Three Neutrino Oscillations

39

description

Three Neutrino Oscillations. Neutrino Mixing. Weak eigenstate. Mass eigenstate. small. m 3. n 3. m 2. n 2. CP phase. m 1. n 1. Solar KamLAND. Atmospheric LBL. LBL (future) Reactor. factory. L. Wolfenstein. Tri/bimaximal Mixing. P. F. Harrison D. H. Perkins W. G. Scott - PowerPoint PPT Presentation

Transcript of Three Neutrino Oscillations

Page 1: Three Neutrino Oscillations
Page 2: Three Neutrino Oscillations

Three Neutrino OscillationsThree Neutrino Oscillations

13 13 12 12

23 23 12 12

23 23 13 13

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

i

MNSi

e

U

e

small

i iU Masseigenstate

Weak eigenstate

m1

m2

m3 3

2

1

Neutrino Mixing

LBL (future)Reactor

SolarKamLAND

AtmosphericLBL

CP phase

factory

Page 3: Three Neutrino Oscillations
Page 4: Three Neutrino Oscillations
Page 5: Three Neutrino Oscillations
Page 6: Three Neutrino Oscillations
Page 7: Three Neutrino Oscillations

P. F. HarrisonD. H. PerkinsW. G. ScottS.Chang,SK.,S.Kim

Utbm = U23(/4)U12

Utbm = U23(/4)U12

- maximal 2-3 mixing- zero 1-3 mixing- no CP-violation

Utbm = 2/3 1/3 0- 1/6 1/3 1/2 1/6 - 1/3 1/2

2is tri-maximally mixed

3 is bi-maximally mixed

L. WolfensteinTri/bimaximal Mixing

Page 8: Three Neutrino Oscillations
Page 9: Three Neutrino Oscillations
Page 10: Three Neutrino Oscillations
Page 11: Three Neutrino Oscillations
Page 12: Three Neutrino Oscillations

Baryogenesis via LeptogenesisBaryogenesis via Leptogenesis

Page 13: Three Neutrino Oscillations

IntroductionIntroduction

• Why do we exist ? matter antimatter asymmetry

• What created this tiny excess matter? Baryogenesis

CMB 10B BB

n n(6.3 0.3) 10

n

B number non-conservation CP violation Non-equilibrium

Page 14: Three Neutrino Oscillations

Models of Baryogenesis

Baryogenesis at the Electroweak Phase Transition: (Kuzmin, Rubakov, Shaposhinikov PLB155(1985))

GUT Baryogenesis through the decay of a heavy particle: (Yoshimura, PRL41 (1978), Dimopoulos, Suskind, PRD18(1978)

Baryogenesis via Leptogenesis (Fukugida, Yanagida, PLB174 (1986) )

Page 15: Three Neutrino Oscillations

• Sakharov’s conditions– B violation EW anomaly– CP violation KM phase– Non-equilibrium 1st order phase trans.

Standard Model may satisfy all 3 conditions!

Electroweak Baryogenesis (Kuzmin, Rubakov, Shaposhnikov)

• Two big problems in the Standard Model– 1st order phase transition requires mH<60GeV– CP violation too small because

J det[Yu†Yu, Yd

†Yd] ~ 10–20 << 10–10

Baryogenesis in Standard ModelBaryogenesis in Standard Model

Page 16: Three Neutrino Oscillations

• GUT necessarily breaks B. • A GUT-scale particle X decays out-of-equilibrium

with direct CP violation

• Now direct CP violation observed: ’ !!!

• But keeps B–L0 “anomaly washout”• Also monopole problem

B(X q) B(X q)

Original GUT Baryogenesis Original GUT Baryogenesis

B(K 0 ) B(K 0 )

Page 17: Three Neutrino Oscillations

One of the most attractive possibilities for baryogenesis Well motivated due to neutrino oscillation Realized in the framework of seesaw mechanism Asymmetry is generated via decay of RH neutrinos

LeptogenesisLeptogenesis

• Seesaw Mechanism

1 01( ) . .

2D LT T

mass L RD R

mL N C c c

m M N

Yanagida,Gell-MannSlansky,Ramond,

2 / ~D R Lm M

~RN M

Page 18: Three Neutrino Oscillations

• You generate Lepton Asymmetry first

from the direct CP violation in NR decay

• L gets converted to B via EW anomaly

More matter than anti-matter We have survived “The Great Annihilation”

(complex matrices mD and M natural CPV source)

Page 19: Three Neutrino Oscillations

Interference between tree level and (vertex+self energy) 1-loop diagrams:

2 22 i i

1 D D i1 V S2 2 2i 2,3D D 11 1 1

M M1Im[(m m ) ] f f

8 v (m m ) M M

1 11

1 1

( ) ( )

( ) ( )

c

c

N L N L

N L N L

CP Asymmetry

Ingredients of LeptogenesisIngredients of Leptogenesis

Page 20: Three Neutrino Oscillations

The efficiency factor (due to washout)

1

*

LL

n

s g

if N1 decay out-of-equilibrium

In equilibrium

1

1

Out-of-equilibrium condition

1 1( )N NH T M

slow lepton number violating processes

Page 21: Three Neutrino Oscillations

Conversion L into B via Sphaleron process

conversion factor : 28

79B L

311.38 10B

processes which can put N1 in thermal eq. : inverse decay process scattering

1,2L

In practice, to calculate the efficiency factor we need to solve Boltzmann eq.

(Bari ‘04)

Page 22: Three Neutrino Oscillations

(Davidson & Ibarra ’02, Buchmuller et al.’02)

1

3 1

2

1 2

3

8atm

N

mM

v m m

for fully herarchical neutrinos 3 2 1

m m m

CMB8 1B

1 10 2atm

0.05eVM 6.4 10 GeV

6 10 m

101M (1.5 10) 10 GeV

Lower Bound on Lightest Heavy Neutrino Mass

Lower Bound on Lightest Heavy Neutrino Mass

Assuming very hierarchical Mi

Assuming very hierarchical Mi

2 22 i i

1 D D i1 V S2 2 2i 2,3D D 11 1 1

M M1Im[(m m ) ] f f

8 v (m m ) M M

Page 23: Three Neutrino Oscillations

1

1

3 1 2,3

22

1 2 2

3

8Natm

NN

MmM d

v m m M

can be large : not small for large not zero for

(ex)

compatible with successful leptogenesis for special configuration of Yukawa matrix

(Hambye et al ‘04, Raidal, Strumia, Turzynski ‘04)

im

1 2 3m m m

3 1

6~ 0.5 eV or ~10 GeVNm M

For hierarchy For hierarchy 2,3 1

10 100N NM M

Page 24: Three Neutrino Oscillations

If , resonant effects can enhance

Resonant condition :

1 2N NM M1

Resonant LeptogenesisResonant Leptogenesis (Pilaftsis)

Quasi-degenerate case : Quasi-degenerate case : 1 2N NM M

Page 25: Three Neutrino Oscillations

• No more lower limit on for successful leptogenesis possible TeV scale leptogenesis

• Much larger upper limit on light neutrino masses (Hambye, Lin, Notari, Papucci, Strumia’ 04.)

For bound on

A degeneracy allows already successful Leptogenesis with

2 1 1

2( ) / 4 10N N NM M M

31eVm

iNM

3m

Page 26: Three Neutrino Oscillations

I IILL LLm m m 2 1I T

LL Rm v Y M Y where

1

* *1 1

,1 2 2

1

Im[( ) ( ) ( ) ]3

16 | ( ) |

I IIf g LL LL fg

N f g

gh

Y Y m mM

v Y

1

1 max2

3| |

16NM

mv

Bound on asymmetry and M

1

2

2max

/16

3 0.97 10B

N

n svM

m

(Antusch, King,E.J.Chun et al. )

Type II leptogenesisType II leptogenesis

Page 27: Three Neutrino Oscillations
Page 28: Three Neutrino Oscillations

Pastor (Moriond05)

Page 29: Three Neutrino Oscillations

Is the mechanism directly testable ? may be impossible if M is very large

Can we probe any effects of leptogenesis at low energy experiments?

Connection between Leptogenesis and Low E CP violation

QuestionsQuestions

Page 30: Three Neutrino Oscillations

• Neutrino Mixing parametrized by UMNS

UPMNS Dirac Phase

Majorana phases

source of CPV : complex Yukawa couplings concerned with both phases

Leptogenesis

Dirac Phase : CP violationmeasurable in neutrino oscillations

13 13 12 12

23 23 12 12

23 23 13 13

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

i

MNSi

e

U P

e

Majorana Phase :Neutrinoless double beta decay

CP violation in neutrino sectors

CP violation in neutrino sectors

4 ( ) ( ) ( )J P P

Page 31: Three Neutrino Oscillations

• Minimal seesaw model : contains two generations of RH neutrino (Frampton, Glashow, Yanagida, ‘02 : Endoh, Kang, Kaneko, Morozumi, Tanimoto, ‘02)

Observable in low energy phenomenology? May be, in some models

CP violation in Early Universe :

CP violation in Early Universe :

Page 32: Three Neutrino Oscillations

• In minimal seesaw with 2 heavy Majorana neutrinos

mD contains 3 phases

1( )

1,2

( 1 3; )2

cLi Dij Rj Rj j RjL m N N M N

ji

4 ( , ) ( ) ( ) J P P

21 12 11Im[( ) ] /( )D D D Dm m m m

Existence of a correlationbetween

1J &

(Endo,Kaneko,Kang,Morozumi,Tanimoto) PRL89(2002)

Connection between low energy CP violation and leptogenesis

Connection between low energy CP violation and leptogenesis

Page 33: Three Neutrino Oscillations

(Grimus and Lavoura ‘04, Mohapatra, Nasri, Yu ’05, Ahn, Kang, Kim, Lee.)

• Maximal atmospheric neutrino mixing• Vanishing 13

can be realized in some models with discrete neutrino flavor symmetry

Warrant Search for models with these features enforced by symmetry

13 459,45,13 atmsol

Models of maximal atmospheric mixing and leptogenesis

Models of maximal atmospheric mixing and leptogenesis

Page 34: Three Neutrino Oscillations

Angles :

Phases: no CKM phase 2 Majorana phases

23

13

12

45

0

(arbitrary)

1 2 1 3( ),( )

non-physical

mu-tau symmetryZ2 , D4 symmetry

Page 35: Three Neutrino Oscillations

leptogenesis

2 2 21 2sin[2( )](| | | | )Bn

b as

(Grimus and Lavoura ’04)

Page 36: Three Neutrino Oscillations

Soft breaking of the discrete symmetries

generating non-vanishing deviation of from maximal mixing

1323

a b b a b b

M b c d or b c d

b d c b d c

13 | | | |b b or c c

(Mohapatra, Nasri, Yu ’05)

Page 37: Three Neutrino Oscillations

*

*

a b b

M b c d

b d c

*13 1, Im( )b

Alternatively,

( Ahn, Kang, Kim, Lee )

Page 38: Three Neutrino Oscillations

Leptogenesis in SUSY• Gravitino problem BBN constraints on the abundance of gravitino for 0.1 ~ 1 TeV yield the bound (Kawasaki et al.’04)

incompatible with bound from leptogenesis !!

• To avoid gravitino problem: Non-thermal leptogenesis

(Giudice et al. Asaka , Kawasaki et al.)

Heavy gravitino scenarioanomaly mediation (Ibe et al.’04)

Gravitino LSP scenario

• Alternatives to avoid :• Soft Leptogenesis : using soft breaking terms as source

of L-violations which do not lead to seesaw neutrino masses

(Grossman et al., D’ambrosio et al., Boubekeur et al., Allahverdi et al., E.J.Chun)

• Resonant Leptogenesis (Pilaftsis)

L-asymmetry is resonantly enhanced through the mixing of nearly degenerate heavy Majorana neutrinos (~TeV)

• Various models for Low Scale Leptogenesis

6 9RT (10 10 )GeV

Page 39: Three Neutrino Oscillations

Massive neutrinos may be responsible for our existence Leptogenesis

We have studied some neutrino mass constraints arisen from leptogenesis.

There may exist some correlation between leptogenesis and low energy neutrino observables.