Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

39
Thin Film Lubrication Thin Film Lubrication for MEMS Devices for MEMS Devices John B. Merrill John B. Merrill November, 2004 November, 2004 Sandia National Laboratory
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    213
  • download

    0

Transcript of Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

Page 1: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

Thin Film Lubrication Thin Film Lubrication for MEMS Devicesfor MEMS Devices

John B. MerrillJohn B. Merrill

November, 2004November, 2004

Sandia National Laboratory

Page 2: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

2

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

What we will cover:

•The classic Reynolds equation

•Modern modifications to the Reynolds equation for micro- and nano-scale behavior

•Modern applications of thin film lubrication in MEMS devices

Page 3: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

3

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

The Classic Reynolds Equation…

Osbourne Reynolds

1842 - 1912

Page 4: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

4

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

U

h

x

y

x

hU

y

P

μ

h

yx

P

μ

h

x

21212

33

The classic Reynolds equation governs the development of hydrodynamic load support between two non-parallel planes in constant relative motion. The relation between the film thickness and pressure profile can be determined if enough boundary and initial conditions are known.

Page 5: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

5

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

A modern tilt-pad thrust bearing from Kingsbury Corp.

Page 6: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

6

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

U

x

y

Pressure Profile:

P0

Pmax

P0m

mgdxdzPxPlift Net 0

Page 7: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

7

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Modifications to the Classic Reynolds Equation for Micro-Flows

• First Order, Slip Flow

Page 8: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

8

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

PHx

Λdy

dPPHKn

σ

σ

ydx

dPPHKn

σ

σ

x v

v

v

v

33 2

612

61

•Includes slip-flow boundary conditions using TMAC

•Knudsen layer modeled with kinetic gas theory

•Valid for Kn << 1

Page 9: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

9

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Modifications to the Classic Reynolds Equation for Micro-Flows

• Second Order

Page 10: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

10

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

x

hUρ

t

hρhλhλ

y

p

μyhλhλ

x

p

μx

022

322

3

2

1

62

1

62

1

Page 11: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

11

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Modifications to the Classic Reynolds Equation for Micro-Flows

• F-K Model

Page 12: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

12

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

0300

PHΛPH

dX

dTPPHDQ

dX

dPPHDQ

dX

d wTP

•Basis of derivation is linearized Boltzmann equation

•Includes thermal creep flow

•Uses a polynomial curve-fit to establish the nondimensional flowrate for Poiseuille flow (QP)

Page 13: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

13

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Modifications to the Classic Reynolds Equation for Micro-Flows

• Nanoscale Effect

Page 14: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

14

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

0~1~ 3

23

Y

PPHQ

YbPHΛ

X

PPHQ

X pp

•QP is a function of NP (the “nanoscale effect”), which is a function of Kn.

•Where film thickness is same order as mean-free-path, mean-free-path must be adjusted to account for collissions with the boundaries.

•Nanoscale effect can be applied to any other model’s boundary conditions.

Page 15: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

15

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Nanoscale Effect versus Knudsen number

Page 16: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

16

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Page 17: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

17

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Modifications to the Classic Reynolds Equation for Micro-Flows

• Molecular Models

Page 18: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

18

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

PHdX

dY

dP

P

HKξHKξPH

dY

d

dX

dP

P

HKξHKξPH

dX

dnnnn

22232223 6666

•Previous models simplified collisions by modeling both molecules as Hard Spheres.

•Advanced molecular analysis utilizes Variable Hard Sphere (VHS) and Variable Soft Sphere (VSS) to calculate a modified mean-free-path.

•Uses empirical constants

Page 19: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

19

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Page 20: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

20

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Modifications to the Classic Reynolds Equation for Micro-Flows

• DSMC (Direct Simulation Monte Carlo)

Page 21: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

21

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

DSMC Method:

•A stochastic model

•The control volume is divided into a number of cells, each filled with gas molecules that behave like hard spheres.

•The cell volume must be no larger than the cubic mean free path.

•Boundary conditions and initial conditions are subjected to a random collision function until the results are stable.

•Computation time and capacity can be extreme.

Page 22: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

22

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Page 23: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

23

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Summary of Modified Reynolds Equations:

Model Range Min. h (air at STP) Comments

Classic

First-Order

Second Order

FK

NanoscaleEffect

MolecularModel

D S M C

Kn ≤ .01

.01 < Kn < 0.1

Kn ≤ 1

Kn > 1

Kn > 10

all

6500 nm

650 nm

65 nm

> 0

> 0

0

Limited to macro devices

Overestimates support load

Underestimates support load

Tabular gas data required

Difficult algorithms

Tabular gas data required

Massive computational requirements

Page 24: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

24

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Example 1: The MIT MicroturbineExample 1: The MIT Microturbine

Page 25: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

25

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Let’s look at an example…the MIT MicroTurbine:

•Developed beginning in 1997

•Designed to produce 10-20 W of electric power

•0.05 N [0.011 lbf] of thrust

•Fuel consumption under 10 g/hr (H2 vapor fuel)

•Thrust-to-weight ratio of 12:1

•Flow is weird – it is supersonic (M 1.4), yet laminar (Re = 20,000)!

•Shaft speed = 1,200,000 rpm (rotor tip speeds > 500 m/s)

Page 26: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

26

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Page 27: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

27

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

3.7 mm

21 mm

Compressor Rotor

Diffuser Vane Combustor

Nozzle Guide VaneTurbine Rotor

ExhaustJournal Bearing

Inlet

Thrust Bearing

Starting Air In

4.2 mm

Page 28: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

28

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Turbine Rotor Spiral-Groove Thrust Bearing

Page 29: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

29

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

300 µm 11 mg

400 µm

Ø 10µm holes

Spiral Grooves

1.5 µm

1.0 µm

Page 30: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

30

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Example 2: Micro Disk DrivesExample 2: Micro Disk Drives

Page 31: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

31

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

TYPICAL MAGNETIC STATIONARY HEAD

ROTATING DISK

10-50 nm

Page 32: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

32

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

0.85 inch

1.00 inch

1.00 inch

1.00 inch

4.0 GB

5.0 GB

4.0 GB

4.4 GB

7 GB/in2

6 GB/in2

5 GB/in2

5.5 GB/in2

10 g

19 g

16 g

16 g

Page 33: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

33

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Page 34: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

34

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Where are we going…?

Page 35: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

35

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Turbine Thrust-to-Weight Ratios

0

2

4

6

8

10

12

14

1930 1940 1950 1960 1970 1980 1990 2000 2010

Jumo 004B turbojet (Messerschmitt Me 262)

Pratt & Whitney J-57 (F-100, B-52)

GE YJ79-GE-3 Turbojet (F-4C)

GE TF34 turbofan (S-3, A-10)

Rolls-Royce EJ200 (Eurofighter Typhoon)

GE F110-GE-129 (F-16)

GE/Rolls-Royce (F-136 JSF)

MIT MicroTurbine

Page 36: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

36

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Page 37: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

37

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

Page 38: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

38

THIN FILM LUBRICATION FOR MEMS DEVICES

ME 595 FALL 2004

•McHugh, J., (2003), “Albert Kingsbury – His Life and Times,” Sound and Vibration, publication of Kingsbury Corp., October.•Karniadakis, G.E. and Beskok, A., (2002), Micro Flows, Fundamentals and Simulation, Springer-Verlag, New York, pp. 167-168, and Panton, R.L., 1996, Incompressible Flow, (2ed) John Wiley & Sons, Inc., New York, pp. 669-672.

•Burgdorfer, A., (1959), “The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas Lubricated Bearings,” ASME J. of Basic Engineering Trans., 81, pp. 94-909, as cited in Alexander p. 3855 and Karniadakis p. 169.

•Hsia, Y.T. and Domoto, G.A., (1983), “An Experimental Investigation of Molecular Rarefaction Effects in Gas Lubricated Bearings at Ultra-Low Clearances,” ASME J. Tribol., 105, pp. 120-130.

•Fukui, S. and Kaneko, R., (1988), “Analysis of Ultra Thin Gas Film Lubrication Based on Linearized Boltzmann Equation: First report – Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow, ASME J. Tribology, 110, pp. 253-262, as cited in Alexander p. 3855 and Karniadakis p. 171.

•Peng, Y., Lu, X. and Luo, J., (2004), “Nanoscale Effect on Ultrathin Gas Film Lubrication in Hard Disk Drive, “ ASME J. Trib., 126, pp. 347-352.

•Sun, Y., Chan, W.K. and Liu, N., (2002), “A Slip Model with Molecular Dynamics,” J. of Micromechanics and Microengineering, 12, pp. 316-322.

•Huang, W., Bogy, D.B. and Garcia, A.L. (1997), “Three-Dimensional Direct Simulation Monte Carlo Method for Slider Air Bearings,” Phys Fluids 9 (6), pp.1764-1769, with permission.

•Epstein, A.H.et al, (1997), “Micro-Heat Engines, Gas Turbines, and Rocket Engines – The MIT Microengine Project,” Amer. Inst. Of Aeronautics and Astronautics, Inc., Presented at the 28th AIAA Fluid Dynamics Conference, June 1997, Snowmass Village, CO. Paper 97-1773.

•Ausubel, J.H., (2004), “Big Green Energy Machines,” The Industrial Physicist, 10(5), pp. 20-24.•Wong, C.W., Zhang, X, Jacobsen, S.A. and Epstein, A.H., (2004), “A Self-Acting Gas Thrust Bearing for High-Speed Microrotors,” J. of Microelectromechanical System, 13(2), pp. 158-164.

•Sedy, J., (1980), “Improved Performance of Film Riding Gas Seals Through Enhancement of Hydrodynamic Effects,” ASLE Transactions, 23(1), pp. 35-44.

•Epstein, A.H., (2003), “Millimeter-Scale, MEMS Gas Turbine Engines,” Proceedings of ASME Turbo Expo 2003 Power for Land, Sea, and Air, ©ASME Press. Epstein et al, ref. 9.

•Breuer, K., (2001), “Lubrication in MEMS,” CRC Handbook on MEMS, CRC Press.•Hitachi’s UltraStar 36ZX, a 36.7 GB disk drive.•Grochowski, E., IBM Almaden Research Center, Silicon Valley, CA.•Menon, A.K. and Gupta, B.K., (2004), “Nanotechnology: A Data Storage Perspective,” DataTech, publication of the Read-Rite Corporation, Freemont, CA.

•Carnes, K., (2004), “Hard-Driving Lubrication,” Tribology and Lubrication Technology, 60(11), STLE, pp. 30-38. Note the quote from Dr. Bogy on p. 32, who helped this author interpret the DSMC analysis in ref. 8.

References

Page 39: Thin Film Lubrication for MEMS Devices John B. Merrill November, 2004 Sandia National Laboratory.

Thank you for your time!