Threshold Voltage Mosfet

6
Spring 2001 EE 8223 Analog IC Design Page 17 MOSFET Threshold Voltage What affects the threshold voltage? substrate doping, oxide thickness, source-to-substrate voltage bias, gate material, and surface charge density When V GS > V THN (nMOSFET), the semiconductor/oxide interface is inverted, i.e., th e inversion layer is formed. The associated depletion region (beneath the inversion layer) thickness is described by  A F s si d qN  X φ φ ε = 2 ; where i  A F n  N q kT ln = φ . The charge attracted under the MOS gate is described by F s  A si d  A b qN  X qN Q φ φ ε = = 2 ' [C/m 2 ] In accumulation mode, φ s = φ F   Q b = 0. When increasing V GS (positively) results in φ s = 0, the semiconductor surface at the oxide interface becomes depleted. Continuing to increase V GS till φ s = φ F results in the formation of the inversion channel. Note that the value of V GS when φ s = φ F is V THN . In this situation the negative charge in the depletion region is described by SB F  A si d  A b V qN  X qN Q + = = φ ε 2 2 ' [C/m 2 ] Between strong inversion and depletion, φ s changed a total of 2φ F .

Transcript of Threshold Voltage Mosfet

Page 1: Threshold Voltage Mosfet

8/8/2019 Threshold Voltage Mosfet

http://slidepdf.com/reader/full/threshold-voltage-mosfet 1/6

Spring 2001 EE 8223 − Analog IC Design Page 17

MOSFET Threshold Voltage

What affects the threshold voltage? ⇒ substrate doping, oxide thickness,

source-to-substrate voltage bias, gate material, and surface charge density

When V GS > V THN (nMOSFET), the semiconductor/oxide interface is

inverted, i.e., the inversion layer is formed. The associated depletion region

(beneath the inversion layer) thickness is described by

 A

F ssid 

qN  X 

φφε −=

2; where

i

 AF 

n

 N 

q

kT ln−=φ .

The charge attracted under the MOS gate is described by

F s Asid  Ab qN  X qN Q φφε −== 2' [C/m2]

In accumulation mode, φs = φF   ⇒  Qb′= 0.

When increasing V GS (positively) results in φs = 0, the semiconductor surface

at the oxide interface becomes depleted.

Continuing to increase V GS till φs =− φF results in the formation of the

inversion channel.

Note that the value of V GS when φs =− φF  is V THN . In this situation the

negative charge in the depletion region is described by

SBF  Asid  Ab V qN  X qN Q +−== φε 22' [C/m2]

Between strong inversion and depletion, φs changed a total of 2φF .

Page 2: Threshold Voltage Mosfet

8/8/2019 Threshold Voltage Mosfet

http://slidepdf.com/reader/full/threshold-voltage-mosfet 2/6

Spring 2001 EE 8223 − Analog IC Design Page 18

Threshold voltage expression:

( F SBF THN THN  V V V  φφγ  220 −++=

where

'

'0

'

''0

0 22

ox

bF FB

ox

ssbF msTHN 

QV 

QQV  +−=

−+−−= φφφ

and

'

2

ox

 Asi

 N qεγ  =

The value of φms is obtained by adding the contact potentials:

( ) ( ) F GF oxoxGms φφφφφφφ −=−+−=

Note that a voltage equal to V FB must be applied at the gate for φs = φF .

Page 3: Threshold Voltage Mosfet

8/8/2019 Threshold Voltage Mosfet

http://slidepdf.com/reader/full/threshold-voltage-mosfet 3/6

Spring 2001 EE 8223 − Analog IC Design Page 19

MOSFET Operation

For strong inversion linear (nonsaturation) operation, see the gradual-

channel approximation derived in Section 5.3.1 of your text.

In the strong inversion linear region:

−−=

2)(

2 DS

 DSTHN GSnn DV 

V V V  L

W KP I  for V GS ≥ V THN and V  DS ≤ (V GS−V THN )

−−=

2)(

2SD

SDTHPSG p p DV 

V V V  L

W KP I  for V SG ≥ |V THP| and V SD ≤ (V SG−|V THP|)

In the strong inversion (SI) saturation region:

• For V  DS = V GS – V THN , the inversion charge at the drain-channel

 junction is zero (Q I ′(y=L) ⇒ 0), i.e., the channel becomes pinched 

off.

• Substituting V  DS,sat. (=V GS −V THN ) for V  DS in the linear-mode

equation provides

[ ]2)(2

THN GSn

n D V V  L

W KP I  −= for V GS ≥ V THN and V  DS ≥ (V GS−V THN )

• According to first-order theory, I  D will not further increase for V  DS

> V GS − V THN (not true!).

Page 4: Threshold Voltage Mosfet

8/8/2019 Threshold Voltage Mosfet

http://slidepdf.com/reader/full/threshold-voltage-mosfet 4/6

Spring 2001 EE 8223 − Analog IC Design Page 20

• Why does the drain actually increase with V  DS > V  DS,sat.? Consider

the electrical gate of the MOSFET in SI saturation,

dldrawnelec  X  L L −=

Then [ ]2)(2

THN GSelec

nn D V V 

 L

W KP I  −=

Channel length modulation (CLM) occurs due to the increase

depletion layer width as V  DS increases

c Dn DS

dl

elec Dn

 DS

elecTHN GS

elec

n

 DS

n D I 

dV 

dX 

 L I 

dV 

dLV V 

 L

W KP

 I λ⋅=

⋅=⋅−−=

∂ 1)(

2

2

2

Typical values for λc range from approximately 0.1 V-1

(short

channel devices) to 0.01 (long channel devices).

Including CLM in our first-order drain current equation,

[ ])(1)(2

,2

sat  DS DScTHN GSn

n D V V V V  L

W KP I  −+−= λ

• For minimum gate length devices, max V  DS

is limited by punch-

through when the drain-substrate depletion region extends from

drain to source. This is BAD! The resultant high current can

destroy the device.

• For long channel devices, max V  DS is limited by the drain

implant/substrate diode.

• Warning! The above analysis neglects mobility reduction with

increasing V  DS.

Page 5: Threshold Voltage Mosfet

8/8/2019 Threshold Voltage Mosfet

http://slidepdf.com/reader/full/threshold-voltage-mosfet 5/6

Spring 2001 EE 8223 − Analog IC Design Page 21

• Also, for large values of V  DS, saturation will appear to occur for

values of V  DS below V  DS,sat due to the fact that Q I ′(y) is actually a

function of V  DS (i.e., it is not constant). This is also the result of 

velocity saturation in short channel devices. Velocity saturation

causes V  DS,sat  and I  DS,sat  to decrease.

Note that the MOSFET has 3 different levels of inversion: weak, moderate,

and strong. Within each level of inversion, the MOSFET can be saturated ornon-saturated. Hence, the MOSFET 6 different modes of operation.

Page 6: Threshold Voltage Mosfet

8/8/2019 Threshold Voltage Mosfet

http://slidepdf.com/reader/full/threshold-voltage-mosfet 6/6

Spring 2001 EE 8223 − Analog IC Design Page 22

MOSFET Modeling

Review model parameters and their relationship to theory.

MOSFET Layout

Layout example (with schematic):