Thin Plate Bending and Buckling

61
Thin plate buckling By Dr. Jawad Khawar

description

Aerospace and mechanical engineeringThin plate buckling instability theorymathematical model and solution

Transcript of Thin Plate Bending and Buckling

Page 1: Thin Plate Bending and Buckling

Thin plate buckling

By

Dr. Jawad Khawar

Page 2: Thin Plate Bending and Buckling

Plate subjected to pure bending

(a) Direct stress on lamina of plate element; (b) radii of curvature of neutral plane.

Page 3: Thin Plate Bending and Buckling

Plate subjected to pure bending

D is known as the flexural rigidity of the plate

Page 4: Thin Plate Bending and Buckling

Plate subjected to bending and twisting

(a) Plate subjected to bending and twisting; (b) tangential and normal moments on an arbitrary plane.

Page 5: Thin Plate Bending and Buckling

Plate subjected to bending and twisting

Complementary shear stresses due to twisting moments Mxy.

Page 6: Thin Plate Bending and Buckling

Plate subjected to bending and twisting

Determination of shear strain γxy.

Page 7: Thin Plate Bending and Buckling

Plate Subjected to distributed transverse load

Plate element subjected to bending, twisting and transverse loads

Page 8: Thin Plate Bending and Buckling

Plate Subjected to distributed transverse load

Taking moment about x-axis

Taking moment about y-axis

Page 9: Thin Plate Bending and Buckling

Plate Subjected to distributed transverse load

or or

Page 10: Thin Plate Bending and Buckling

Boundary Conditions

• Simply supported edge at x=0

Page 11: Thin Plate Bending and Buckling

Boundary Conditions

• Built‐in edge (Fixed or Clamped) at x=0

• Free Edge at x=0

Equivalent vertical force system

Page 12: Thin Plate Bending and Buckling

Solution of Thin plate Bending Equation

Rectangular Thin plate simply supported at four edges 

Thin plate bending equation

BOUNDARY CONDITIONS

Assumed solution as a double trigonometric Fourier series

The applied transverse loading in terms of Fourier Series

Page 13: Thin Plate Bending and Buckling

Solution of Thin plate Bending Equation

Page 14: Thin Plate Bending and Buckling

Solution of Thin plate Bending Equation

Substituting w and q in terms of their Fourier series in the thin plate bending equation we have

Page 15: Thin Plate Bending and Buckling

Combined bending and in‐plane loading of a thin rectangular plate

Page 16: Thin Plate Bending and Buckling

Combined bending and in‐plane loading of a thin rectangular plate

Page 17: Thin Plate Bending and Buckling

Combined bending and in‐plane loading of a thin rectangular plate

Page 18: Thin Plate Bending and Buckling

Thin Plate BucklingSimply supported Loaded Edges and Freeunloaded edges

Page 19: Thin Plate Bending and Buckling

Thin Plate Buckling

Page 20: Thin Plate Bending and Buckling

Different loading and edge boundary conditions for thin plate buckling

Buckling coefficients for flat plates in compression

Page 21: Thin Plate Bending and Buckling

Different loading and edge boundary conditions for thin plate buckling

Buckling coefficients for flat plates in bending

Page 22: Thin Plate Bending and Buckling

Different loading and edge boundary conditions for thin plate buckling

Shear buckling coefficients for flat plates

Page 23: Thin Plate Bending and Buckling
Page 24: Thin Plate Bending and Buckling
Page 25: Thin Plate Bending and Buckling
Page 26: Thin Plate Bending and Buckling
Page 27: Thin Plate Bending and Buckling
Page 28: Thin Plate Bending and Buckling
Page 29: Thin Plate Bending and Buckling

Local instability

Secondary Instability or Local buckling

Primary instability or columnbuckling

Page 30: Thin Plate Bending and Buckling

Local instability

(a) Extruded angle; (b) formed channel; (c) extruded Z; (d) formed ‘top hat’.

Page 31: Thin Plate Bending and Buckling

Local instability

Page 32: Thin Plate Bending and Buckling

Local instability

Page 33: Thin Plate Bending and Buckling

Instability of stiffened panels

Page 34: Thin Plate Bending and Buckling

Instability of stiffened panelsInitial buckling of skin stringer panel Panel instability

Inter‐rivet buckling

Page 35: Thin Plate Bending and Buckling

Instability of stiffened panelsTorsional buckling of skin‐stringer panel

Flexural and torsional buckling of skin‐stringer panel

Page 36: Thin Plate Bending and Buckling

Instability of stiffened panelsInter‐rivet buckling or wrinkling of 

skin‐stringer panelWrinkling of skin‐stringer panel

Page 37: Thin Plate Bending and Buckling

Instability of stiffened panels

Simply supported on all four sides

Stiffeners may buckle as long plates simply supported on three sides with one edge free

or

Primary instability Secondary instability

Applied load

where

Page 38: Thin Plate Bending and Buckling

Failure stress in plates and stiffened panels

Average compressive stress Unloaded edge stress

Stowell,  Mayers and Budiansky failure criteria

σcy=σe

Page 39: Thin Plate Bending and Buckling

Failure stress in plates and stiffened panels

Gerard Method

Page 40: Thin Plate Bending and Buckling

Failure stress in plates and stiffened panels

Page 41: Thin Plate Bending and Buckling

• Diagonal tension webs are one of themost outstanding examples of methodsused in airframe stress analysis andstructural sizing.

• Standard structural practice has been toassume that the load carrying capacityof a shear web terminates when theweb buckles and stiffeners are usedmerely to raise the buckling stress ofthe web.

• Airframe design assumes that a thinweb with transverse stiffeners does notfail when it buckles. The web formsdiagonal folds and functions as a seriesof tension straps while the stiffeners actas compression posts. The web‐stiffenerthus acts as a truss and may be capableof carrying loads far greater than thoseproducing the buckling of the web.

Shear Panels (Tension Field Beams)

Page 42: Thin Plate Bending and Buckling

Typical Shear Panel Composition

Typical Spar construction of wing

Page 43: Thin Plate Bending and Buckling

Shear Panels

• Shear Resistant Webs

• Pure Diagonal Tension Webs

• Incomplete diagonal Tension Webs

Page 44: Thin Plate Bending and Buckling

Shear Resistant Web

• Shear resistant web are those that do not buckle under ultimated shear stress.

• Shear resistant web are not very common in aircraft structural design. However there are quite ubiquitous in other structures such as bridges and buildings

• In Shear resistant web the allowable web stresses can only be increased by– Increasing web thickness– Decreasing spacing between the stringers in shear resistant web

Page 45: Thin Plate Bending and Buckling

Shear Resistant Web

Page 46: Thin Plate Bending and Buckling

Pure or Complete Diagonal Tension Webs

Page 47: Thin Plate Bending and Buckling

Derivation of Stresses in Complete Tension Field webs

Page 48: Thin Plate Bending and Buckling

Determination of flange forcesBalancing Int. and ext. moments about the bottom flange

Resolving forces horizontally

Page 49: Thin Plate Bending and Buckling

Vertical Loading on stiffeners due to web stresses

Balancing vertical forces on the web

Compressive load on the vertical stiffeners

Experimentally determined empirical relation

Effective length of the stringers

Page 50: Thin Plate Bending and Buckling

Vertical loading on the flanges due to web stresses

AF is the cross-sectional area of the

flange

AS is the cross-sectional area of the

stiffeners

Derived using the principal of minimum strain energy

Alternate expression

Page 51: Thin Plate Bending and Buckling

Incomplete Complete Diagonal Tension Webs

Diagonal tension factor

Page 52: Thin Plate Bending and Buckling

Incomplete Complete Diagonal Tension Webs

Empirical factor

Modified flange stress is given by

Modified stiffener stress is given by

σ2

σ1

Page 53: Thin Plate Bending and Buckling

Incomplete Complete Diagonal Tension Webs

Effective length of stiffeners

Page 54: Thin Plate Bending and Buckling

Effect of Taper on Diagonal Tension Beam Calculations

Resolving forces vertically

Resolving forces horizontally

Taking moment about lower Flange

Solving above three equations simultaneously 

Page 55: Thin Plate Bending and Buckling

Effect of Taper on Diagonal Tension Beam Calculations

Compressive force acting on thevertical stiffeners/stringers isgiven by:

Shear force S acting on anysection of the beam is given by:

Page 56: Thin Plate Bending and Buckling

Buckling of curved plates

Compression Loading

Page 57: Thin Plate Bending and Buckling

Buckling of curved plates(Shear Loading)

Page 58: Thin Plate Bending and Buckling

Buckling of curved plates(Shear Loading)

Page 59: Thin Plate Bending and Buckling

Buckling of curved plates(Shear Loading)

Page 60: Thin Plate Bending and Buckling

Buckling of curved plates(Shear Loading)

Page 61: Thin Plate Bending and Buckling

Buckling of curved plates(Shear Loading)