Threshold Concepts & Mathematics Task Design

29
Sinéad Breen, Mathematics Department Threshold Concepts & Mathematics Task Design

description

Threshold Concepts & Mathematics Task Design. Sinéad Breen, Mathematics Department. Threshold Concepts. Emerged from UK National Research Council project (2001-2005) ‘Enhancing Teaching-Learning Environments in Undergraduate Courses’ Economists Erik Meyer & Ray Land. Threshold Concepts. - PowerPoint PPT Presentation

Transcript of Threshold Concepts & Mathematics Task Design

Page 1: Threshold Concepts &  Mathematics Task Design

Sinéad Breen, Mathematics Department

Threshold Concepts & Mathematics Task Design

Page 2: Threshold Concepts &  Mathematics Task Design

Threshold Concepts

Emerged from UK National Research Council project (2001-2005) ‘Enhancing Teaching-Learning Environments in Undergraduate Courses’

Economists Erik Meyer & Ray Land

2

Page 3: Threshold Concepts &  Mathematics Task Design

Threshold Concepts

Portal: opening new, previously inaccessible way of thinking

E.g. heat transfer in cooking

3

Page 4: Threshold Concepts &  Mathematics Task Design

Threshold Concepts - Characteristics

(Meyer & Land 2003)

TransformativeIrreversibleIntegrativeBoundedTroublesome

4

Page 5: Threshold Concepts &  Mathematics Task Design

Threshold Concepts - Characteristics

Also,

DiscursiveReconstitutive

5

Page 6: Threshold Concepts &  Mathematics Task Design

Threshold Concepts

Examples from different disciplines (Meyer & Land 2003):

Limits in mathematicsOpportunity cost in economicsLaws of motion in physicsEqual temperament in music

6

Page 7: Threshold Concepts &  Mathematics Task Design

Threshold Concepts

Ways of thinking & practising:

Evidence-based practice in health sciences

Learner-centredness in university teaching

Critical reflection

7

Page 8: Threshold Concepts &  Mathematics Task Design

Recommendations for Teaching(Land et al. 2005, Cousin 2006)

Jewels in curriculum – foci of moduleConstruct framework for

engagementListen for understandingProvide supportive nurturing space

or holding environment

8

Page 9: Threshold Concepts &  Mathematics Task Design

Recommendations for Teaching(Land et al. 2005, Cousin 2006)

Tolerate uncertaintyAdopt recursive approachBe aware of unintended

consequences of ‘good pedagogy’

9

Page 10: Threshold Concepts &  Mathematics Task Design

Mathematics Perspective

‘Function’ & other mathematics concepts as threshold concepts

Traditional approaches to curriculum design

Focus on tasksTypes of tasksSamples of tasks designedFeedback from students

10

Page 11: Threshold Concepts &  Mathematics Task Design

Mathematics Perspective

Examples of functions:

f(x)=x+4f(x)=3xf(x)=x2

11

Page 12: Threshold Concepts &  Mathematics Task Design

Function as a Threshold Concept-transformative but troublesome

Understanding ‘function’ requires conceiving of a function as an action, process, object (Dubinsky and McDonald 2001)

Reification (from process to object view) is “an ontological shift, a sudden ability to see something familiar in a new light” and a “rather complex phenomenon” (Sfard 1991)

12

Page 13: Threshold Concepts &  Mathematics Task Design

Function as a Threshold Concept-irreversible and integrative

Difficult for expert practitioners to look back over threshold to understand difficulties of students (Meyer and Land 2003) − flexibility in thought following ‘reification’ means experts fail to appreciate difficulties of novices (Gray and Tall 1994)

Schema – coherent framework linking reified concept to other associated concepts (Dubinsky and McDonald 2001)

13

Page 14: Threshold Concepts &  Mathematics Task Design

Traditional Approaches to Curriculum Design

Cousin (2006)a tendency…to stuff their curriculum with content, burdening themselves with the task of transmitting vast amounts of knowledge bulk

Defining undergraduate mathematics courses in terms of mathematical content (techniques, theorems) (Hillel 2001)

Students learn standardised procedures but lack working methodology of mathematician (Dreyfus 1991)

Reliance on superficial, shallow, or rote learning14

Page 15: Threshold Concepts &  Mathematics Task Design

Focus on Tasks

NAIRTL funded project (2011-2012) undertaken with

Dr Ann O’Shea, NUIM

Dr Kirsten Pfeiffer, NUIG

15

Page 16: Threshold Concepts &  Mathematics Task Design

Focus on TasksMason (2002)

in a sense, all teaching comes down to constructing tasks for students…This puts a considerable burden on the lecturer to construct tasks from which students actually learn

Groves and Doig (2002)insufficient attention is being paid to the critical role of the development of conceptually focussed, robust tasks which can be used to support the development of sophisticated mathematical thinking

16

Page 17: Threshold Concepts &  Mathematics Task Design

Focus on TasksTypes of tasks affect learningBoesen et al (2010)oFamiliar tasks -> imitative reasoning, little or no conceptual understanding

oUnfamiliar tasks -> creative mathematically founded reasoning

Tasks should mirror practices of mathematicians (Dreyfus 1991; Cuoco et al 1996; Bass 2005)

17

Page 18: Threshold Concepts &  Mathematics Task Design

Task TypesPractices of mathematicians/mathematical

skills to develop in students:

Experimenting, inventing, creating, visualising, reasoning, conjecturing, generalising, using definitions and mathematical language, classifying objects, comparing, interpreting, evaluating statements, analysing reasoning.

18

Page 19: Threshold Concepts &  Mathematics Task Design

Task TypesTasks identified as appropriate for Irish

first year undergraduate Calculus students: ogenerating examplesoevaluating statementsoanalysing reasoningoconjecturingogeneralisingovisualisingousing definitions

19

Page 20: Threshold Concepts &  Mathematics Task Design

Sample Tasks

Example Generation: Give an example of a function with natural domain R\{2,4}.

Visualisation: Sketch a graph of a function, f, which satisfies all of the given conditions:f(0)=0, f(2)=6, f is even.

20

Page 21: Threshold Concepts &  Mathematics Task Design

Sample Tasks Conjecturing/Generalising:

Sketch the graphs of f1(x)=x3 and f2(x)=x3+4.

Sketch the graphs of g1(x)=1/x2 and g2(x)=1/x2+4.

Sketch the graphs of h1(x)=3x and h2(x)=3x+4.

What is the relationship between the functions in the pairs f1 and f2; g1 and g2; h1 and h2? Can you make a general conjecture regarding the graphs of functions from your observation of the graphs of these pairs?

21

Page 22: Threshold Concepts &  Mathematics Task Design

Sample TasksEvaluating Mathematical Statements:

Suppose f(x) is a function with natural domain R.Decide if each of the following statements is sometimes, always or never true:

(i) There are two different real numbers a and b such that f(a)=f(b).(ii) There are three different real numbers a, b, c such that f(a)=b and f(a)=c.

22

Page 23: Threshold Concepts &  Mathematics Task Design

Feedback from Students

Student E But you really have to think more about things and understand the concepts and the different - ahm - possible solutions that may be there and why one solution isn't going to work……That would be more to cement the whole concept, why it works this way and - you know to cement that into your mind.

23

Page 24: Threshold Concepts &  Mathematics Task Design

Feedback from StudentsStudent P

The conceptual ones [tasks] really get you thinking…the conceptual ones ah helped you to learn the topic better, because you really know why it works not just how it works

Student AYou’re kind of bringing together what you know from other things….you kind of actually are more thinking yourself.

24

Page 25: Threshold Concepts &  Mathematics Task Design

Concluding Remarks

25

Importance of identifying Threshold ConceptsChallenge of constructing effective tasks and

activities for students to engage with conceptsSuggestions made as to the types of tasks

suitable for first year undergraduate Calculus students

Key component of successful understanding of functions involves the ability to move flexibly between different characterisations of functions

Page 26: Threshold Concepts &  Mathematics Task Design

Concluding RemarksThurston (1990)

Mathematics is amazingly compressible: you may struggle a long time, step by step, work through some process or idea from several approaches. But once you understand it and have the mental perspective to see it as a whole, there is often a tremendous mental compression. You can file it away, recall it, quickly and completely when you need it, and use it as just one step in some other mental process. The insight that goes with this compression is one of the real joys of mathematics.

26

Page 27: Threshold Concepts &  Mathematics Task Design

ReferencesBass, H., 2005. Mathematics, mathematicians and mathematics education. Bulletin of the American Mathematical Society, 42, pp.417-430.

Boesen, J., Lithner, J, and Palm, T., 2010. The relation between types of assessment tasks and the mathematical reasoning students use. Educational Studies in Mathematics, 75, pp.89-105.

Cousin, G. 2006 An introduction to threshold concepts. Planet 17. Available online at http://www.gees.ac.uk/planet/p17/gc.pdf last accessed 20 June 2012.

Cuoco, A., Goldenberg, E.P. and Mark, J., 1996. Habits of mind: an organising principle for mathematics curricula. Journal of Mathematical Behaviour, 15, pp.375-402.

Dreyfus, T., 1991. Advanced mathematical thinking processes. In: D. Tall ed., Advanced Mathematical Thinking. Dordrecht: Kluwer Academic Publishers. pp.25-41.

Dubinsky, E. and McDonald, M.A., 2001. In: D. Holton ed., The Teaching and Learning of Mathematics at University Level. Dordrecht: Kluwer Academic Publishers, pp.275-282.

Gray, E. and Tall, D., 1994. Duality, ambiguity and flexibility: A “proceptual” view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), pp.116-140.

Groves, S. and Doig, B., 2002. Developing conceptual understanding: The role of the task in communities of mathematical inquiry, PME26.

27

Page 28: Threshold Concepts &  Mathematics Task Design

ReferencesHillel, J., 2001. Trends in curriculum: A working group report. In: D. Holton ed., The Teaching and Learning of Mathematics at University Level. Dordrecht: Kluwer Academic Publishers, pp.59-70.

Land, R., Cousin, G., Meyer, J.H.F. & Davies, P., 2005. Threshold concepts and troublesome knowledge (3): implications for course design & evaluation. In: C. Rust ed., Improving student learning diversity and inclusivity. Oxford: Centre for Staff and Learning Development. Available from http://www.ee.ucl.ac.uk/~mflanaga/ISL04-pp53-64-Land-et-al.pdf [Accessed 20 June 2012].

Mason, J., 2002. Mathematics teaching practice: a guide for university and college lecturers. Chichester: Horwood Publishing Ltd.

Mason, J., & Johnston-Wilder, S., 2004. Designing and using mathematical tasks. St Alban’s: Tarquin Press.

Meyer, J.H.F. and Land, R., 2003. Threshold concepts and troublesome knowledge: linkages to ways of thinking and practicing. Edinburgh: ETL Project (Occasional Report 4). Available from: http://www.etl.tla.ed.ac.uk/docs/ETLreport4.pdf [Accessed 20 June 2012].

Pettersson, K., 2012. The Threshold Concept of a Function - A Case Studyof a Student’s Development of Her Understanding. Sweden: MADIF-8. Available from:

28

Page 29: Threshold Concepts &  Mathematics Task Design

Referenceshttp://www.mai.liu.se/SMDF/madif8/Pettersson.pdf [Accessed 20 June 2012].

Sangwin, C., 2003. New opportunities for encouraging higher level mathematical learning by creative use of emerging computer assessment. International Journal of Mathematical Education in Science and Technology, 34(6), pp.813-829.

Selden, A, Selden, J., Hauk, S. and Mason, A., 2000. Why can’t calculus students access their knowledge to solve non-routine problems? In E. Dubinsky, A. H. Schoenfeld and J. Kaput eds., Research in collegiate mathematics educations IV. Providence, RI: American Mathematical Society, pp.128-153.

Sfard, A., 1991. On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, pp.1-36.

Swan, M., 2008. Designing a multiple representation learning experience in secondary algebra. Educational Designer, 1(1), pp.1-17.

Thurston, W., 1990. Mathematical Education. Notices of the American Mathematical Society, 37, pp.844-850.

Vinner, S., 1983. Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14, pp.293-305.29