Thomas' calculus 11º edición [solucionario]

441
CHAPTER 10 CONIC SECTIONS AND POLAR COORDINATES 10.1 CONIC SECTIONS AND QUADRATIC EQUATIONS 1. x 4p 8 p 2; focus is (2 0), directrix is x 2 œ Ê œ Ê œ ß œ y 8 2. x 4p 4 p 1; focus is ( 1 0), directrix is x 1 œ Ê œ Ê œ ß œ y 4 3. y 4p 6 p ; focus is , directrix is y œ Ê œ Ê œ œ x 3 3 3 6 # # # ˆ 4. y 4p 2 p ; focus is , directrix is y œ Ê œ Ê œ œ x 1 1 1 2 # # # ˆ 5. 1 c 4 9 13 foci are 13 ; vertices are 2 0 ; asymptotes are y x x 3 4 9 y œ Ê œ œ Ê ß! ß œ„ È È È Š a b # 6. 1 c 9 4 5 foci are 0 5 ; vertices are 0 3 x 4 9 y œ Ê œ œ Ê ß„ ß„ È È È Š a b 7. y 1 c 2 1 1 foci are 1 0 ; vertices are 2 x 2 œ Ê œ œ Ê ß ß! # È È a b Š 8. x 1 c 4 1 5 foci are 0 5 ; vertices are 2 ; asymptotes are y 2x y 4 œ Ê œ œ Ê ß„ !ß „ œ„ # È È È Š a b 9. y 12x x 4p 12 p 3; 10. x 6y y 4p 6 p ; # # # # œ Ê œ Ê œ Ê œ œ Ê œ Ê œ Ê œ y 1 6 x 3 focus is ( ), directrix is x 3 focus is , directrix is y $ß ! œ œ ˆ 3 3 # # 11. x 8y y 4p 8 p 2; 12. y 2x x 4p 2 p ; # # # # " œ Ê œ Ê œ Ê œ œ Ê œ Ê œ Ê œ x 8 y focus is ( 2), directrix is y 2 focus is , directrix is x œ ß! œ ˆ " " # #

Transcript of Thomas' calculus 11º edición [solucionario]

  • CHAPTER 10 CONIC SECTIONS AND POLAR COORDINATES

    10.1 CONIC SECTIONS AND QUADRATIC EQUATIONS

    1. x 4p 8 p 2; focus is (2 0), directrix is x 2 y8#

    2. x 4p 4 p 1; focus is ( 1 0), directrix is x 1 y4#

    3. y 4p 6 p ; focus is , directrix is y ! x 3 3 36#

    # # #

    4. y 4p 2 p ; focus is , directrix is y ! x 1 1 12#

    # # #

    5. 1 c 4 9 13 foci are 13 ; vertices are 2 0 ; asymptotes are y xx 34 9y# #

    ! a b#

    6. 1 c 9 4 5 foci are 0 5 ; vertices are 0 3x4 9y# #

    a b

    7. y 1 c 2 1 1 foci are 1 0 ; vertices are 2x2#

    !# a b

    8. x 1 c 4 1 5 foci are 0 5 ; vertices are 2 ; asymptotes are y 2xy4#

    ! # a b

    9. y 12x x 4p 12 p 3; 10. x 6y y 4p 6 p ;# ## #

    y1 6

    x 3# #

    focus is ( ), directrix is x 3 focus is , directrix is y$ ! ! 3 3# #

    11. x 8y y 4p 8 p 2; 12. y 2x x 4p 2 p ;# # # #

    " x8y# #

    focus is ( 2), directrix is y 2 focus is , directrix is x! ! " "# #

  • 620 Chapter 10 Conic Sections and Polar Coordinates

    13. y 4x y 4p p ; 14. y 8x y 4p p ; # #" " " "x x4 16 8 32# #

    " " 4 8

    focus is , directrix is y focus is , directrix is y ! ! " " " "#16 16 32 3

    15. x 3y x 4p p ; 16. x 2y x 4p p ; # #" " " "# #

    y y3 1 8

    # #

    " "

    #

    3

    focus is , directrix is x focus is , directrix is x ! ! " " " "# #1 1 8 8

    17. 16x 25y 400 1 18. 7x 16y 112 1# # # ##

    x x5 16 16 7y y# ## #

    c a b 25 16 3 c a b 16 7 3 # # # #

    19. 2x y 2 x 1 20. 2x y 4 1# # # # ## #

    y yx

    4

    # ##

    c a b 2 1 1 c a b 4 2 2 # # # #

  • Section 10.1 Conic Sections and Quadratic Equations 621

    21. 3x 2y 6 1 22. 9x 10y 90 1# # # ##

    x xy y3 10 9

    # ## #

    c a b 3 2 1 c a b 10 9 1 # # # #

    23. 6x 9y 54 1 24. 169x 25y 4225 1# # # # x x9 6 25 169y y# ## #

    c a b 9 6 3 c a b 169 25 12 # # # #

    25. Foci: 2 , Vertices: 2 0 a 2, c 2 b a c 4 2 2 1 a b ! # # ##

    #

    x4

    y# #

    26. Foci: 4 , Vertices: 0 5 a 5, c 4 b 25 16 9 1a b a b! ##

    x9 5

    y# #

    27. x y 1 c a b 1 1 2 ; 28. 9x 16y 144 1# # # ## # x16 9y# #

    asymptotes are y x c a b 16 9 5; # # asymptotes are y x 34

  • 622 Chapter 10 Conic Sections and Polar Coordinates

    29. y x 8 1 c a b 30. y x 4 1 c a b# # # ## # # # y y8 8 4 4x x# ## #

    8 8 4; asymptotes are y x 4 4 2 2; asymptotes are y x

    31. 8x 2y 16 1 c a b 32. y 3x 3 x 1 c a b# # # # ##

    # # # # xy y8 3

    # # # 2 8 10 ; asymptotes are y 2x 3 1 2; asymptotes are y 3x

    33. 8y 2x 16 1 c a b 34. 64x 36y 2304 1 c a b# # # ##

    # # # # y yx x

    8 36 64

    # ## # 2 8 10 ; asymptotes are y 36 64 10; asymptotes are y x 43#

    35. Foci: 2 , Asymptotes: y x c 2 and 1 a b c a b 2a 2 2a ! ab # # # # # a 1 b 1 y x 1 # #

    36. Foci: 2 , Asymptotes: y x c 2 and b c a b aa b ! " " # # # # 3 3 3b a a 4aa 3 3# #

    4 a 3 a 3 b 1 y 1 4a x3 3# #

    # #

    37. Vertices: 3 0 , Asymptotes: y x a 3 and b (3) 4 1a b 4 b 4 4 x3 a 3 3 9 16y# #

    38. Vertices: 2 , Asymptotes: y x a 2 and b 2(2) 4 1a b! 1 a 1 x2 b 2 4 16y# #

  • Section 10.1 Conic Sections and Quadratic Equations 623

    39. (a) y 8x 4p 8 p 2 directrix is x 2,# focus is ( ), and vertex is ( 0); therefore the new# ! !

    directrix is x 1, the new focus is (3 2), and the new vertex is (1 2)

    40. (a) x 4y 4p 4 p 1 directrix is y 1,# focus is ( 1), and vertex is ( 0); therefore the new! !

    directrix is y 4, the new focus is ( 1 2), and the new vertex is ( 1 3)

    41. (a) 1 center is ( 0), vertices are ( 4 0)x16 9y# #

    !

    and ( ); c a b 7 foci are 7 0% ! # # and 7 ; therefore the new center is ( ), the ! % $ new vertices are ( 3) and (8 3), and the new foci are!

    4 7 $

    42. (a) 1 center is ( 0), vertices are (0 5)x9 25y# #

    !

    and (0 5); c a b 16 4 foci are # # ( 4) and ( 4) ; therefore the new center is ( 3 2),! !

    the new vertices are ( 3 3) and ( 3 7), and the new foci are ( 3 2) and ( 3 6)

    43. (a) 1 center is ( 0), vertices are ( 4 0)x16 9y# #

    !

    and (4 0), and the asymptotes are or x4 3y

    y ; c a b 25 5 foci are 3x4 # #

    ( 5 0) and (5 0) ; therefore the new center is (2 0), the new vertices are ( 2 0) and (6 0), the new foci are ( 3 0) and (7 0), and the new asymptotes are

    y 3(x 2)4

  • 624 Chapter 10 Conic Sections and Polar Coordinates

    44. (a) 1 center is ( 0), vertices are (0 2)y4 5x# # !

    and (0 2), and the asymptotes are or y2x

    5

    y ; c a b 9 3 foci are 2x5

    # # (0 3) and (0 3) ; therefore the new center is (0 2), the new vertices are (0 4) and (0 0), the new foci are (0 1) and (0 5), and the new asymptotes are

    y 2 2x5

    45. y 4x 4p 4 p 1 focus is ( 0), directrix is x 1, and vertex is (0 0); therefore the new# "

    vertex is ( 2 3), the new focus is ( 1 3), and the new directrix is x 3; the new equation is (y 3) 4(x 2) #

    46. y 12x 4p 12 p 3 focus is ( 3 0), directrix is x 3, and vertex is (0 0); therefore the new# vertex is (4 3), the new focus is (1 3), and the new directrix is x 7; the new equation is (y 3) 12(x 4) #

    47. x 8y 4p 8 p 2 focus is (0 2), directrix is y 2, and vertex is (0 0); therefore the new# vertex is (1 7), the new focus is (1 5), and the new directrix is y 9; the new equation is (x 1) 8(y 7) #

    48. x 6y 4p 6 p focus is , directrix is y , and vertex is (0 0); therefore the new# # # # ! 3 3 3

    vertex is ( 3 2), the new focus is 3 , and the new directrix is y ; the new equation is "# #7 (x 3) 6(y 2) #

    49. 1 center is ( 0), vertices are (0 3) and ( 3); c a b 9 6 3 foci are 3x6 9y# #

    ! ! ! # # and 3 ; therefore the new center is ( 1), the new vertices are ( 2 2) and ( 4), and the new foci ! # # are 1 3 ; the new equation is 1 # (x 2) (y 1)6 9 # #

    50. y 1 center is ( 0), vertices are 2 and 2 ; c a b 2 1 1 foci arex2#

    ! ! ! # # # ( 1 0) and ( ); therefore the new center is (3 4), the new vertices are 3 2 4 , and the new foci " ! are (2 4) and (4 4); the new equation is (y 4) 1 (x 3)#

    ##

    51. 1 center is ( 0), vertices are 3 and 3 ; c a b 3 2 1 foci arex3y# #

    ! ! ! ## #

    ( 1 0) and ( ); therefore the new center is (2 3), the new vertices are 2 3 3 , and the new foci " ! are (1 3) and (3 3); the new equation is 1 (x 2) (y 3)3

    #

    # #

    52. 1 center is ( 0), vertices are ( ) and ( 5); c a b 25 16 3 foci arex16 5y# #

    ! ! & ! ## #

    (0 3) and (0 3); therefore the new center is ( 4 5), the new vertices are ( 4 0) and ( 4 10), and the new

    foci are ( 4 2) and ( 4 8); the new equation is 1 (x 4) (y 5)16 5

    #

    # #

    53. 1 center is ( 0), vertices are (2 0) and ( 2 0); c a b 4 5 3 foci are ( ) andx4 5y# #

    ! $ ! # # ( 3 0); the asymptotes are y ; therefore the new center is (2 2), the new vertices are x y

    55x

    # #

    (4 2) and (0 2), and the new foci are (5 2) and ( 1 2); the new asymptotes are y 2 ; the new 5 (x 2)

    #

  • Section 10.1 Conic Sections and Quadratic Equations 625

    equation is 1(x 2) (y 2)4 5 # #

    54. 1 center is ( 0), vertices are (4 0) and ( 4 0); c a b 16 9 5 foci are ( 5 )x16 9y# #

    ! ! # # and (5 0); the asymptotes are y ; therefore the new center is ( 5 1), the new vertices are x 3x4 3 4

    y

    ( 1 1) and ( 9 1), and the new foci are ( 10 1) and (0 1); the new asymptotes are y 1 ; 3(x 5)4

    the new equation is 1(x 5) (y 1)16 9 # #

    55. y x 1 center is ( 0), vertices are (0 1) and (0 1); c a b 1 1 2 foci are# # # # ! 2 ; the asymptotes are y x; therefore the new center is ( 1 1), the new vertices are ( 1 0) and ! ( 1 2), and the new foci are 1 1 2 ; the new asymptotes are y 1 (x 1); the new equation is (y 1) (x 1) 1 # #

    56. x 1 center is ( 0), vertices are 0 3 and 3 ; c a b 3 1 2 foci are ( )y3#

    ! ! ! ## # # and ( 2); the asymptotes are x y 3x; therefore the new center is (1 3), the new vertices! y

    3

    are 3 , and the new foci are ( ) and (1 1); the new asymptotes are y 3 3 (x 1); the new " $ " & equation is (x 1) 1(y 3)3

    ##

    57. x 4x y 12 x 4x 4 y 12 4 (x 2) y 16; this is a circle: center at# # # # # # C( 2 0), a 4

    58. 2x 2y 28x 12y 114 0 x 14x 49 y 6y 9 57 49 9 (x 7) (y 3) 1;# # # # # # this is a circle: center at C(7 3), a 1

    59. x 2x 4y 3 0 x 2x 1 4y 3 1 (x 1) 4(y 1); this is a parabola:# # # V( 1 1), F( 1 0)

    60. y 4y 8x 12 0 y 4y 4 8x 12 4 (y 2) 8(x 2); this is a parabola:# # # V( 2), F( )# ! #

    61. x 5y 4x 1 x 4x 4 5y 5 (x 2) 5y 5 y 1; this is an ellipse: the# # # # # # # (x 2)5#

    center is ( 2 0), the vertices are 2 5 0 ; c a b 5 1 2 the foci are ( 4 0) and ( 0) ! # #62. 9x 6y 36y 0 9x 6 y 6y 9 54 9x 6(y 3) 54 1; this is an ellipse:# # # # # # a b x6 9(y 3)# # the center is (0 3), the vertices are ( 0) and ( 6); c a b 9 6 3 the foci are ! ! # # 0 3 3 63. x 2y 2x 4y 1 x 2x 1 2 y 2y 1 2 (x 1) 2(y 1) 2# # # # # # a b (y 1) 1; this is an ellipse: the center is (1 1), the vertices are 2 ; " "(x 1)2

    ##

    c a b 2 1 1 the foci are (2 1) and (0 1) # #64. 4x y 8x 2y 1 4 x 2x 1 y 2y 1 4 4(x 1) (y 1) 4# # # # # # a b (x 1) 1; this is an ellipse: the center is ( 1 1), the vertices are ( 1 3) and # (y 1)4

    #

  • 626 Chapter 10 Conic Sections and Polar Coordinates

    ( 1 1); c a b 4 1 3 the foci are 1 3 " # #65. x y 2x 4y 4 x 2x 1 y 4y 4 1 (x 1) (y 2) 1; this is a hyperbola:# # # # # # a b the center is (1 2), the vertices are (2 2) and ( 2); c a b 1 1 2 the foci are 1 2 ; ! # # # the asymptotes are y 2 (x 1)

    66. x y 4x 6y 6 x 4x 4 y 6y 9 1 (x 2) (y 3) 1; this is a hyperbola:# # # # # # a b the center is ( 2 3), the vertices are ( 1 3) and ( 3 3); c a b 1 1 2 the foci are # # 2 2 3 ; the asymptotes are y 3 (x 2) 67. 2x y 6y 3 2x y 6y 9 6 1; this is a hyperbola: the center is ( ),# # # # ! $a b (y 3)6 3x# # the vertices are 3 6 ; c a b 6 3 3 the foci are (0 6) and ( 0); the asymptotes are ! !# # y 2x 3y 3

    6 3x

    68. y 4x 16x 24 y 4 x 4x 4 8 1; this is a hyperbola: the center is (2 0),# # # # a b y (x 2)8 2# # the vertices are 2 8 ; c a b 8 2 10 the foci are 2 10 ; the asymptotes are # # y 2(x 2)y

    8x 2

    2

    69. 70.

    71. 72.

  • Section 10.1 Conic Sections and Quadratic Equations 627

    73. 74. x y 1 1 x y 1 1 x y andk k# # # # # # x y 1 1 y x and x y 1# # # # # #

    75. Volume of the Parabolic Solid: V 2 x h x dx 2 h x dx 2 h" #!

    ' '0 0

    b 2 b 2 b 2

    1 1 1 4h 4x x xb b 2 b# # #$ # % ; Volume of the Cone: V h h ; therefore V V 1 1hb b b hb 38 3 3 4 12

    # # #

    # " #" "

    # #

    #1 1

    76. y x dx C C; y 0 when x 0 0 C C 0; therefore y is the ' w w x wx wxH H 2H 2H 2Hw(0) # # ###

    equation of the cable's curve

    77. A general equation of the circle is x y ax by c 0, so we will substitute the three given points into# #

    this equation and solve the resulting system: c and a b ; therefore a c 1 b c 1

    2a 2b c 8

    4 73 3

    3x 3y 7x 7y 4 0 represents the circle# #

    78. A general equation of the circle is x y ax by c 0, so we will substitute each of the three given points# #

    into this equation and solve the resulting system: a 2, b 2, and c 23; 2a 3b c 13 3a 2b c 13

    4a 3b c 25

    therefore x y 2x 2y 23 0 represents the circle# #

    79. r ( 2 1) (1 3) 13 (x 2) (y 1) 13 is an equation of the circle; the distance from the# # # # #

    center to (1.1 2.8) is ( 1.1) (1 2.8) 12.85 13 , the radius the point is inside the circle # # #80. (x 2) (y 1) 5 2(x 2) 2(y 1) 0 ; y 0 (x 2) (0 1) 5 # # # #

    dy dydx dx y 1

    x 2

    (x 2) 4 x 4 or x 0 the circle crosses the x-axis at (4 0) and ( 0); x 0 ! #

    (0 2) (y 1) 5 (y 1) 1 y 2 or y 0 the circle crosses the y-axis at ( 2) and ( ). ! ! !# # #

    At (4 0): 2 the tangent line is y 2(x 4) or y 2x 8 dydx 0 14 2

    At ( ): 2 the tangent line is y 2x! ! dydx 0 10 2

    At ( ): 2 the tangent line is y 2 2x or y 2x 2! # dydx 2 10 2

  • 628 Chapter 10 Conic Sections and Polar Coordinates

    81. (a) y kx x ; the volume of the solid formed by# yk#

    revolving R about the y-axis is V dy" "#

    '0

    kx

    1 yk# y dy ; the volume of the right 1 1k 5

    x kx#

    #'0

    kx%

    circular cylinder formed by revolving PQ about the

    y-axis is V x kx the volume of the solid# # 1 formed by revolving R about the y-axis is#

    V V V . Therefore we can see the$ # " 4 x kx

    51 #

    ratio of V to V is 4:1.$ "

    (b) The volume of the solid formed by revolving R about the x-axis is V kt dt k t dt# "#

    ' '0 0

    x x

    1 1 . The volume of the right circular cylinder formed by revolving PS about the x-axis is 1kx

    #

    #

    V kx x kx the volume of the solid formed by revolving R about the x-axis is# "#

    # 1 1 V V V kx . Therefore the ratio of V to V is 1:1.$ # " $ "# # # 1

    1 1kx kx# #

    82. Let P ( p y ) be any point on x p, and let P(x y) be a point where a tangent intersects y 4px. Now" " #

    y 4px 2y 4p ; then the slope of a tangent line from P is # "

    dy dy 2p y y dy 2pdx dx y x ( p) dx y

    "

    y yy 2px 2p . Since x , we have y yy 2p 2p y yy y 2p # # # # # # #" " " "#y y4p 4p

    # # y yy 2p 0 y y y 4p . Therefore the slopes of the two "# #

    # #" "

    # #2y 4y 16p"# #"

    "

    tangents from P are m and m m m 1" " # " # 2p 2p 4p

    y y 4p y y 4p y y 4p" "# ## #

    #

    # # # a b" " " "

    the lines are perpendicular

    83. Let y 1 on the interval 0 x 2. The area of the inscribed rectangle is given by x4# A(x) 2x 2 1 4x 1 (since the length is 2x and the height is 2y) x x4 4# # A (x) 4 1 . Thus A (x) 0 4 1 0 4 1 x 0 x 2 w w # #

    x x x x x4 4 41 1# ## # ## # x x4 4

    x 2 (only the positive square root lies in the interval). Since A(0) A(2) 0 we have that A 2 4 is the maximum area when the length is 2 2 and the height is 2. 84. (a) Around the x-axis: 9x 4y 36 y 9 x y 9 x and we use the positive root# # # # # 9 94 4 V 2 9 x dx 2 9 x dx 2 9x x 24 ' '

    0 0

    2 2

    1 1 1 1 9 9 34 4 4# # # $ #! (b) Around the y-axis: 9x 4y 36 x 4 y x 4 y and we use the positive root# # # # # 4 49 9 V 2 4 y dy 2 4 y dy 2 4y y 16 ' '

    0 0

    3 3

    1 1 1 1 4 4 49 9 27# # # $ $!85. 9x 4y 36 y y x 4 on the interval 2 x 4 V x 4 dx# # # # #

    # ##

    9x 36 3 34# '

    2

    4

    1

    x 4 dx 4x 16 8 8 (56 24) 24 9 9 x 9 64 8 9 56 34 4 3 4 3 3 4 3 41 1 1 1 1'

    2

    4a b # %#

    $

    1

    86. x y 1 x 1 y on the interval 3 y 3 V 1 y dy 2 1 y dy# # # # ## #

    ' '3 0

    3 3

    1 1

    2 1 y dy 2 y 24 1 1 1'0

    3 a b # $!

    y3

    $

  • Section 10.1 Conic Sections and Quadratic Equations 629

    87. Let y 16 x on the interval 3 x 3. Since the plate is symmetric about the y-axis, x 0. For a 169 # vertical strip: x y x , length 16 x , width dx area dA 16 x dxa b 16 x 16 169 9# # #169 # mass dm dA 16 x dx. Moment of the strip about the x-axis: $ $ 169 # y dm 16 x dx 8 x dx so the moment of the plate about the x-axis is

    16 x 16 89 9

    ## #

    169

    # $ $ M y dm 8 x dx 8x x 32 ; also the mass of the plate isx 3

    3

    ' '

    $ $ $ 8 89 27# $ $$ M 16 x dx 4 1 x dx 4 3 1 u du where u 3 du dx; x 3 ' ' '

    3 3 1

    3 3 1

    $ $ $ 16 x9 3 3# #" # u 1 and x 3 u 1. Hence, 4 3 1 u du 12 1 u du $ $' '

    1 1

    1 1 # # 12 u 1 u sin u 6 y . Therefore the center of mass is . !$ 1$ " # " "

    "2 M 6 3 3M 32 16 16x $

    1$ 1 1

    88. y x 1 x 1 (2x) 1 1 a b # "# # "# # #dy dy dydx dx x 1 dx x 1x x xx 1 # ## # # S 2 y 1 dx 2 x 1 dx 2 2x 1 dx ; 2x 1 2x 1x 1 dx x 1dy# ## # # # #' ' '0 0 02 2 2 1 1 1 u 1 du u u 1 ln u u 1 2 5 ln 2 5

    u 2x

    du 2 dx 2 22 2 221 1 1 '0

    2# # #"

    #

    !

    89. (r r ) 0 r r C, a constant the points P(t) lie on a hyperbola with foci at Adr drdt dt dtdA B A B A B

    and B

    90. (a) tan m tan f (x ) where f(x) 4px ;" " L w ! f (x) (4px) (4p) f (x )w "# w"# !

    2p 2p4px 4px !

    tan . 2p 2py y! !"

    (b) tan m9 FPy 0 yx p x p! !

    ! !

    (c) tan ! tan tan 1 tan tan 9 "

    9 "

    yx p y

    2p

    yx p y

    2p

    !

    ! !

    !

    ! !

    1

    y 2p(x p)y (x p 2p) y (x p) y (x p) y4px 2px 2p 2p(x p) 2p#! !

    ! ! ! ! ! ! !

    ! ! !#

    91. PF will always equal PB because the string has constant length AB FP PA AP PB.

    92. (a) In the labeling of the accompanying figure we have tan t so the coordinates of A are (1 tan t). They1

    coordinates of P are therefore (1 r tan t). Since 1 y (OA) , we have 1 tan t (1 r)# # # # # #

    1 r 1 tan t sec t r sec t 1. # The coordinates of P are therefore (x y) (sec t tan t) x y sec t tan t 1 # # # #

  • 630 Chapter 10 Conic Sections and Polar Coordinates

    (b) In the labeling of the accompany figure the coordinates of A are (cos t sin t), the coordinates of C are (1 tan t), and the coordinates of P are (1 d tan t). By similar

    triangles, d OC dAB OA 1 cos t 11 tan t

    #

    d (1 cos t)(sec t) sec t 1. The coordinates of P are therefore (sec t tan t) and P moves on the hyperbola x y 1 as in part (a).# #

    93. x 4py and y p x 4p x 2p. Therefore the line y p cuts the parabola at points ( 2p p) and# # #

    (2p p), and these points are [2p ( 2p)] (p p) 4p units apart. # #

    94. lim x x a lim x x a lim x x x _ _ _ b b b ba a a a x x a x x ax x a # # # #

    # # # #

    # #

    lim lim 0 b b aa ax x a

    x x a x x ax x _ _ # # #

    # # # #

    #

    a b

    10.2 CLASSIFYING CONIC SECTIONS BY ECCENTRICITY

    1. 16x 25y 400 1 c a b# # ## # x5 16

    y# # 25 16 3 e ; F 3 0 ; a bc 3a 5 directrices are x 0 a 5 25e 3 3

    5

    2. 7x 16y 112 1 c a b# # # # x16 7y# #

    16 7 3 e ; F 3 0 ; a bc 3a 4 directrices are x 0 a 4 16e 3 3

    4

    3. 2x y 2 x 1 c a b# # # # # y2#

    2 1 1 e ; F 0 1 ; a bc 1a 2 directrices are y 0 2 ae

    2 1

    2

  • Section 10.2 Classifying Conic Sections by Eccentricity 631

    4. 2x y 4 1 c a b# # ## # x

    y4

    # # 4 2 2 e ; F 0 2 ; ca 22 directrices are y 0 2 2 a 2e 22

    5. 3x 2y 6 1 c a b# # ## # x

    y3

    # # 3 2 1 e ; F 0 1 ; a bc 1a 3 directrices are y 0 3 ae

    3 1

    3

    6. 9x 10y 90 1 c a b# # # # x10 9y# #

    10 9 1 e ; F 1 0 ; a bc 1a 10 directrices are x 0 10 ae

    10 1

    10

    7. 6x 9y 54 1 c a b# # # # x9 6y# #

    9 6 3 e ; F 3 0 ; ca 33 directrices are x 0 3 3 a 3e 33

  • 632 Chapter 10 Conic Sections and Polar Coordinates

    8. 169x 25y 4225 1 c a b# # # # x25 169y# #

    169 25 12 e ; F 0 12 ; a bc 12a 13 directrices are y 0 a 13 169e 12 12

    13

    9. Foci: 0 3 , e 0.5 c 3 and a 6 b 36 9 27 1a b c 3 xe 0.5 7 36y# ## #

    10. Foci: 8 0 , e 0.2 c 8 and a 40 b 1600 64 1536 1a b c 8 xe 0. 1600 1536y# # # #

    11. Vertices: 0 70 , e 0.1 a 70 and c ae 70(0.1) 7 b 4900 49 4851 1a b # x4851 4900y# #12. Vertices: 10 0 , e 0.24 a 10 and c ae 10(0.24) 2.4 b 100 5.76 94.24a b # 1 x100 94.24

    y# #

    13. Focus: 5 , Directrix: x c ae 5 and e ! 9 a 9 ae 9 9 55 5 5 5e e e 9

    5

    # #

    #

    e . Then PF PD x 5 (y 0) x x 5 y x

    5 5 5

    3 3 3 99 5 9

    5 5 # # ## #

    x 2 5 x 5 y x x x y 4 1 # # # # # 5 18 81 4 x9 5 9 9 45 y # #

    14. Focus: ( 0), Directrix: x c ae 4 and e e . Then% 16 a 16 ae 16 4 16 33 e 3 e 3 e 3 43

    # #

    ##

    PF PD (x 4) (y 0) x (x 4) y x x 8x 16 y 3 3 16 3 16

    3 4 3# ## # # # # ##

    x x x y 1 3 32 256 16 x4 3 9 4 3y # # #" # # 64 16

    3 3

    15. Focus: ( 0), Directrix: x 16 c ae 4 and 16 16 16 e e . Then% a ae 4 1e e e 4# ## "

    #

    PF PD (x 4) (y 0) x 16 (x 4) y (x 16) x 8x 16 y 1 1 14# ## # # # # # # k k

    x 32x 256 x y 48 1 1 3 x4 4 64 48ya b# # # # #

    16. Focus: 2 , Directrix: x 2 2 c ae 2 and 2 2 2 2 2 2 e ! a aee e e 2# # # "# e . Then PF PD x 2 (y 0) x 2 2 x 2 y 1 1 1

    2 2 2 # ## # x 2 2 x 2 2 x 2 y x 4 2 x 8 x y 2 1 " " "# # # #

    ## # # # # x4 y# #

  • Section 10.2 Classifying Conic Sections by Eccentricity 633

    17. e take c 4 and a 5; c a b 45# # #

    16 25 b b 9 b 3; therefore # #

    1x5 9y# #

    #

    18. The eccentricity e for Pluto is 0.25 e 0.25 ca 4"

    take c 1 and a 4; c a b 1 16 b # # # #

    b 15 b 15 ; therefore, 1 is a # x16 15y# # model of Pluto's orbit.

    19. One axis is from A( ) to B( 7) and is 6 units long; the" " "

    other axis is from C( ) to D( 1 4) and is 4 units long.$ %

    Therefore a 3, b 2 and the major axis is vertical. The center is the point C( 4) and the ellipse is given by"

    1; c a b 3 2 5(x 1) (y 4)4 9 # # # # #

    # #

    c 5 ; therefore the foci are F 1 4 5 , the eccentricity is e , and the directrices are ca 3

    5

    y 4 4 4 . a 3e 59 5

    53

    20. Using PF e PD, we have (x 4) y x 9 (x 4) y (x 9) x 8x 16 y k k# # # # # # #2 43 9 x 18x 81 x y 20 5x 9y 180 or 1. 4 5 x9 9 36 20

    ya b# # # # # # #

    21. The ellipse must pass through ( 0) c 0; the point ( 1 2) lies on the ellipse a 2b 8. The ellipse!

    is tangent to the x-axis its center is on the y-axis, so a 0 and b 4 the equation is 4x y 4y 0. # #

    Next, 4x y 4y 4 4 4x (y 24) 4 x 1 a 2 and b 1 (now using the# # # # # (y 2)4#

    standard symbols) c a b 4 1 3 c 3 e . # # ##

    ca

    3

    22. We first prove a result which we will use: let m , and" m be two nonparallel, nonperpendicular lines. Let be# ! the acute angle between the lines. Then tan .! m m1 m m

    " #

    " #

    To see this result, let be the angle of inclination of the)" line with slope m , and be the angle of inclination of the" #) line with slope m . Assume m m . Then and we# " # " # ) ) have . Then tan tan ( )! ) ) ! ) ) " # " # , since m tan and and tan tan m m1 tan tan 1 m m

    ) )

    ) )

    " # " #

    " # " #

    " ")

    m tan .# # )

  • 634 Chapter 10 Conic Sections and Polar Coordinates

    Now we prove the reflective property of ellipses (see the

    accompanying figure): If 1, thenxa by#

    # #

    #

    b x a y a b and y a x y .# # # # # # w# #

    b bxa a a x # #

    Let P(x y ) be any point on the ellipse! !

    y (x ) . Let F (c 0) and F ( c 0) w ! " #

    bx b x

    a a x a y! !

    # !#

    !

    #

    # be the foci. Then m and m . Let andPF PF

    y yx c x c" #

    ! !

    ! !

    !

    be the angles between the tangent line and PF and PF ," " # respectively. Then

    tan !

    b x y

    a y x c

    b x y

    a y (x c)

    #! !

    #! !

    #! !

    #! !

    1

    b x b x c a y b x c b x a ya y x a y c b x y a y c a b x y

    b x c# # # # # # # # # #! ! ! ! !! !# # # # # #

    ! ! ! ! ! ! ! !

    #a ba b a ba y c c x y cyb

    # #

    # #! ! ! !

    #

    .

    Similarly, tan . Since tan tan , and and are both less than 90, we have ." ! " ! " ! " bcy#

    !

    23. x y 1 c a b 1 1 2 e# # # # ca 2 ; asymptotes are y x; F 2 ; !

    21

    directrices are x 0 ae 2

    "

    24. 9x 16y 144 1 c a b# # # # x16 9y# #

    16 9 5 e ; asymptotes are c 5a 4 y x; F 5 ; directrices are x 0 ! 3 a4 ea b "65

    25. y x 8 1 c a b# # # # y8 8x# #

    8 8 4 e 2 ; asymptotes are c 4a 8 y x; F 0 4 ; directrices are y 0 a b ae 2

    82

  • Section 10.2 Classifying Conic Sections by Eccentricity 635

    26. y x 4 1 c a b# # # # y4 4x# #

    4 4 2 2 e 2 ; asymptotes ca 22 2 are y x; F 0 2 2 ; directrices are y 0 ae 2 2

    2

    27. 8x 2y 16 1 c a b# # # # x2 8y# #

    2 8 10 e 5 ; asymptotes ca 102 are y 2x; F 10 ; directrices are x 0 ! ae

    25 10

    2

    28. y 3x 3 x 1 c a b# # # # # y3#

    3 1 2 e ; asymptotes are c 2a 3 y 3 x; F 0 2 ; directrices are y 0 a b ae

    3 32

    3#

    29. 8y 2x 16 1 c a b# # # # y2 8x# #

    2 8 10 e 5 ; asymptotes ca 102 are y ; F 0 10 ; directrices are y 0 x ae#

    25 10

    2

    30. 64x 36y 2304 1 c a b# # # # x36 64y# #

    36 64 10 e ; asymptotes are c 10 5a 6 3 y x; F 10 ; directrices are x 0 ! 4 a3 ea b 6 185 5

    3

    31. Vertices 1 and e 3 a 1 and e 3 c 3a 3 b c a 9 1 8 y 1a b! c xa 8# # # # #

  • 636 Chapter 10 Conic Sections and Polar Coordinates

    32. Vertices 2 and e 2 a 2 and e 2 c 2a 4 b c a 16 4 12 1a b ! c xa 4 1y# # # ## #

    33. Foci 3 and e 3 c 3 and e 3 c 3a a 1 b c a 9 1 8 x 1a b ! ca 8y# # # # #

    34. Foci 5 and e 1.25 c 5 and e 1.25 c a 5 a a 4 b c aa b! c 5 5 5a 4 4 4 # # # 25 16 9 1 y16 9

    x# #

    35. Focus (4 0) and Directrix x 2 c ae 4 and 2 2 2 e e 2 . Then # a ae 4e e e# ##

    PF 2 PD (x 4) (y 0) 2 x 2 (x 4) y 2(x 2) x 8x 16 y k k# # # # # # # 2 x 4x 4 x y 8 1 a b# # # x8 8y# #

    36. Focus 10 and Directrix x 2 c ae 10 and 2 2 2 e 5 ! a aee e e10# # # e 5 . Then PF 5 PD x 10 (y 0) 5 x 2 x 10 y % % %

    # ## #

    5 x 2 x 2 10 x 10 y 5 x 2 2 x 2 1 5 x y 2 5 10 # # # # # # 1 1

    1 5 x

    5 10 2 5 10 2 5 10 2 5y yx

    #

    ## ##

    37. Focus ( 2 0) and Directrix x c ae 2 and e 4 e 2. Then " " " "# # # #

    #a ae 2e e e# #

    PF 2PD (x 2) (y 0) 2 x (x 2) y 4 x x 4x 4 y # # " "# #

    # # # ##

    4 x x 3x y 3 x 1 # # # #"4 3y#

    38. Focus ( 6 0) and Directrix x c ae 6 and e 3 e 3. Then # # # # a ae 6e e e# ##

    PF 3 PD (x 6) (y 0) 3 x 2 (x 6) y 3(x 2) x 12x 36 y k k# # # # # # # 3 x 4x 4 2x y 24 1 a b# # #

    #

    x1 24

    y# #

    39. (x 1) (y 3) y 2 x 2x 1 y 6y 9 y 4y 4 4x 5y 8x 60y 4 0 k k a b # ##

    # # # # #3 94

    4 x 2x 1 5 y 12y 36 4 4 180 1 a b a b# # (y 6) (x 1)36 45# #

    40. c a b b c a ; e c ea c e a b e a a a e 1 ; thus,# # # # # # # # # # # # # # # ca a b 1; the asymptotes of this hyperbola are y e 1 x as e increases, thex xa b a a e 1

    y y# ## # # # #

    # #

    " a b #a b absolute values of the slopes of the asymptotes increase and the hyperbola approaches a straight line.

    41. To prove the reflective property for hyperbolas:

    1 a y b x a b and .x xba b dx yay dy# #

    # # #

    #

    # # # # # #

    Let P(x y ) be a point of tangency (see the accompanying! ! figure). The slope from P to F( c 0) is and from yx c

    !

    !

    P to F (c 0) it is . Let the tangent through P meet# y

    x c!

    !

    the x-axis in point A, and define the angles F PAn " ! and F PA . We will show that tan tan . Fromn # " ! " the preliminary result in Exercise 22,

  • Section 10.3 Quadratic Equations and Rotations 637

    tan . In a similar ma! x b y

    y a x c

    x b y

    y a x c

    ! !#

    !#

    !

    ! !#

    !#

    !

    1

    x b x b c y ax y a y a c x y b x y c y a c y c

    a b x b c b# # # # #! ! !!! ! ! ! ! ! ! ! !

    # # # # #

    # # # #

    nner,

    tan . Since tan tan , and and are acute angles, we have ." ! " ! " ! "

    y x bx c y a

    y x bx c y a

    ! !

    !

    #

    !#

    ! !

    !

    #

    !#

    #

    !

    1

    by c

    42. From the accompanying figure, a ray of light emanating from the focus A that met the parabola at P would be reflected from the hyperbola as if it came directly from B (Exercise 41). The same light ray would be reflected off the ellipse to pass through B. Thus BPC is a straight line. Let be the angle of incidence of the light ray on the" hyperbola. Let be the angle of incidence of the light ray! on the ellipse. Note that is the angle between the! " tangent lines to the ellipse and hyperbola at P. Since BPC is a straight line, 2 2 180. Thus 90.! " ! "

    10.3 QUADRATIC EQUATIONS AND ROTATIONS

    1. x 3xy y x 0 B 4AC ( 3) 4(1)(1) 5 0 Hyperbola# # # #

    2. 3x 18xy 27y 5x 7y 4 B 4AC ( 18) 4(3)(27) 0 Parabola# # # #

    3. 3x 7xy 17y 1 B 4AC ( 7) 4(3) 17 0.477 0 Ellipse# # # #

    4. 2x 15 xy 2y x y 0 B 4AC 15 4(2)(2) 1 0 Ellipse# # ##

    5. x 2xy y 2x y 2 0 B 4AC 2 4(1)(1) 0 Parabola# # # #

    6. 2x y 4xy 2x 3y 6 B 4AC 4 4(2)( 1) 24 0 Hyperbola# # # #

    7. x 4xy 4y 3x 6 B 4AC 4 4(1)(4) 0 Parabola# # # #

    8. x y 3x 2y 10 B 4AC 0 4(1)(1) 4 0 Ellipse (circle)# # # #

    9. xy y 3x 5 B 4AC 1 4(0)(1) 1 0 Hyperbola # # #

    10. 3x 6xy 3y 4x 5y 12 B 4AC 6 4(3)(3) 0 Parabola# # # #

    11. 3x 5xy 2y 7x 14y 1 B 4AC ( 5) 4(3)(2) 1 0 Hyperbola# # # #

    12. 2x 4.9xy 3y 4x 7 B 4AC ( 4.9) 4(2)(3) 0.01 0 Hyperbola# # # #

    13. x 3xy 3y 6y 7 B 4AC ( 3) 4(1)(3) 3 0 Ellipse# # # #

    14. 25x 21xy 4y 350x 0 B 4AC 21 4(25)(4) 41 0 Hyperbola# # # #

    15. 6x 3xy 2y 17y 2 0 B 4AC 3 4(6)(2) 39 0 Ellipse# # # #

  • 638 Chapter 10 Conic Sections and Polar Coordinates

    16. 3x 12xy 12y 435x 9y 72 0 B 4AC 12 4(3)(12) 0 Parabola# # # #

    17. cot 2 0 2 ; therefore x x cos y sin ,! ! ! ! ! A C 0B 1 4

    #

    w w1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    ! ! 2 2 2 2

    x y x y 2 x y 2 x y 4 Hyperbola 2 2 2 2# # # # # #

    w w w w w w w w" "# # # #

    18. cot 2 0 2 ; therefore x x cos y sin ,! ! ! ! ! A C 1 1B 1 4

    #

    w w1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    ! ! 2 2 2 2

    x y x y x y x y 1 2 2 2 2 2 2 2 2# # # # # # # #

    w w w w w w w w# #

    x x y y x y x x y y 1 x y 1 3x y 2 Ellipse " " " " " " "# # # # # # # #

    w w w w w w w w w w w w w w# # # # # # # # # #3

    19. cot 2 2 ; therefore x x cos y sin ,! ! ! ! ! A C 3 1B 3 62 3 3 " w w 1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    "! ! 3 31

    3 x y 2 3 x y x y x y 8 x y 3 3 3 3 31 1 1 1# # # # # # # # # #

    w w w w w w w w w w# #

    "

    8 3 x y 0 4x 16y 0 Parabola "# #

    w w w w#3

    20. cot 2 2 ; therefore x x cos y sin ,! ! ! ! ! A C 1 2B 3 63 3 "

    w w 1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    "! ! 3 31

    x y 3 x y x y 2 x y 1 x y 1 3 3 3 31 1 1 1 5# # # # # # # # # #

    w w w w w w w w w w# #

    " # #

    x 5y 2 Ellipse w w# #

    21. cot 2 0 2 ; therefore x x cos y sin ,! ! ! ! ! A C 1 1B 2 2 4

    w w1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    ! ! 2 2 2 2

    x y 2 x y x y x y 2 y 1 2 2 2 2 2 2 2 2# # # # # # # #

    w w w w w w w w w# #

    #

    Parallel horizontal lines

    22. cot 2 2 ; therefore x x cos y sin ,! ! ! ! ! A C 3 1 2B 3 32 3 3 "

    w w 1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    ! ! 1 13 3

    3 x y 2 3 x y x y x y 1 4y 1 1 1 1 13 3 3 3# # # # # # # #

    w w w w w w w w w# #

    #

    Parallel horizontal lines

    23. cot 2 0 2 ; therefore x x cos y sin ,! ! ! ! ! A CB 2 42 22 2

    w w

    1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    ! ! 2 2 2 2

    2 x y 2 2 x y x y 2 x y 2 2 2 2 2 2 2 2# # # # # # # #

    w w w w w w w w# #

    8 x y 8 x y 0 2 2x 8 2 y 0 Parabola 2 2 2 2# # # #

    w w w w w w#

    24. cot 2 0 2 ; therefore x x cos y sin ,! ! ! ! ! A C 0 0B 1 2 4 w w1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    ! ! 2 2 2 2

  • Section 10.3 Quadratic Equations and Rotations 639

    x y x y x y x y 1 0 x y 2 2 x 2 2 2 2 2 2 2 2 2# # # # # # # #

    w w w w w w w w w w w# #

    0 Hyperbola

    25. cot 2 0 2 ; therefore x x cos y sin ,! ! ! ! ! A C 3 3B 2 2 4 w w1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    ! ! 2 2 2 2

    3 x y 2 x y x + y 3 x y 19 4x 2y 19 2 2 2 2 2 2 2 2# # # # # # # #

    w w w w w w w w w w# #

    # #

    Ellipse

    26. cot 2 2 ; therefore x x cos y sin ,! ! ! ! ! A CB 3 63 ( 1)

    4 3 3 " w w 1 1

    y x sin y cos x x y , y x y w w w w w w# # # #

    ! ! 3 31 1

    3 x y 4 3 x y x y x y 7 5x 3y 7 3 3 3 31 1 1 1# # # # # # # #

    w w w w w w w w w w# #

    # #

    Hyperbola

    27. cot 2 cos 2 (if we choose 2 in Quadrant I); thus sin ! ! ! ! 14 2 3 3 1 cos 216 4 5 21

    5 "

    # ! 35

    and cos (or sin and cos )! ! ! 1 cos 2 2 215 5 5

    "

    # #

    ! 35

    28. cot 2 cos 2 (if we choose 2 in Quadrant II); thus sin ! ! ! ! A C 4 3 3 1 cos 2B 4 4 5 2 "

    !

    and cos (or sin and cos ) 1 12 1 cos 2 1 1 25 5 5 5

    # # #

    3 35 5! ! !!

    29. tan 2 2 26.57 13.28 sin 0.23, cos 0.97; then A 0.9, B 0.0,! ! ! ! ! " " #

    w w

    1 3

    C 3.1, D 0.7, E 1.2, and F 3 0.9 x 3.1 y 0.7x 1.2y 3 0, an ellipsew w w w w w w w# #

    30. tan 2 2 11.31 5.65 sin 0.10, cos 1.00; then A 2.1, B 0.0,! ! ! ! ! " "

    w w

    2 ( 3) 5

    C 3.1, D 3.0, E 0.3, and F 7 2.1 x 3.1 y 3.0x 0.3y 7 0, a hyperbolaw w w w w w w w# #

    31. tan 2 2 53.13 26.5 sin 0.45, cos 0.89; then A 0.0, B 0.0,! ! ! ! ! (

    w w4 41 4 3

    C 5.0, D 0, E 0, and F 5 5.0 y 5 0 or y 1.0, parallel linesw w w w w w#

    32. tan 2 2 36.87 18.43 sin 0.32, cos 0.95; then A 0.0, B 0.0,! ! ! ! !

    w w12 32 18 4

    C 20.1, D 0, E 0, and F 49 20.1 y 49 0, parallel linesw w w w w#

    33. tan 2 5 2 78.69 39.35 sin 0.63, cos 0.77; then A 5.0, B 0.0,! ! ! ! ! 53 2w w

    C 0.05, D 5.0, E 6.2, and F 1 5.0 x 0.05 y 5.0x 6.2y 1 0, a hyperbolaw w w w w w w w# #

    34. tan 2 1 2 45.00 22.5 sin 0.38, cos 0.92; then A 0.5, B 0.0,! ! ! ! ! 72 9w w

    C 10.4, D 18.4, E 7.6, and F 86 0.5 x 10.4 y 18.4x 7.6y 86 0, an ellipsew w w w w w w w# # a b35. 90 x x cos 90 y sin 90 y and y x sin 90 y cos 90 x! w w w w w w

    (a) 1 (b) 1 (c) x y ax xb a a by yw w# #

    # # # #

    w w# #

    w w ## #

    (d) y mx y mx 0 D m and E 1; 90 D 1 and E m my x 0 y x ! w w w w w w"m (e) y mx b y mx b 0 D m and E 1; 90 D 1, E m and F b ! w w w

    my x b 0 y x w w w w"m mb

  • 640 Chapter 10 Conic Sections and Polar Coordinates

    36. 180 x x cos 180 y sin 180 x and y x sin 180 y cos 180 y! w w w w w w

    (a) 1 (b) 1 (c) x y ax xa b a by yw w# #

    # # # #

    w w# #

    w w ## #

    (d) y mx y mx 0 D m and E 1; 180 D m and E 1 y mx 0 ! w w w w

    y mxw w (e) y mx b y mx b 0 D m and E 1; 180 D m, E 1 and F b ! w w w

    y mx b 0 y mx b w w w w

    37. (a) A cos 45 sin 45 , B 0, C cos 45 sin 45 , F 1w w w w# # # #

    " " 2 2 x y 1 x y 2 " "

    # #

    w w w w# # # #

    (b) A , C (see part (a) above), D E B 0, F a x y a x y 2aw w w w w w w w w w" " " "# # # #

    # # # #

    38. xy 2 x y 4 1 (see Exercise 37(b)) a 2 and b 2 c 4 4 2 2 w w# # x4 4yw# w#

    e 2 ca2 2#

    39. Yes, the graph is a hyperbola: with AC 0 we have 4AC 0 and B 4AC 0. #

    40. The one curve that meets all three of the stated criteria is the ellipse x 4xy 5y 1 0. The reasoning:# # The symmetry about the origin means that ( x y) lies on the graph whenever (x y) does. Adding Ax Bxy Cy Dx Ey F 0 and A( x) B( x)( y) C( y) D( x) E( y) F 0 and dividing# # # # the result by 2 produces the equivalent equation Ax Bxy Cy F 0. Substituting x 1, y 0 (because# # the point (1 0) lies on the curve) shows further that A F. Then Fx Bxy Cy F 0. By implicit # #

    differentiation, 2Fx By Bxy 2Cyy 0, so substituting x 2, y 1, and y 0 (from Property 3) w w w

    gives 4F B 0 B 4F the conic is Fx 4Fxy Cy F 0. Now substituting x 2 and y 1 # #

    again gives 4F 8F C F 0 C 5F the equation is now Fx 4Fxy 5Fy F 0. Finally, # #

    dividing through by F gives the equation x 4xy 5y 1 0. # #

    41. Let be any angle. Then A cos sin 1, B 0, C sin cos 1, D E 0 and F a! ! ! ! !w # # w w # # w w w #

    x y a . w w ## #

    42. If A C, then B B cos 2 (C A) sin 2 B cos 2 . Then 2 B B cos 0 so the w w# #

    ! ! ! ! !1 1 14

    xy-term is eliminated.

    43. (a) B 4AC 4 4(1)(4) 0, so the discriminant indicates this conic is a parabola# # (b) The left-hand side of x 4xy 4y 6x 12y 9 0 factors as a perfect square: (x 2y 3) 0# # # x 2y 3 0 2y x 3; thus the curve is a degenerate parabola (i.e., a straight line).

    44. (a) B 4AC 6 4(9)(1) 0, so the discriminant indicates this conic is a parabola# # (b) The left-hand side of 9x 6xy y 12x 4y 4 0 factors as a perfect square: (3x y 2) 0# # # 3x y 2 0 y 3x 2; thus the curve is a degenerate parabola (i.e., a straight line).

  • Section 10.3 Quadratic Equations and Rotations 641

    45. (a) B 4AC 1 4(0)(0) 1 hyperbola#

    (b) xy 2x y 0 y(x 1) 2x y

    2xx 1

    (c) y and we want 2,

    2x 2 1x 1 dx (x 1)

    dy# dydx

    the slope of y 2x 2 (x 1)#

    #

    (x 1) 4 x 3 or x 1; x 3 #

    y 3 (3 3) is a point on the hyperbola where the line with slope m 2 is normal the line is y 3 2(x 3) or y 2x 3; x 1 y 1 ( 1 1) is a point on the hyperbola where the line with slope m 2 is normal the line is y 1 2(x 1) or y 2x 3

    46. (a) False: let A C 1, B 2 B 4AC 0 parabola #

    (b) False: see part (a) above (c) True: AC 0 4AC 0 B 4AC 0 hyperbola #

    47. Assume the ellipse has been rotated to eliminate the xy-term the new equation is A x C y 1 the w w w w# #

    semi-axes are and the area is . Since B 4AC " " " " #A C A C A C 4A C2w w w w w w w w 1 1 1 B 4A C 4A C (because B 0) we find that the area is as claimed. w w w w w w#

    24AC B

    1 #

    48. (a) A C A cos B cos sin C sin A sin B cos sin C sinw w # # # # a b a b! ! ! ! ! ! ! ! A cos sin C sin cos A C a b a b# # # #! ! ! ! (b) D E (D cos E sin ) ( D sin E cos ) D cos 2DE cos sin E sinw w # # # # # ## # ! ! ! ! ! ! ! ! D sin 2DE sin cos E cos D cos sin E sin cos D E # # # # # # # # # # # #! ! ! ! ! ! ! !a b a b49. B 4A Cw w w#

    B cos 2 (C A) sin 2 4 A cos B cos sin C sin A sin B cos sin C cos a b a b a b! ! ! ! ! ! ! ! ! !# # # # # B cos 2 2B(C A) sin 2 cos 2 (C A) sin 2 4A cos sin 4AB cos sin # # # # # # # $! ! ! ! ! ! ! !

    4AC cos 4AB cos sin 4B cos sin 4BC cos sin 4AC sin 4BC cos sin % $ # # # $ % $! ! ! ! ! ! ! ! ! ! 4C cos sin # # #! ! B cos 2 2BC sin 2 cos 2 2AB sin 2 cos 2 C sin 2 2AC sin 2 A sin 2 # # # # # # #! ! ! ! ! ! ! !

    4A cos sin 4AB cos sin 4AC cos 4AB cos sin B sin 2 4BC cos sin # # # $ % $ # # $! ! ! ! ! ! ! ! ! !

    4AC sin 4BC cos sin 4C cos sin % $ # # #! ! ! ! ! B 2BC(2 sin cos ) cos sin 2AB(2 sin cos ) cos sin C 4 sin cos # # # # # # # #! ! ! ! ! ! ! ! ! !a b a b a b 2AC 4 sin cos A 4 sin cos 4A cos sin 4AB cos sin 4AC cos a b a b# # # # # # # # $ %! ! ! ! ! ! ! ! ! 4AB cos sin 4BC cos sin 4AC sin 4BC cos sin 4C cos sin ! ! ! ! ! ! ! ! !$ $ % $ # # #

    B 8AC sin cos 4AC cos 4AC sin # # # % %! ! ! !

    B 4AC cos 2 sin cos sin # % # # %a b! ! ! ! B 4AC cos sin # # # #a b! ! B 4AC #

  • 642 Chapter 10 Conic Sections and Polar Coordinates

    10.4 CONICS AND PARAMETRIC EQUATAIONS; THE CYCLOID

    1. x cos t, y sin t, 0 t 2. x sin (2 (1 t)), y cos (2 (1 t)), 0 t 1 1 1 1 cos t sin t 1 x y 1 sin (2 (1 t)) cos (2 (1 t)) 1 # # # # # #1 1 x y 1 # #

    3. x 4 cos t, y 5 sin t, 0 t 4. x 4 sin t, y 5 cos t, 0 t 2 1 1

    1 1 1 1 16 cos t 25 sin t x 16 sin t 25 cos t x16 25 16 25 16 25 16 5y y# # # # # ## #

    #

    5. x t, y t, t 0 y x 6. x sec t 1, y tan t, t ## #

    1 1

    sec t 1 tan t x y # # #

    7. x sec t, y tan t, t 8. x csc t, y cot t, 0 t 1 1# #

    1

    sec t tan t 1 x y 1 1 cot t csc t 1 y x x y 1 # # # # # # # # # #

  • Section 10.4 Conics and Parametric Equations; The Cycloid 643

    9. x t, y 4 t , 0 t 2 10. x t , y t 1, t 0 # %# y 4 x y x 1, x 0 # #

    11. x cosh t, y sinh t, 1 12. x 2 sinh t, y 2 cosh t, t _ _ _ _ cosh t sinh t 1 x y 1 4 cosh t 4 sinh t 4 y x 4 # # # # # # # #

    13. Arc PF Arc AF since each is the distance rolled and

    FCP Arc PF b( FCP); Arc PF Arc AFb a n n )

    Arc AF a a b( FCP) FCP ; n n ) ) )ab OCG ; OCG OCP PCEn n n n1

    #)

    OCP . Now OCP FCP n n n 1#

    ! 1

    . Thus OCG n 1 ) 1 ) ! )a ab b1 1

    # #

    . 1 ) ! ! 1 ) ) 1 )a a a bb b b1

    #

    Then x OG BG OG PE (a b) cos b cos (a b) cos b cos ) ! ) 1 ) a bb (a b) cos b cos . Also y EG CG CE (a b) sin b sin ) ) ) ! a bb (a b) sin b sin (a b) sin b sin . Therefore ) 1 ) ) ) a b a bb b x (a b) cos b cos and y (a b) sin b sin . ) ) ) ) a b a bb b If b , then x a cos cos a a a4 4 4

    a ) ) a4a4

    cos cos 3 cos (cos cos 2 sin sin 2 ) 3a a 3a a4 4 4 4) ) ) ) ) ) )

    cos (cos ) cos sin (sin )(2 sin cos ) 3a a4 4) ) ) ) ) ) )a ba b# # cos cos cos sin sin cos 3a a a 2a4 4 4 4) ) ) ) ) )

    $ # #

    cos cos (cos ) 1 cos a cos ; 3a a 3a4 4 4) ) ) ) )$ # $a b

    y a sin sin sin sin 3 sin (sin cos 2 cos sin 2 ) a a 3a a 3a a4 4 4 4 4 4a) ) ) ) ) ) ) ) ) a4a4

    sin (sin ) cos sin (cos )(2 sin cos ) 3a a4 4) ) ) ) ) ) )a ba b# # sin sin cos sin cos sin 3a a a 2a4 4 4 4) ) ) ) ) )

    # $ #

    sin sin cos sin 3a 3a a4 4 4) ) ) )# $

    sin (sin ) 1 sin sin a sin . 3a 3a a4 4 4) ) ) ) )a b# $ $

  • 644 Chapter 10 Conic Sections and Polar Coordinates

    14. P traces a hypocycloid where the larger radius is 2a and the smaller is a x (2a a) cos a cos ) ) 2a aa 2a cos , 0 2 , and y (2a a) sin a sin a sin a sin 0. Therefore P traces the ) ) 1 ) ) ) ) 2a aa diameter of the circle back and forth as goes from 0 to 2 .) 1

    15. Draw line AM in the figure and note that AMO is a rightn angle since it is an inscribed angle which spans the diameter of a circle. Then AN MN AM . Now, OA a,# # #

    tan t, and sin t. Next MN OPAN AMa a

    OP AN AM a tan t a sin t # # # # # # #

    OP a tan t a sin t # # # # (a sin t) sec t 1 . In triangle BPO, # a sin tcos t

    #

    x OP sin t a sin t tan t and a sin tcos t$

    #

    y OP cos t a sin t x a sin t tan t and y a sin t. # # #

    16. Let the x-axis be the line the wheel rolls along with the y-axis through a low point of the trochoid (see the accompanying figure).

    Let denote the angle through which the wheel turns. Then h a and k a. Next introduce x y -axes) ) w w

    parallel to the xy-axes and having their origin at the center C of the wheel. Then x b cos andw !

    y b sin , where . It follows that x b cos b sin and y b sinw w w# # #

    ! ! ) ) ) )3 3 31 1 1 b cos x h x a b sin and y k y a b cos are parametric equations of the trochoid. ) ) ) )w w

    17. D (x 2) y D (x 2) y (t 2) t D t 4t # " " "# # #

    # # ## # # # # % 174

    4t 4 0 t 1. The second derivative is always positive for t 0 t 1 gives a local d Ddta b# $

    minimum for D (and hence D) which is an absolute minimum since it is the only extremum the closest# point on the parabola is (1 1).

    18. D 2 cos t (sin t 0) D 2 cos t sin t 3 34 4 dtd D# #

    # # # a b#

    2 2 cos t ( 2 sin t) 2 sin t cos t ( 2 sin t) 3 cos t 0 2 sin t 0 or 3 cos t 0 3 3 34 # # t 0, or t , . Now 6 cos t 3 cos t 6 sin t so that (0) 3 relative 1 1 13 3 dt dt

    5 d D d D# # # ## #

    a b a b# #

    maximum, ( ) 9 relative maximum, relative minimum, andd D d Ddt dt 3 29# # # #

    # #

    a b a b1 1

    relative minimum. Therefore both t and t give points on the ellipse closest tod Ddt 3 3 35 9 5# #

    #

    a b 1 1 1 #

    the point 1 and 1 are the desired points. 34 3 3 ! # #

  • Section 10.4 Conics and Parametric Equations; The Cycloid 645

    19. (a) (b) (c)

    20. (a) (b) (c)

    21.

    22. (a) (b) (c)

    23. (a) (b)

  • 646 Chapter 10 Conic Sections and Polar Coordinates

    24. (a) (b)

    25. (a) (b) (c)

    26. (a) (b)

    (c) (d)

  • Section 10.5 Polar Coordinates 647

    10.5 POLAR COORDINATES

    1. a, e; b, g; c, h; d, f 2. a, f; b, h; c, g; d, e

    3. (a) 2 2n and 2 (2n 1) , n an integer 1 1# #

    1 1

    (b) ( 2n ) and ( (2n 1) ), n an integer# # 1 1

    (c) 2 2n and 2 (2n 1) , n an integer 3 31 1# #

    1 1

    (d) ( (2n 1) ) and ( 2n ), n an integer# #1 1

    4. (a) 3 2n and 3 2n , n an integer 1 14 451 1 (b) 3 2n and 3 2n , n an integer 1 14 451 1 (c) 3 2n and 3 2n , n an integer 1 14 431 1 (d) 3 2n and 3 2n , n an integer 1 14 431 1

    5. (a) x r cos 3 cos 0 3, y r sin 3 sin 0 0 Cartesian coordinates are ( 0) $) )

    (b) x r cos 3 cos 0 3, y r sin 3 sin 0 0 Cartesian coordinates are ( 0) $) )

    (c) x r cos 2 cos 1, y r sin 2 sin 3 Cartesian coordinates are 1 3 ) )2 23 31 1

    (d) x r cos 2 cos 1, y r sin 2 sin 3 Cartesian coordinates are 1 3 ) )7 73 31 1

    (e) x r cos 3 cos 3, y r sin 3 sin 0 Cartesian coordinates are (3 0) ) 1 ) 1

    (f) x r cos 2 cos 1, y r sin 2 sin 3 Cartesian coordinates are 1 3 ) )1 13 3

    (g) x r cos 3 cos 2 3, y r sin 3 sin 2 0 Cartesian coordinates are ( 3 0) ) 1 ) 1

    (h) x r cos 2 cos 1, y r sin 2 sin 3 Cartesian coordinates are 1 3 ) ) 1 13 3

    6. (a) x 2 cos 1, y 2 sin 1 Cartesian coordinates are (1 1) 1 14 4 (b) x 1 cos 0 1, y 1 sin 0 0 Cartesian coordinates are (1 0) (c) x 0 cos 0, y 0 sin 0 Cartesian coordinates are ( 0) !1 1

    # #

    (d) x 2 cos 1, y 2 sin 1 Cartesian coordinates are ( 1 1) 1 14 4 (e) x 3 cos , y 3 sin Cartesian coordinates are 5 5 3 36 2 6

    3 3 3 31 1 # # #

    (f) x 5 cos tan 3, y 5 sin tan 4 Cartesian coordinates are ( 4) $ " "4 43 3 (g) x 1 cos 7 1, y 1 sin 7 0 Cartesian coordinates are (1 0) 1 1

    (h) x 2 3 cos 3, y 2 3 sin 3 Cartesian coordinates are 3 3 2 23 31 1

  • 648 Chapter 10 Conic Sections and Polar Coordinates

    7. 8. 9.

    10. 11. 12.

    13. 14. 15.

    16. 17. 18.

    19. 20. 21.

  • Section 10.5 Polar Coordinates 649

    22.

    23. r cos 2 x 2, vertical line through ( 0) 24. r sin 1 y 1, horizontal line through (0 1)) ) #

    25. r sin 0 y 0, the x-axis 26. r cos 0 x 0, the y-axis) )

    27. r 4 csc r r sin 4 y 4, a horizontal line through (0 4) ) )4sin )

    28. r 3 sec r r cos 3 x 3, a vertical line through ( 3 0) ) )3cos )

    29. r cos r sin 1 x y 1, line with slope m 1 and intercept b 1) )

    30. r sin r cos y x, line with slope m 1 and intercept b 0) )

    31. r 1 x y 1, circle with center C ( 0) and radius 1# # # !

    32. r 4r sin x y 4y x y 4y 4 4 x (y 2) 4, circle with center C (0 2) and radius 2# # # # # # # )

    33. r r sin 2r cos 5 y 2x 5, line with slope m 2 and intercept b 5 5sin 2 cos ) ) ) )

    34. r sin 2 2 2r sin cos 2 (r sin )(r cos ) 1 xy 1, hyperbola with focal axis y x# #) ) ) ) )

    35. r cot csc r sin cos r sin r cos y x, parabola with vertex (0 0) ) ) ) ) ) ) cos sin sin )) )" # # # # which opens to the right

    36. r 4 tan sec r 4 r cos 4 sin r cos 4r sin x 4y, parabola with ) ) ) ) ) ) sin cos ))# # # # # vertex ( 0) which opens upward !

    37. r (csc ) e r sin e y e , graph of the natural exponential function ) )r cos r cos x) )

    38. r sin ln r ln cos ln (r cos ) y ln x, graph of the natural logarithm function) ) )

    39. r 2r cos sin 1 x y 2xy 1 x 2xy y 1 (x y) 1 x y 1, two parallel# # # # # # # ) ) straight lines of slope 1 and y-intercepts b 1

    40. cos sin r cos r sin x y x y x y, two perpendicular# # # # # # # #) ) ) ) k k k k lines through the origin with slopes 1 and 1, respectively.

    41. r 4r cos x y 4x x 4x y 0 x 4x 4 y 4 (x 2) y 4, a circle with# # # # # # # # # ) center C( 2 0) and radius 2

  • 650 Chapter 10 Conic Sections and Polar Coordinates

    42. r 6r sin x y 6y x y 6y 0 x y 6y 9 9 x (y 3) 9, a circle with# # # # # # # # # ) center C(0 3) and radius 3

    43. r 8 sin r 8r sin x y 8y x y 8y 0 x y 8y 16 16 ) )# # # # # # #

    x (y 4) 16, a circle with center C(0 4) and radius 4 # #

    44. r 3 cos r 3r cos x y 3x x y 3x 0 x 3x y ) )# # # # # # #9 94 4

    x y , a circle with center C and radius ! 3 9 3 34# # ## #

    45. r 2 cos 2 sin r 2r cos 2r sin x y 2x 2y x 2x y 2y 0 ) ) ) )# # # # #

    (x 1) (y 1) 2, a circle with center C(1 1) and radius 2 # #

    46. r 2 cos sin r 2r cos r sin x y 2x y x 2x y y 0 ) ) ) )# # # # #

    (x 1) y , a circle with center C 1 and radius # " "# # #

    # 54

    5

    47. r sin 2 r sin cos cos sin 2 r sin r cos 2 y x 2 ) ) ) ) ) 1 1 16 6 6 3 3 # # # #

    " "

    3 y x 4, line with slope m and intercept b " 3 34

    48. r sin 5 r sin cos cos sin 5 r cos r sin 5 x y 5 2 2 23 3 3 3 31 1 1 ) ) ) ) ) # # # #

    " "

    3 x y 10, line with slope m 3 and intercept b 10

    49. x 7 r cos 7 50. y 1 r sin 1 ) )

    51. x y r cos r sin 52. x y 3 r cos r sin 3 ) ) ) ) )14

    53. x y 4 r 4 r 2 or r 2# # #

    54. x y 1 r cos r sin 1 r cos sin 1 r cos 2 1# # # # # # # # # # ) ) ) ) )a b

    55. 1 4x 9y 36 4r cos 9r sin 36x9 4y# # # # # # # #) )

    56. xy 2 (r cos )(r sin ) 2 r cos sin 2 2r cos sin 4 r sin 2 4 ) ) ) ) ) ) )# # #

    57. y 4x r sin 4r cos r sin 4 cos # # # # ) ) ) )

    58. x xy y 1 x y xy 1 r r sin cos 1 r (1 sin cos ) 1# # # # # # # ) ) ) )

    59. x (y 2) 4 x y 4y 4 4 x y 4y r 4r sin r 4 sin # # # # # # # ) )

    60. (x 5) y 25 x 10x 25 y 25 x y 10x r 10r cos r 10 cos # # # # # # # ) )

    61. (x 3) (y 1) 4 x 6x 9 y 2y 1 4 x y 6x 2y 6 r 6r cos 2r sin 6 # # # # # # # ) )

    62. (x 2) (y 5) 16 x 4x 4 y 10y 25 16 x y 4x 10y 13 r # # # # # # #

    4r cos 10r sin 13 ) )

    63. ( ) where is any angle! ) )

  • Section 10.6 Graphing in Polar Coordinates 651

    64. (a) x a r cos a r r a sec ) )acos ) (b) y b r sin b r r b csc ) )bsin )

    10.6 GRAPHING IN POLAR COORDINATES

    1. 1 cos ( ) 1 cos r symmetric about the ) ) x-axis; 1 cos ( ) r and 1 cos ( ) ) 1 ) 1 cos r not symmetric about the y-axis; ) therefore not symmetric about the origin

    2. 2 2 cos ( ) 2 2 cos r symmetric about the ) ) x-axis; 2 cos ( ) r and 2 2 cos ( ) # ) 1 )

    2 2 cos r not symmetric about the y-axis; ) therefore not symmetric about the origin

    3. 1 sin ( ) 1 sin r and 1 sin ( ) ) ) 1 ) 1 sin r not symmetric about the x-axis; ) 1 sin ( ) 1 sin r symmetric about 1 ) ) the y-axis; therefore not symmetric about the origin

    4. 1 sin ( ) 1 sin r and 1 sin ( ) ) ) 1 ) 1 sin r not symmetric about the x-axis; ) 1 sin ( ) 1 sin r symmetric about the 1 ) ) y-axis; therefore not symmetric about the origin

    5. 2 sin ( ) 2 sin r and 2 sin ( ) ) ) 1 ) 2 sin r not symmetric about the x-axis; ) 2 sin ( ) 2 sin r symmetric about the 1 ) ) y-axis; therefore not symmetric about the origin

  • 652 Chapter 10 Conic Sections and Polar Coordinates

    6. 1 2 sin ( ) 1 2 sin r and 1 2 sin ( ) ) ) 1 ) 1 2 sin r not symmetric about the x-axis; ) 1 2 sin ( ) 1 2 sin r symmetric about the 1 ) ) y-axis; therefore not symmetric about the origin

    7. sin sin r symmetric about the y-axis; ) )# #

    sin sin , so the graph symmetric about the 2 21 ) )# is x-axis, and hence the origin.

    8. cos cos r symmetric about the x-axis; ) )# #

    cos cos , so the graph symmetric about the 2 21 ) )# is y-axis, and hence the origin.

    9. cos ( ) cos r (r ) and ( r ) are on the ) ) ) )#

    graph when (r ) is on the graph symmetric about the ) x-axis and the y-axis; therefore symmetric about the origin

    10. sin ( ) sin r (r ) and ( r ) are on1 ) ) 1 ) 1 ) #

    the graph when (r ) is on the graph symmetric about ) the y-axis and the x-axis; therefore symmetric about the origin

  • Section 10.6 Graphing in Polar Coordinates 653

    11. sin ( ) sin r (r ) and ( r ) 1 ) ) 1 ) 1 )#

    are on the graph when (r ) is on the graph symmetric ) about the y-axis and the x-axis; therefore symmetric about the origin

    12. cos ( ) cos r (r ) and ( r ) are on ) ) ) )#

    the graph when (r ) is on the graph symmetric about ) the x-axis and the y-axis; therefore symmetric about the origin

    13. Since r are on the graph when (r ) is on the grapha b ) ) r 4 cos 2( ) r 4 cos 2 , the graph is a b # #) ) symmetric about the x-axis and the y-axis the graph is symmetric about the origin

    14. Since (r ) on the graph ( r ) is on the graph ) )

    r 4 sin 2 r 4 sin 2 , the graph is a b # #) ) symmetric about the origin. But 4 sin 2( ) 4 sin 2 ) ) r and 4 sin 2( ) 4 sin (2 2 ) 4 sin ( 2 ) # 1 ) 1 ) ) 4 sin 2 r the graph is not symmetric about ) #

    the x-axis; therefore the graph is not symmetric about the y-axis

    15. Since (r ) on the graph ( r ) is on the graph ) )

    r sin 2 r sin 2 , the graph is a b # #) ) symmetric about the origin. But sin 2( ) ( sin 2 ) ) ) sin 2 r and sin 2( ) sin (2 2 )) 1 ) 1 ) #

    sin ( 2 ) ( sin 2 ) sin 2 r the graph ) ) ) #

    is not symmetric about the x-axis; therefore the graph is not symmetric about the y-axis

    16. Since r are on the graph when (r ) is on thea b ) ) graph r cos 2( ) r cos 2 , the a b # #) ) graph is symmetric about the x-axis and the y-axis the graph is symmetric about the origin.

  • 654 Chapter 10 Conic Sections and Polar Coordinates

    17. r 1 1 , and r 1) ) 1 1 1# # #

    1 ; r sin ; Slope 1 ) )

    ) ) )#

    w dr r sin r cos d r cos r sin )

    w

    w

    Slope at 1 is #

    sin r cos sin cos r sin

    #) ) 1

    ) ) )

    1; Slope at 1 is

    #

    sin ( 1) cos sin cos ( 1) sin

    # 1 11 1 1

    # #

    # # #

    1

    1

    sin ( 1) cos

    sin cos ( 1) sin

    #

    1 1

    1 1 1

    # #

    # # #

    18. 0 r 1 ( 0), and r 1) ) 1 "

    ( ); r cos ; " 1 )w drd) Slope r sin r cos cos sin r cos r cos r sin cos cos r sin

    w

    w

    ) ) ) ) )

    ) ) ) ) )

    Slope at ( 0) is "cos sin r cos cos r sin cos 0 ( 1) sin 0cos 0 sin 0 ( 1) cos 0) ) )

    ) )

    # #

    1; Slope at ( ) is 1 " 1 cos sin ( 1) cos cos ( 1) sin 1 1 1

    1 1

    #

    19. r 1 ; r 1) ) " 1 1 14 4 4 1 ; r 1 ; " 1 1 14 4 43 3) r 1 1 ;) 3 34 4

    1 1 r 2 cos 2 ;w drd) )

    Slope r sin r cos 2 cos 2 sin r cos r cos r sin 2 cos 2 cos r sin w

    w

    ) ) ) ) )

    ) ) ) ) )

    Slope at 1 is 1; 142 cos sin (1) cos

    2 cos cos (1) sin

    1 1 1

    1 1 1

    #

    #

    4 4

    4 4

    Slope at 1 is 1; 142 cos sin ( 1) cos

    2 cos cos ( 1) sin

    1 1 1

    1 1 1

    #

    #

    4 4

    4 4

    Slope at 1 is 1; 342 cos sin ( 1) cos

    2 cos cos ( 1) sin

    1

    3 3 34 4

    3 3 34 4

    1 1 1

    1 1 1

    #

    #

    Slope at 1 is 1 342 cos sin (1) cos

    2 cos cos (1) sin

    1

    3 3 34 4

    3 3 34 4

    1 1 1

    1 1 1

    #

    #

    20. 0 r 1 (1 0); r 1 1 ;) ) 1 12 2 r 1 ; r 1) ) 1 " 1 1

    #

    2

    (1 ); r 2 sin 2 ; 1 )w drd) Slope r sin r cos 2 sin 2 sin r cos r cos r sin 2 sin 2 cos r sin

    w

    w

    ) ) ) ) )

    ) ) ) ) )

    Slope at (1 0) is , which is undefined;

    2 sin 0 sin 0 cos 02 sin 0 cos 0 sin 0

    Slope at 1 is 0; 122 sin 2 sin ( 1) cos

    2 sin 2 cos ( 1) sin

    1 1 1

    1 1 1

    2 2 2

    2 2 2

    Slope at 1 is 0; 122 sin 2 sin ( 1) cos

    2 sin 2 cos ( 1) sin

    1 1 1

    1 1 1

    # # #

    # # #

    Slope at ( ) is , which is undefined"1

    2 sin 2 sin cos 2 sin 2 cos sin

    1 1 1

    1 1 1

  • Section 10.6 Graphing in Polar Coordinates 655

    21. (a) (b)

    22. (a) (b)

    23. (a) (b)

    24. (a) (b)

    25.

  • 656 Chapter 10 Conic Sections and Polar Coordinates

    26. r 2 sec r r cos 2 x 2 ) )2cos )

    27. 28.

    29. is the same point as 2 ; r 2 sin 2 2 sin 2 2 is on the graph # 34 4 4 41 1 1 1 1# is on the graph # 34130. is the same point as ; r sin sin is on the graph " " " " "

    # # # # # # # 3 32 2 3 6

    1 1 1 1 1 1#

    is on the graph

    31. 1 cos 1 cos cos 0 , ) ) ) ) 1 1# #

    3

    r 1; points of intersection are and . " " 1 1# #

    3

    The point of intersection ( 0) is found by graphing.!

    32. 1 sin 1 sin sin 0 0, r 1; ) ) ) ) 1 points of intersection are (1 0) and (1 ). The point of 1 intersection ( 0) is found by graphing.!

  • Section 10.6 Graphing in Polar Coordinates 657

    33. 2 sin 2 sin 2 sin sin 2 sin ) ) ) ) ) 2 sin cos sin 2 sin cos 0 ) ) ) ) )

    (sin )(1 2 cos ) 0 sin 0 or cos ) ) ) ) "#

    0, , , or ; 0 or r 0, ) 1 ) 11 13 3 r 3 , and r 3 ; points of) ) 1 13 3

    intersection are ( 0), 3 , and 3! 1 13 3

    34. cos 1 cos 2 cos 1 cos ) ) ) ) "#

    , r ; points of intersection are ) 1 13 3"

    #

    and , . The point (0 0) is found by " "# # 1 13 3

    graphing.

    35. 2 4 sin sin , ; points #

    "

    # ) ) ) 1 16 6

    5

    of intersection are 2 and 2 . The 1 16 65

    points 2 and 2 are found by 1 16 65 graphing.

    36. 2 sin 2 cos sin cos , ; ) ) ) ) ) 1 14 45 r 1 r 1 and r 1) ) 1 14 4

    5# #

    no solution for r; points of intersection are 1 . 14 The points ( 0) and 1 are found by graphing.! 341

    37. 1 2 sin 2 sin 2 2 , , , ) ) )"#

    1 1 1 1

    6 6 6 65 13 17

    , , , ; points of intersection are ) 1 1 1 112 12 12 125 13 17

    1 , 1 , 1 , and 1 . No other 1 1 1 112 12 1 15 13 17# # points are found by graphing.

  • 658 Chapter 10 Conic Sections and Polar Coordinates

    38. 2 cos 2 2 sin 2 cos 2 sin 2 ) ) ) ) 2 , , , , , , ; ) )1 1 1 1 1 1 1 14 4 4 4 8 8 8 8

    5 9 13 5 9 13

    , r 1 r 1; , ) ) 1 1 1 18 8 8 89 5 13#

    r 1 no solution for r; points of intersection are #

    1 and 1 . The point of intersection ( 0) is found !1 18 89 by graphing.

    39. r sin 2 and r cos 2 are generated completely for# # ) ) 0 . Then sin 2 cos 2 2 is the only ) ) ) )1 1

    # 4

    solution on that interval r sin 2 ) 1 18 8 2# "

    r ; points of intersection are . " "% % 2 2 8

    1

    The point of intersection ( 0) is found by graphing.!

    40. 1 sin 1 cos sin cos , ) ) ) ) ) 1 1# # # # #

    3 74 4

    , ; r 1 cos 1 ; ) )3 7 3 3421 1 1 1

    # # # #

    r 1 cos 1 ; points of) 7 7421 1

    # #

    intersection are and 1 . The " 2 23 7# # # #

    1 1

    three points of intersection (0 0) and 1 are 2# #

    1

    found by graphing and symmetry.

    41. 1 2 sin 2 sin 2 2 , , , ) ) )"#

    1 1 1 1

    6 6 6 65 13 17

    , , , ; points of intersection are ) 1 1 1 11 1 1 15 13 17

    # # # #

    , , 1 , and . The points " " "1 1 1 11 1 1 125 13 17# # # of intersection 1 , , and " "7 11 191 1 11 1 1# # # are found by graphing and symmetry. " 231 1#

    42. r 2 sin 2 is completely generated on 0 so##

    ) ) 1

    that 1 2 sin 2 sin 2 2 , , ) ) ) )"#

    1 1 1

    6 6 125

    ; points of intersection are 1 and . The5 51 1 11 1 1

    # # # "

    points of intersection and 1 are found " 1 11 15# # by graphing.

    43. Note that (r ) and ( r ) describe the same point in the plane. Then r 1 cos 1 cos ( ) ) ) 1 ) ) 1 1 (cos cos sin sin ) 1 cos (1 cos ) r; therefore (r ) is on the graph of ) 1 ) 1 ) ) ) r 1 cos ( r ) is on the graph of r 1 cos the answer is (a). ) ) 1 )

  • Section 10.6 Graphing in Polar Coordinates 659

    44. Note that (r ) and ( r ) describe the same point in the plane. Then r cos 2 sin 2( )) ) ) 1 ) ) 1 1#

    sin 2 sin (2 ) cos cos (2 ) sin cos 2 r; therefore (r ) is on the graph of ) ) ) ) )5 5 51 1 1# # #

    r sin 2 the answer is (a). ) 1#

    45. 46.

    47. (a) (b) (c) (d)

  • 660 Chapter 10 Conic Sections and Polar Coordinates

    48. (a) (b) (c)

    (d) (e)

    49. (a) r 4 cos cos ; r 1 cos r 1 0 r 4r 4 (r 2) 0# # # ) ) )r r4 4# #

    r 2; therefore cos 1 (2 ) is a point of intersection ) ) 1 124#

    (b) r 0 0 4 cos cos 0 , or is on the graph; r 0 0 1 cos ! ! # # # # #) ) ) )1 1 1 13 3

    cos 1 0 (0 0) is on the graph. Since ( 0) for polar coordinates, the graphs ! !) ) 1# intersect at the origin.

    50. (a) Let r f( ) be symmetric about the x-axis and the y-axis. Then (r ) on the graph (r ) is on the ) ) ) graph because of symmetry about the x-axis. Then ( r ( )) ( r ) is on the graph because of ) ) symmetry about the y-axis. Therefore r f( ) is symmetric about the origin. ) (b) Let r f( ) be symmetric about the x-axis and the origin. Then (r ) on the graph (r ) is on the ) ) ) graph because of symmetry about the x-axis. Then ( r ) is on the graph because of symmetry about ) the origin. Therefore r f( ) is symmetric about the y-axis. )

    (c) Let r f( ) be symmetric about the y-axis and the origin. Then (r ) on the graph ( r ) is on the ) ) ) graph because of symmetry about the y-axis. Then ( ( r) ) (r ) is on the graph because of ) ) symmetry about the origin. Therefore r f( ) is symmetric about the x-axis. )

    51. The maximum width of the petal of the rose which lies along the x-axis is twice the largest y value of the curve on the interval 0 . So we wish to maximize 2y 2r sin 2 cos 2 sin on 0 . Let ) ) ) ) )1 14 4 f( ) 2 cos 2 sin 2 1 2 sin (sin ) 2 sin 4 sin f ( ) 2 cos 12 sin cos . Then) ) ) ) ) ) ) ) ) ) ) a b# $ w # f ( ) 0 2 cos 12 sin cos 0 (cos ) 1 6 sin 0 cos 0 or 1 6 sin 0 orw # # # #) ) ) ) ) ) ) ) ) a b 1 sin . Since we want 0 , we choose sin f( ) 2 sin 4 sin) ) ) ) ) ) "" $1

    6 64 1

    2 4 . We can see from the graph of r cos 2 that a maximum does occur in the " " 6 6 6 2 69 ) interval 0 . Therefore the maximum width occurs at sin , and the maximum width ) )14 6

    " " is .2 69

    52. We wish to maximize y r sin 2(1 cos )(sin ) 2 sin 2 sin cos . Then ) ) ) ) ) ) 2 cos 2(sin )( sin ) 2 cos cos 2 cos 2 sin 2 cos 2 cos 4 cos 2; thusdyd) ) ) ) ) ) ) ) ) ) )

    # # #

    0 4 cos 2 cos 2 = 0 2 cos cos 1 0 (2 cos 1)(cos 1) 0 cos dyd) # # "

    #) ) ) ) ) ) )

    or cos 1 , , . From the graph, we can see that the maximum occurs in the first quadrant so) ) 1 1 13 35

    we choose . Then y 2 sin 2 sin cos . The x-coordinate of this point is x r cos ) 1 1 1 1 13 3 3 3 33 3#

    2 1 cos cos . Thus the maximum height is h occurring at x . 1 13 3 3 33 3# # #

  • Section 10.7 Area and Lengths in Polar Coordinates 661

    10.7 AREA AND LENGTHS IN POLAR COORDINATES

    1. A (4 2 cos ) d 16 16 cos 4 cos d 8 8 cos 2 d ' ' '0 0 0

    2 2 21 1 1" " # # #

    # #) ) ) ) ) ) )a b 1 cos 2) (9 8 cos cos 2 ) d 9 8 sin sin 2 18 '

    0

    21

    ) ) ) ) ) ) 1 " #!21

    2. A [a(1 cos )] d a 1 2 cos cos d a 1 2 cos d ' ' '0 0 0

    2 2 21 1 1" " " # # # #

    # # # #) ) ) ) ) ) )a b 1 cos 2) a 2 cos cos 2 d a 2 sin sin 2 a " " " "# # # # # #

    # # ##

    !'

    0

    21 3 3 34) ) ) ) ) ) 1

    1

    3. A 2 cos 2 d d ' '0 0

    4 41 1 " "# # #

    # %

    !) ) ) )1 cos 4 sin 44 8

    ) ) 11

    4. A 2 2a cos 2 d 2a cos 2 d 2a 2a ' '

    1 1

    1 1

    4 4

    4 4"#

    # # # #%

    %a b ) ) ) ) sin 22 ) 1 1

    5. A (4 sin 2 ) d 2 sin 2 d cos 2 2 ' '0 0

    2 21 1 "#

    #!) ) ) ) )c d 1

    6. A (6)(2) (2 sin 3 ) d 12 sin 3 d 12 4 ' '0 0

    6 61 1 "#

    '

    !) ) ) ) cos 33 ) 1

    7. r 2 cos and r 2 sin 2 cos 2 sin ) ) ) ) cos sin ; therefore ) ) ) 14

    A 2 (2 sin ) d 4 sin d ' '0 0

    4 41 1 "#

    # #) ) ) )

    4 d (2 2 cos 2 ) d ' '0 0

    4 41 1 1 cos 2#

    ) ) ) )

    2 sin 2 1 c d) ) 1 1%! #

    8. r 1 and r 2 sin 2 sin 1 sin ) ) ) "# or ; therefore ) 1 16 6

    5

    A (1) (2 sin ) 1 d 1 ) )# # #"#'

    1

    1

    6

    5 6 c d 2 sin d 1 ) )'

    1

    1

    6

    5 6 # "#

    1 cos 2 d 1 ) )'1

    1

    6

    5 6 "#

    cos 2 d 1 ) ) 1 )'1

    1

    6

    5 6 " "# #

    & '

    '2sin 2) 1

    1

    sin sin 1 5 51 3 12 3 64 3 31 1 1 1 1# # #" "

  • 662 Chapter 10 Conic Sections and Polar Coordinates

    9. r 2 and r 2(1 cos ) 2 2(1 cos ) ) ) cos 0 ; therefore ) ) 1#

    A 2 [2(1 cos )] d area of the circle '0

    21" "# #

    #) )

    4 1 2 cos cos d (2) '0

    21 a b ) ) ) 1# #"# 4 1 2 cos d 2 '

    0

    21 ) ) 11 cos 2 # ) (4 8 cos 2 2 cos 2 ) d 2 '

    0

    21

    ) ) ) 1

    6 8 sin sin 2 2 5 8 c d) ) ) 1 11#!

    10. r 2(1 cos ) and r 2(1 cos ) 1 cos ) ) )

    1 cos cos 0 or ; the graph also ) ) ) 1 1# #3

    gives the point of intersection (0 0); therefore

    A 2 [2(1 cos )] d 2 [2(1 cos )] d ' '0 2

    21 1

    1

    " "# #

    # #) ) ) )

    4 1 2 cos cos d '0

    21 a b) ) )# 4 1 2 cos cos d '

    1

    1

    2a b) ) )#

    4 1 2 cos d 4 1 2 cos d ' '0 2

    21 1

    1

    ) ) ) )1 cos 2 1 cos 2 # #) )

    (6 8 cos 2 cos 2 ) d (6 8 cos 2 cos 2 ) d ' '0 2

    21 1

    1

    ) ) ) ) ) )

    6 8 sin sin 2 6 8 sin sin 2 6 16 c d c d) ) ) ) ) ) 11 11

    #! #

    11. r 3 and r 6 cos 2 3 6 cos 2 cos 2 # "#) ) ) (in the 1st quadrant); we use symmetry of the ) 16 graph to find the area, so

    A 4 (6 cos 2 ) 3 d '0

    61 " "# ##

    ) )

    2 (6 cos 2 3) d 2 3 sin 2 3 '0

    61

    ) ) ) )c d 1'! 3 3 1

    12. r 3a cos and r a(1 cos ) 3a cos a(1 cos ) ) ) ) )

    3 cos 1 cos cos or ; ) ) ) )"#1 1

    3 3

    the graph also gives the point of intersection (0 0); therefore

    A 2 (3a cos ) a (1 cos ) d '0

    31"#

    # # #c d) ) ) 9a cos a 2a cos a cos d '

    0

    31 a b# # # # # #) ) ) ) 8a cos 2a cos a d '

    0

    31 a b# # # #) ) ) 4a (1 cos 2 ) 2a cos a d '

    0

    31 c d# # #) ) ) 3a 4a cos 2 2a cos d '

    0

    31 a b# # #) ) )

    3a 2a sin 2 2a sin a 2a 2a a 1 3 c d # # # # # # #$! "# #) ) ) 1 11 3

  • Section 10.7 Area and Lengths in Polar Coordinates 663

    13. r 1 and r 2 cos 1 2 cos cos ) ) ) "# in quadrant II; therefore ) 23

    1

    A 2 ( 2 cos ) 1 d 4 cos 1 d ' '2 3 2 31 1

    1 1

    "#

    # # #c d a b) ) ) ) [2(1 cos 2 ) 1] d (1 2 cos 2 ) d ' '

    2 3 2 31 1

    1 1

    ) ) ) )

    sin 2 c d) ) 11

    1

    # $ #33

    14. (a) A 2 (2 cos 1) d 4 cos 4 cos 1 d [2(1 cos 2 ) 4 cos 1] d ' ' '0 0 0

    2 3 2 3 2 31 1 1 "#

    # #) ) ) ) ) ) ) )a b (3 2 cos 2 4 cos ) d 3 sin 2 4 sin 2 2 '

    0

    2 31

    ) ) ) ) ) ) 1 1c d # $! # # #1 3 4 3 3 3 (b) A 2 3 3 (from 14(a) above and Example 2 in the text) 1 1 13 3 3 3 # #15. r 6 and r 3 csc 6 sin 3 sin ) ) ) "#

    or ; therefore A 6 9 csc d ) ) )1 16 65 '

    1

    1

    6

    5 6"#

    # #a b 18 csc d 18 cot '

    1

    1

    6

    5 6 9 9# #

    # & '

    ') ) ) )

    1

    1

    15 3 3 3 12 9 3 1 1 19 9# #

    16. r 6 cos 2 and r sec sec 6 cos 2 cos cos 2 cos 2 cos 1# # # # ## ) ) ) ) ) ) ) )3 9 9 3

    4 24 8 a b a b 2 cos cos 2 cos cos 0 16 cos 8 cos 3 0 3 38 8

    % # % # % #) ) ) ) ) )

    4 cos 1 4 cos 3 0 cos or cos cos (the second equation has no real a ba b# # # # " #) ) ) ) )34 4 3 roots) (in the first quadrant); thus A 2 6 cos 2 sec d 6 cos 2 sec d ) ) ) ) ) ) )16 4 4

    9 9' '0 0

    6 61 1 "#

    # # 3 sin 2 tan 3 ) )9 94 4 43 3 3 3 3 3 34 31'! # #

    17. (a) r tan and r csc tan csc ) ) ) ) 2 2# # sin cos 1 cos cos # ## #) ) ) ) 2 2 cos cos 1 0 cos 2 or # #) ) ) 2 (use the quadratic formula) (the solution

    24# )1

    in the first quadrant); therefore the area of R is"

    A tan d sec 1 d tan tan ;" " " " " "# # # # ## # %

    ! ' '

    0 0

    4 41 1

    ) ) ) ) ) )a b c d 1 1 1 14 4 8 AO csc and OB csc 1 AB 1 2 2 2 2 24# # # # # ##

    #1 1

    the area of R is A ; therefore the area of the region shaded in the text is # # " "# # # 2 2 4 2 . Note: The area must be found this way since no common interval generates the region. For " "# # 1 18 4 43 example, the interval 0 generates the arc OB of r tan but does not generate the segment AB of the line ) )14

    r csc . Instead the interval generates the half-line from B to on the line r csc . _ 2 2# #) )

    (b) lim tan and the line x 1 is r sec in polar coordinates; then lim (tan sec )) 1 ) 1 2 2

    ) ) ) ) _

    = lim lim lim 0 r tan approaches) 1 ) 1 ) 1 2 2 2

    sin sin 1 cos cos cos cos sin

    ) ) )

    ) ) ) ) " )

    r sec as r sec (or x 1) is a vertical asymptote of r tan . Similarly, r sec ) ) ) ) )1

    #

  • 664 Chapter 10 Conic Sections and Polar Coordinates

    (or x 1) is a vertical asymptote of r tan . )

    18. It is not because the circle is generated twice from 0 to 2 . The area of the cardioid is) 1

    A 2 (cos 1) d cos 2 cos 1 d 2 cos 1 d ' ' '0 0 0

    1 1 1

    " # #

    # #) ) ) ) ) ) )a b 1 cos 2) 2 sin . The area of the circle is A the area requested is actually 3 sin 2 32 4 4) ) 1 11) 1! # #" # 3 54 4

    1 1 1

    #

    19. r , 0 5 2 ; therefore Length (2 ) d 4 d ) ) ) ) ) ) ) ) )# # # % ## a b drd) ' '0 05 5

    4 d (since 0) 4 d ; u 4 du d ; 0 u 4, ' '0 0

    5 5 k k ) ) ) ) ) ) ) ) ) ) )# # # "# 5 u 9 u du u ) '

    4

    9" "# #

    $# *

    %2 193 3

    20. r , 0 ; therefore Length d 2 d e dr e e e e2 2 2 2d

    ) ) ) ) )

    ) 1 ) )) ' '0 01 1 # # #2

    e d e e 1 '0

    1

    ) ) 11) !

    21. r 1 cos sin ; therefore Length (1 cos ) ( sin ) d ) ) ) ) )drd)'

    0

    21 # # 2 2 2 cos d 2 d 4 d 4 cos d 4 2 sin 8 ' ' ' '

    0 0 0 0

    1 1 1 1 ) ) ) ) )4(1 cos ) 1 cos 2# # # !) ) ) ) 1

    22. r a sin , 0 , a 0 a sin cos ; therefore Length a sin a sin cos d # # # # # # ## # #) ) ) ) ) )

    )) 1 )drd

    '0

    1 a sin a sin cos d a sin sin cos d (since 0 ) a sin d ' '

    0 00

    1 11 '# % # # # # #

    # # # # # # #) ) ) ) ) ) )) ) ) 1 )

    2a cos 2a ) 12 !

    23. r , 0 ; therefore Length d 6 dr 6 sin 6 6 sin 1 cos d (1 cos ) 1 cos (1 cos ) # # #

    ) ) ) ) )

    1 ) )) )# #'0

    21 d 6 1 d ' '

    0 0

    2 21 1 36 36 sin sin(1 cos ) 1 cos (1 cos )1 cos ") ) )) ))# ## #%a b ) ) since 0 on 0 6 d " " # 1 cos 1 cos (1 cos )1 2 cos cos sin) ) )1 ) ) )) )'0

    21# #

    #

    6 d 6 2 6 2 3 sec d ' ' ' '0 0 0 0

    2 2 2 21 1 1 1 " # $1 cos (1 cos )2 2 cos d d(1 cos ) 2 cos ) )) ) ) ))# $# $## #) ) ) 3 sec d 6 sec u du (use tables) 6 sec u du ' ' '

    0 0 0

    2 4 41 1 1 $ $

    # #

    %

    !") 1) sec u tan u2

    6 ln sec u tan u 3 2 ln 1 2 k k " " %!2 21

    24. r , ; therefore Length d 2 dr 2 sin 2 2 sin 1 cos d (1 cos ) 1 cos (1 cos ) # #

    #

    ) ) ) ) )

    1 ) )) 1 )# #'1

    1

    2

    1 d d ' '1 1

    1 1

    2 2 4 sin 2(1 cos ) 1 cos (1 cos )1 cos (1 cos ) sin ) ) )) ) ) )# ## # # #a b ) )

    since 1 cos 0 on 2 d ) ) 1 )1 ) ) )) )#

    " '1

    1

    2 1 cos (1 cos )1 2 cos cos sin# #

    #

    2 d 2 2 2 2 csc d ' ' ' '1 1 1 1

    1 1 1 1

    2 2 2 2 " # $1 cos (1 cos )2 2 cos d d(1 cos ) 2 sin ) )) ) ) ))# $# $## #) ) )

    csc d since csc 0 on 2 csc u du (use tables) ' '1 1

    1 1

    2 4

    2$ $

    # # # ) ) 1) ) 1

  • Section 10.7 Area and Lengths in Polar Coordinates 665

    2 csc u du 2 ln csc u cot u 2 ln 2 1 k k csc u cot u2 22 211 11#% %" " " " "# ##'11

    4

    2

    2 ln 1 2

    25. r cos sin cos ; therefore Length cos sin cos d $ # $ ## #) ) ) ) ) )

    )3 d 3 3 3 3 3dr '

    0

    41 ) cos sin cos d cos cos sin d cos d ' ' '

    0 0 0

    4 4 41 1 1 ' # % # ## #) ) ) ) ) ) )3 3 3 3 3 3 3) ) ) d sin '

    0

    41 1 cos 3 2 32 3 8 8

    # #" %

    !

    23)

    ) ) ) 11

    26. r 1 sin 2 , 0 2 (1 sin 2 ) (2 cos 2 ) (cos 2 )(1 sin 2 ) ; therefore ) ) 1 ) ) ) )drd) "# "# "# Length (1 sin 2 ) d d ' '

    0 0

    2 21 1 ) ) )cos 2 1 2 sin 2 sin 2 cos 2(1 sin 2 ) 1 sin 2# # #) ) ) )) ) d 2 d 2 2 ' '

    0 0

    2 21 1 2 2 sin 21 sin 2#

    !

    )

    )

    1

    ) ) ) 1

    27. r 1 cos 2 (1 cos 2 ) ( 2 sin 2 ); therefore Length (1 cos 2 ) d ) ) ) ) )dr sin 2d (1 cos 2 )) ))"# "# '021

    #

    d d 2 d 2 2 ' ' '0 0 0

    2 2 21 1 1 1 2 cos 2 cos 2 sin 2 2 2 cos 21 cos 2 1 cos 2 #

    !

    ) ) ) )

    ) )

    1# #

    ) ) ) ) 1

    28. (a) r a 0; Length a 0 d a d a 2 a drd)1' '

    0 0

    2 21 1 k k c d# # #!) ) ) 1 (b) r a cos a sin ; Length (a cos ) ( a sin ) d a cos sin d ) ) ) ) ) ) ) )drd)

    ' '0 0

    1 1 a b# # # # # a d a a '

    0

    1 k k c d) ) 11! (c) r a sin a cos ; Length (a cos ) (a sin ) d a cos sin d ) ) ) ) ) ) ) )drd)

    ' '0 0

    1 1 a b# # # # # a d a a '

    0

    1k k c d) ) 11!29. r cos 2 , 0 (cos 2 ) ( sin 2 )(2) ; therefore Surface Area ) ) ) )1 )

    ) )4 ddr sin 2

    cos 2" #

    "#

    (2 r cos ) cos 2 d 2 cos 2 (cos ) cos 2 d ' '0 0

    4 41 1

    1 ) ) ) 1 ) ) ) ) # # sin 2 sin 2cos 2 cos 2

    ) )

    ) )#

    2 cos 2 (cos ) d 2 cos d 2 sin 2 ' '0 0

    4 41 1 c d 1 ) ) ) 1 ) ) 1 ) 1" %!cos 2) 1

    30. r 2e , 0 2 e e ; therefore Surface Area ) ) ) 2 2 2) 1)# # #

    "drd

    2

    2 2 e (sin ) 2 e e d 2 2 e (sin ) 2e e d ' '0 0

    2 22 22 2

    1 1

    ) )) ) ) )

    1 ) ) 1 ) )# ## #"2

    2 2 e (sin ) e d 2 2 e (sin ) e d 2 5 e sin d ' ' '0 0 0

    2 2 22 2 2

    1 1 1

    ) ) ) ))

    1 ) ) 1 ) ) 1 ) )5 5

    2#

    2 5 (sin cos ) 5 e 1 where we integrated by parts 1 ) ) 1 a be2) 1#! 12

    31. r cos 2 r cos 2 ; use r cos 2 on 0 (cos 2 ) ( sin 2 )(2) ;# "#" # ) ) ) ) ) 1 )

    ) )4 ddr sin 2

    cos 2

    therefore Surface Area 2 2 cos 2 (sin ) cos 2 d 4 cos 2 (sin ) d ' '0 0

    4 41 1 1 ) ) ) ) 1 ) ) )sin 2cos 2 cos 2# )) )" 4 sin d 4 cos 4 ( 1) 2 2 2 1 ) ) 1 ) 1 1'

    0

    41 c d 1%! #2

  • 666 Chapter 10 Conic Sections and Polar Coordinates

    32. r 2a cos 2a sin ; therefore Surface Area 2 (2a cos )(cos ) (2a cos ) ( 2a sin ) d ) ) 1 ) ) ) ) )drd)'

    0

    1 # # 4a cos 4a cos sin d 8a cos a d 8a cos d 1 ) ) ) ) 1 ) ) 1 ) )' ' '

    0 0 0

    1 1 1a b a b a b k k# # # ## # # 8a d 4a (1 cos 2 ) d 4a sin 2 4a # # # # # "# !1 ) 1 ) ) 1 ) ) 1

    ' '0 0

    1 1 1 cos 22

    ) 1

    33. Let r f( ). Then x f( ) cos f ( ) cos f( ) sin f ( ) cos f( ) sin ) ) ) ) ) ) ) ) ) ) )dx dxd d) )w w# # c d

    f ( ) cos 2f ( ) f( ) sin cos [f( )] sin ; y f( ) sin f ( ) sin f( ) cos c dw # w # # w#) ) ) ) ) ) ) ) ) ) ) ) ) )dyd) f ( ) sin f( ) cos f ( ) sin 2f ( )f( ) sin cos [f( )] cos . Therefore c d c ddyd)

    #w w # w # ## #) ) ) ) ) ) ) ) ) ) ) )

    f ( ) cos sin [f( )] cos sin f ( ) [f( )] r . c d a b a b c ddx drd d ddy) ) )# ##

    w # # # # # w # ## # ) ) ) ) ) ) ) )

    Thus, L d r d . ' '! !

    " " dx drd d ddy) ) )# ##

    #) )

    34. (a) r a(1 cos ) d sin aav 02

    "#!2 0 2

    a1 1

    1' 1 ) ) ) )c d (b) r a d a aav 0

    2

    " " ##!2 01 11' 1 ) )c d

    (c) r a cos d a sin av 22

    " "

    # # 1 1

    # #

    '

    1

    1

    ) ) )1 1

    1

    1c d 2a

    35. r 2f( ), 2f ( ) r [2f( )] 2f ( ) Length 4[f( )] 4 f ( ) d ) ! ) " ) ) ) ) ) )dr drd d) )w # # w# # # w # c d c d'

    !

    "

    2 [f( )] f ( ) d which is twice the length of the curve r f( ) for . '!

    " c d) ) ) ) ! ) "# w #

    36. Again r 2f( ) r [2f( )] 2f ( ) Surface Area 2 [2f( ) sin ] 4[f( )] 4 f ( ) d ) ) ) 1 ) ) ) ) )# w# # # w # c d c ddrd 2) '!

    "

    4 2 [f( ) sin ] [f( )] f ( ) d which is four times the area of the surface generated by revolving '!

    "

    1 ) ) ) ) ) c d# w # r f( ) about the x-axis for . ) ! ) "

    37. x 2 2 23 3 3' ' '' '

    0 0 0

    2 2 2

    0 0

    2 2

    1 1 1

    1 1

    r cos d [a(1 cos )] (cos ) d a 1 3 cos 3 cos cos (cos ) d

    r d [a(1 cos )] d

    $ $ $ # $

    # #

    ) ) ) ) ) ) ) ) ) )

    ) ) )

    a ba 1 2 cos cos d# #'

    0

    21 a b ) ) )

    (After considerable algebra using 2 1 cos 2 1 cos 23

    1 cos 2

    a cos 3 3 1 sin (cos ) d

    1 2 cos d

    '

    '0

    2

    0

    2

    1

    1

    a b

    ) ) ) )

    ) )

    # #

    # #

    #

    ) )

    )

    the identity cos A # # 1 cos 2Aa cos cos 2 2 cos sin cos 4 d

    2 cos cos 2 d

    ''

    0

    2

    0

    2

    1

    1

    15 8 412 3 3 12

    3

    ) ) ) ) ) )

    ) ) )

    # "

    # #

    "

    a; a sin sin 2 sin sin 4

    2 sin sin 2

    a3 6

    5

    15 8 2 212 3 3 3 48

    34

    156) ) ) ) )

    ) ) )

    1

    1

    $ " #

    !

    #

    " #

    !

    1

    1

    y ; u a(1 cos ) du sin d ; 0 u 2a; 2 23 3 r sin d [a(1 cos )] (sin ) d

    r d 3 a

    ' ''0 0

    2 2

    0

    2

    1 1

    1

    $ $

    #

    ) ) ) ) )

    )1

    " ) ) ) ) 2 u 2a 0. Therefore the centroid is y a 0d a b ) 1 B 23 a u du3 3 60 5'2a

    2a

    " $

    1 1

    38. r d a d a a ; x 0;' '0 0

    1 1

    # # # #!) ) ) 1 c d 1 )) ) ) )

    )1 1 1

    2 23 3

    23

    r cos d a cos d

    r d a a aa sin 0

    ' ''0 0

    0

    1 1

    1

    $ $

    ## # #

    $

    !c d 1

    y . Therefore the centroid is x y 0 . 2 23 3

    2 43 3

    r sin d a sin d

    r d a a a 3 3a cos a 4a 4a

    ' ''0 0

    0

    1 1

    1

    $ $

    ## # #

    $ $

    !) ) ) )

    )1 1 1 1 1

    )c d 1 a b

  • Section 10.8 Conic Sections in Polar Coordinates 667

    10.8 CONIC SECTIONS IN POLAR COORDINATES

    1. r cos 5 r cos cos sin sin 5 r cos r sin 5 x y 5 3 x y ) ) ) ) ) 1 1 16 6 6 3 3 # # # #" " 10 y 3 x 10

    2. r cos 2 r cos cos sin sin 2 r cos r sin 2 ) ) ) ) ) 3 3 34 4 4 2 21 1 1 # # x y 2 2 x 2 y 4 y x 2 2

    2 2# #

    3. r cos 3 r cos cos sin sin 3 r cos r sin 3 ) ) ) ) ) 4 4 4 13 3 3 31 1 1 # # x y 3 x 3 y 6 y x 2 3 1 3 33# #

    4. r cos 4 r cos 4 r cos cos sin sin 4 ) ) ) ) 1 1 1 14 4 4 4 r cos r sin 4 x y 4 2 x 2 y 8 y x 4 2

    2 2 2 2# # # #) )

    5. r cos 2 r cos cos sin sin ) ) ) 1 1 14 4 4 2 r cos r sin 2 x y " " " " 2 2 2 2) ) 2 x y 2 y 2 x

    6. r cos 1 r cos cos sin sin 1 ) ) ) 3 3 34 4 41 1 1 r cos r sin 1 x y 2

    2 22 2) )

    y x 2

    7. r cos 3 r cos cos sin sin 3 ) ) ) 2 2 23 3 31 1 1 r cos r sin 3 x y 3 12 2

    3 3) )

    "# #

    x 3 y 6 y x 2 3 33

  • 668 Chapter 10 Conic Sections and Polar Coordinates

    8. r cos 2 r cos cos sin sin 2 ) ) ) 1 1 13 3 3 r cos r sin 2 x y 2 12 2

    3 3) )

    "# #

    x 3 y 4 y x 3 4 33 3

    9. 2 x 2 y 6 2 r cos 2 r sin 6 r cos sin 3 r cos cos sin sin ) ) ) ) ) ) 2 2 4 4# # 1 1 3 r cos 3 ) 1410. 3 x y 1 3 r cos r sin 1 r cos sin r cos cos sin sin ) ) ) ) ) )3 1 6 6# # #" 1 1 r cos " "# # ) 1611. y 5 r sin 5 r sin 5 r sin ( ) 5 r cos ( ) 5 r cos 5 ) ) ) ) ) 1 1# #12. x 4 r cos 4 r cos 4 r cos ( ) 4 ) ) ) 1

    13. r 2(4) cos 8 cos 14. r 2(1) sin 2 sin ) ) ) )

    15. r 2 2 sin 16. r 2 cos cos ) ) )"#17. 18.

    19. 20.

  • Section 10.8 Conic Sections in Polar Coordinates 669

    21. (x 6) y 36 C (6 0), a 6 22. (x 2) y 4 C ( 2 0), a 2 # # # #

    r 12 cos is the polar equation r 4 cos is the polar equation ) )

    23. x (y 5) 25 C ( 5), a 5 24. x (y 7) 49 C ( 7), a 7# # # # ! !

    r 10 sin is the polar equation r 14 sin is the polar equation ) )

    25. x 2x y 0 (x 1) y 1 26. x 16x y 0 (x 8) y 64# # # # # # # # C ( 1 0), a 1 r 2 cos is C (8 0), a 8 r 16 cos is the ) ) the polar equation polar equation

    27. x y y 0 x y 28. x y y 0 x y# # # # # #" "## #

    4 3 3 94 2 4 C , a r sin is the C 0 , a r sin is the ! " "# # ) )2 2 43 3 3 polar equation polar equation

  • 670 Chapter 10 Conic Sections and Polar Coordinates

    29. e 1, x 2 k 2 r 2(1)1 (1) cos 1 cos 2

    ) )

    30. e 1, y 2 k 2 r 2(1)1 (1) sin 1 sin 2

    ) )

    31. e 5, y 6 k 6 r 6(5)1 5 sin 1 5 sin 30

    ) )

    32. e 2, x 4 k 4 r 4(2)1 2 cos 1 2 cos 8

    ) )

    33. e , x 1 k 1 r "# "

    #

    "

    #

    (1)1 cos

    12 cos ) )

    34. e , x 2 k 2 r " 4 4 cos

    (2)1 cos

    2 "

    "

    4

    4 ))

    35. e , x 10 k 10 r " 5 5 sin

    (10)1 sin

    10 "

    "

    5

    5 ))

    36. e , y 6 k 6 r " 3 3 sin

    (6)1 sin

    6 "

    "

    3

    3 ))

    37. r e 1, k 1 x 1 "1 cos )

    38. r e , k 6 x 6; 6 32 cos 1 cos #"

    ) ) "#

    a 1 e ke a 1 3 a 3a b # "# # 34 a 4 ea 2

    39. r r 2510 5 cos 1 cos 1 cos ) ) )

    25 5105

    10

    #

    "

    #

    e , k 5 x 5; a 1 e ke "##a b

    a 1 a a ea "# # ## 5 3 5 10 54 3