n b e q u a n t i f i e d b y s i m p l i f i e d sh e a r s t r e s s c a l c u l a t i o n s ,

    p r o v i d i n g a h i g h e r l e v el o f d e s i g n c o n f i d e n c e t h a n o t h e rw i s e p o s s ib l e

    (Chen & Cot ton , 1988) .

    C r i t ic a l s h e a r s t re ss d e t e r m i n a t i o n s a r e m e a n t t o b e u s e d w i t h v e lo c i ty

    c a l c u l a t i o n s f o r p r e s c r e e n i n g o f c h a n n e l l i n i n g d e s i g n s . M a n n i n g ' s

    e q u a t i o n r e m a i n s t h e p r i m a r y h y d r a u l i c r e s e a r c h a n d d e s i g n t o o l .

    H o w e v e r , a s e v e r y d a y p r a c t i c e h a s d e t e r m i n e d , a s i m p l i f i e d s c r e e n i n g

    c r it e ri a s u c h a s m a x i m u m s h e a r s tr es s i s n e c e s s a r y t o e n s u r e p r o p e r l y

    e n g i n e e r e d d e s i g n o f c h a n n e l l i n i n g e r o s i o n c o n t r o l sy s te m s . F i g u r e 1

    c o m b i n e s c u m u l a t i v e re s e a r c h f o r s e ve r al e r o s i o n c o n t r o l m a t e r ia l s a n d

    a t t e m p t s t o g r o u p c a t e g o ri e s o f e r o s i o n c o n t r o l m a t e r i a l s in t o t h e i r c o s t

    e f fec tive des ig n n iches .

    M axim um pe rmiss ib le ve loc it ie s fo r vege ta tive t echn ique s a re i l lu s t ra t ed

    u n d e r v e g e t at e d a n d n o n - v e g e t a t ed c o n d i t io n s . T h u s a d e s i g n e r w i ll h a v e

    p e r f o r m a n c e g u i d e l i n e s f r o m t h e t i m e a m a t e r i a l is i n s t a l le d to w h e n i t

    b e c o m e s f u l l y v e g e ta t ed .

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    12/16

    546 M S The i sen

    6'0

    E

    ~ , 4 . 5

    .90

    :>

    r

    . ~ 3 - 0

    u~

    1 0

    1-5

    17D

    E

    0

    ._ l

    Hi g h v e l o c i t y b l a n k e ts

    _ f i b e r r o v in g s y s t e m s h i g h

    r a t e ? ~

    M e d i u m v e l o c i t y b l a n k e t s a n d m e s h

    f i b e r r o vi n g s y s t e m s l o w rate?X - ~

    L o w

    v ~o cit~ ; ~ l ; ~ ; P . . . . .

    I I

    2 5

    F l o w d u r a t i o n , h

    H a r d a r m o r s y s t e m s

    ~ t e d

    TR

    S o f t a r m o r z o n e

    N n v e g e t a t e d T RM o r E CR M

    1 0 0 1. C o v e r . . . . . . . . . .

    L i m i ts o f n a t u r a l v e g e t a t i o n

    Poor cover

    are soil erosion

    1 0 2 0 5 0

    Fig. 1. Recommended maximum design velocities for various erosion control materials.

    *No known published data for flows exceeding 0.5 h.

    l o w d u r a t io n

    Of key importance is the significance of duration of flow. Note from

    Fig. 1 that allowable flow velocities decrease with flow duration. This is a

    critical point. Manufacturers of both organic and synthetic erosion

    control products often express the erosion resistance of their materials in

    terms of maximum allowable flow velocity. Though unstated, these flow

    limits are typically for very short durations (minutes rather than hours).

    They do not reflect the potential for severe erosion damage that results

    from moderate flow velocities over a period of several hours. Ironically,

    many manufacturers, designers and users do not consider duration of

    flow when evaluating and selecting erosion control measures (Theisen &

    Carroll, 1990).

    Typically, a major precipitation event will produce significant flow

    velocities with durations lasting hours or days--not minutes. The two

    day design duration was selected because in grass waterways, high

    velocity flow events should be no longer than about two days in duration,

    following which grass recovery and subsoil drainage should be able to

    take place (Hewlett

    e t a l .

    1987). As Fig. 1 illustrates, duration of flow will

    reduce the erosion resistance of a grassed surface. It is critical that design

    of grassed waterways take this into account.

    Flow values for the various temporary erosion control mulches,

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    13/16

    eosynthetics in erosion an d sedim ent control 547

    blankets, meshes and rovings have been truncated and placed into the

    lower left area of the graph because extended flow duration trials for

    these materials have not been reported. Their long term performances

    may either go up or down as vegetation becomes established and

    ultimately will fall into the niche for natural vegetation as the product

    degrades.

    The Soft Armor Zone begins just above the limits of natural

    vegetation. Performance data for reinforcing mats ranges from un-

    vegetated TRMs and ECRMs (which exceed performance of natural

    vegetation) to the upper curve which delineates maximum recommended

    design velocities obtained from field and laboratory evaluation of

    vegetated TRMs (Western Canada Hydraulic Laboratories Ltd, 1979;

    Hoffman & Adamsky, 1982; Hewlett e t a l . 1987; Theisen & Carroll, 1990;

    Carroll

    e t a l .

    1991).

    The upper end of the graph is comprised by the niche for hard armor

    materials. The graph is not intended to establish upper performance

    limits for these materials, but rather to define the upper limits of 'soft

    armor' (reinforced vegetation). Performance for hard armor materials

    will be considerably higher and upper limits are beyond the scope of this

    paper.

    ed i m ent contro l

    Going hand in han d with aggressive erosion control measures should be

    a well conceived sediment control plan. Erosion control measures are an

    offensive strategy to attack potential sedimentation while sediment

    control practices are a stop gap defensive strategy. In erosion and

    sediment control planning, the old sports axiom that a strong offense is

    the best defense is certainly apropos. Vegetation is clearly the finest

    sediment control product on the planet

    Geosynthetic silt fences have become a standard construction practice

    over much of the United States replacing straw and hay bales, brush

    layers and rock check dams. Silt fences are generally installed at the

    beginning of the construction project and usually consist of woven slit

    tape geotextiles mounted on a prefabricated fence.

    A well designed silt fence must initially screen silt and sand particles

    from runoff. A soil filter is formed adjacent to the silt fence and reduces

    the ability of water to flow through the fence. This leads to the creation of

    a pond behind the fence which serves as a sedimentat ion basin to collect

    suspended soils from runoff water. To meet such needs, the geotextile

    must have properly sized openings to form the soil filter and the storage

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    14/16

    548 M S T h e i s en

    c a p a c i t y o f t h e f e n c e m u s t b e a d e q u a t e t o c o n t a i n t h e v o l u m e o f w a t e r

    a n d s e d i m e n t a n t i c i p a t e d d u r i n g a m a j o r s to r m ( R i c h a r d s o n & K o e r n er ,

    1990).

    P o r o u s s e d i m e n t c o n t r o l s t r u c t u r e s a r e t h e n e w e s t g e o s y n t h e t i c

    a p p r o a c h t o s e d i m e n t c o n t r o l . A t h r e e - d i m e n s i o n a l m o l d a b l e m a s s o f

    c r i m p e d p o l y p r o p y l e n e f i b e r s m a y b e p l a c e d i n f i ll s o r g u l l ie s t o p r o v i d e

    p a s s i v e s e d i m e n t c o n t r o l . P l a c e d b y h a n d w i t h i t s s i z e a n d s h a p e

    d e t e r m i n e d b y t h e i n s t a ll e r , a p p l i c a t i o n s i n c l u d e f il l a n d g u l l y r e p a i r,

    d i t c h c h e c k s , s e d i m e n t t r a p s , a n d p e r i m e t e r b e r m i n g . M o r e o v e r t h e

    f i b e r s m a y b e e n c a p s u l a t e d i n a p o l y p r o p y l e n e m e s h t o c r e a t e

    p r e f a b r i c a t e d c h e c k d a m s f o r sw a l e a n d d i t c h p r o t e c ti o n . T a b l e 4 li s ts a

    f e w s e d i m e n t c o n t r o l t e c h n i q u e s .

    the r geosynthet ic opportun i ti e s

    I d e a s f o r g e o s y n t h e t ic e r o s io n a n d s e d i m e n t c o n t r o l m a t e r i a ls a b o u n d .

    C e r t a i n l y n e w i d e a s h a v e b e e n o m i t te d o r a r e b e i n g d e v e l o p e d a t t h e ti m e

    o f th i s p u b l i c a ti o n . O d d s a r e h i g h t h a t g e o s y n t h e ti c s w i l l w o r k t h e i r w a y

    d o w n t h e l a d d e r i n t o m o r e t r a d i t i o n a l a p p l i c a t i o n s s u c h a s h y d r a u l i c

    m u l c h e s a n d e r o s i o n c o n t r o l b l a n k e t s . H y d r a u l i c m u l c h g e o f i b e r s

    ( w h i c h i m p r o v e t h e t e n a c i t y o f w o o d f ib e r a n d r e cy c le d p a p e r m u l c h e s )

    a n d r e c y c le d p l a s t ic f ib e r b l a n k e t s a n d m a t s a re a l r e a d y e n t e r i n g t h e

    m a r k e t . G e o f i b e r s a r e b e i n g u s e d a s p a r t o f s p o r ts t u r f s y s t e m s in m a j o r

    a t h l e t i c s t a d i u m s p r o v i d i n g b o t h g r o u n d s t a b i l i z a t i o n a n d a r o o t

    r e i n f o r c i n g m a t r i x .

    T h e f u t u re o f g e o s y n t h e t i c s fo r E & S C l ie s p a r t l y i n t h e r e c y c l i n g O f

    w a s t e p l a st ic s g e n e r a t e d f r o m o t h e r a p p l i c a t i o n s . P o l y m e r s p e c i fi c a t io n s

    f o r E & S C a p p l i c a t i o n s a r e n o t a s s t r i n g e n t a s o t h e r g e o s y n t h e t i c

    m a t e r i a l s s u c h a s g e o m e m b r a n e s , g e o g r i d s a n d g e o t e x t i l e s . I t i s a n

    e n v i r o n m e n t a l l y f r ie n d l y g e s tu r e i n a n e n v i r o n m e n t a l l y f r ie n d l y in d u s t ry .

    And r ecyc l ed p l a s t i c s a r e cos t e f f ec t i ve .

    TABLE 4

    Examples of Sediment Con trol Techniques

    Vegetation

    Straw and hay bales

    Brush layers

    Silt fences

    Porous sediment control structures (PSCSs)

    Rock check dams

    Sediment traps, basins and ponds

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    15/16

    Geosynthetics in erosion an d sediment control 549

    More research on E & SC effectiveness of the myriad of materials is

    mandatory. Questions regarding resistance to extended flow durations

    and long term performance for all materials must be answered. Systems

    must be developed for standardizing product descriptions, sanctioning

    uniform test and evaluation procedures, and creating a market reporting

    system to insure broad acceptance of E & SC industry. Organizations

    such as the Internat ional Erosion Control Association (IECA), Erosion

    Control Technology Council (ECTC), American Society for the Testing of

    Materials (ASTM), Industrial Fabrics Association International (IFAI),

    and the Geosynthetics Research Institute (GRI) must lead the way.

    Another hurdle to overcome or trail to blaze, depending upon how one

    looks at it, is the issue of biodegradable plastics for short term

    applications. This is an area of very important research. Members of the

    industry as well as the general public must be educated. The performance

    advantages of man made fibers over natural fibers is recognized in many

    sectors of the textile industry. The E & SC industry is quite possibly a

    sleeping giant for man made fibers. Keep your ear to the ground and your

    eyes wide open because 'you ain't seen nothin' yet'. The future of

    geosynthetics in erosion and sediment control is bright

    REFERENCES

    Agnew, W. (1991). Erosion control product selection.Geo technical Fabrics Report

    9 (3), 24-27.

    Carroll, O. Jr, Rodencal, J. & Theisen, M. S. (1991). Evaluation of turf

    reinforcement mats and erosion control and revegetation mats under high

    velocity flows.Proceedings o f the X X II Ann ual Conference of the International

    Erosion Control Association Orlando, FL.

    Chen, Y. H. & Anderson, B. A. (1986). Development of a methodology for

    estimating embankmentdamage due to flood overtopping. USDOT Federal

    Highway Administration and USDA Forest Service, report number

    DTFH61-82-C-00104, Ft Collins, CO.

    Chen, Y. H. & Cotton, G. K. (1988). Design of roadside channels with flexible

    linings. Federal Highway Administration report HEC-15/FHWA-1P-87-7,

    McLean, VA.

    Guillet, J. E. (1974). Plastics, energy and ecology--a harmonious triad. Plastics

    Engineering 30 (8), 48-56.

    Hewlett, H. W. M., Boorman, L. A. & Bramley, M. E. (1987). Design of re-

    inforced grass waterways. Construction Industry Research and Information

    Association, Report 116, London.

    Hoffman, G. L. & Adamsky, R. (1982). Nylon erosion control mat. Presented at the

    Transportation Research Board sixty-first annual meeting Washington DC.

    Theisen, M. S. (1988). Cost-effective techniques for successful erosion control.

    Proceedings High Altitude Revege tation Work shop No. 8 Ft Collins, CO.

    Theisen, M. S. & Carroll, R. G. (1990). Turf reinforcement--the 'soft armor"

  • 7/26/2019 ThThe Role of Geosynthetics in Erosion and Sedimente Role of Geosynthetics in Erosion and Sediment

    16/16

    550 M. S. Theisen

    al ternat ive .

    Proceedings of the XXI Annual Conference of the International

    Erosion Control Association,

    W a s h in g t o n D C .

    R icha rds on , G . N . & Ko em er , R . M. (eds ) (1990).A Design Primer. Geotextiles and

    Related Materials,

    In d u s t r i a l F a b r i c s A sso c i a t i o n In t e rn a t i o n a l , S t P a u l, M N .

    W e s t e rn C a n a d a H y d ra u l i c L a b o ra t o r i e s L t d (1 9 7 9 ) .

    Cove Country Club:

    Experimental Studies on Permissible Shear Stresses of Bermuda Grass.

    P o r t

    C o q u i l a m , B r it is h C o l u m b i a , C a n a d a .