Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8...

14
1 – Evaporation Thermal evaporation E-beam evaporation – Sputtering DC sputtering RF sputtering Reactive sputtering – Chemical Vapor Deposition – Laser ablation – Spin-on/liquid deposition Spin-on glass and dopants Sol-gel deposition Thin film deposition Vacuum requirement Long mean free path – Larger than 1m – pressure less than 5 x 10 -6 Torr Free of reactive components – Oxygen Free of outgassing during evaporation

Transcript of Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8...

Page 1: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

1

– Evaporation• Thermal evaporation• E-beam evaporation

– Sputtering• DC sputtering• RF sputtering• Reactive sputtering

– Chemical Vapor Deposition– Laser ablation– Spin-on/liquid deposition

• Spin-on glass and dopants• Sol-gel deposition

Thin film deposition

Vacuum requirement

• Long mean free path – Larger than 1m– pressure less than 5 x 10-6 Torr

• Free of reactive components– Oxygen

• Free of outgassing during evaporation

Page 2: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

2

• Physical Vapor Deposition (PVD)– Film is formed by atoms directly

transported from source to the substrate.• Evaporation• Sputtering

• Chemical Vapor Deposition (CVD)– Film is formed by chemical reaction on

the surface of substrate.• SiO2, Si3N4, SiC, W CVD deposition• Atomic layer deposition• Crystal growth

• Evaporation– Thermal evaporation– E-beam evaporation

Page 3: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

3

E-beam evaporationMaterial contained in a crucibleEvaporation of almost any material including refractory metalsNo control of volatile components/stoichiometric composition

Thermal E-beam

Temperature range

~ 1800°C ~ 3000°C

Deposition rate

0.1 ~ 2 nm/s 1 ~ 10 nm/s

Typical evaporant

Au, Ag, Al, Cr, Sn, Ga, Ti, NaCl, KCl, MgF2

AlsoPt, W, Ta, Zr, Al2O3, SiO2, TiO2, SnO2

Page 4: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

4

Shadowing effectsIncomplete step coverage

Mitigated by rotation & angled evaporation

Page 5: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

5

3-Boat Evaporator• 3 separate evaporation

boats• Alloyed layers

– SnAu, AuGe

• Adhesion layers– Cr, Ti

• Protection layer– Au, Pt

Amorphous

Crystalline

Page 6: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

6

• Sputtering– DC sputtering– DC magnetron

sputtering– RF sputtering– Reactive sputtering

Magnetron sputtering:Magnetic field concentrates the plasma for more efficient sputtering

Page 7: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

7

For SiO2, borosilicate filmsOther insulators

Page 8: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

8

• For the deposition of compound thin films

• Addition of appropriate reactive gas (O2, propane, N2)

• Oxide, carbide, nitride

Page 9: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

9

Evaporation SputteringLow energy atoms (~0.1 eV) High energy atoms/ions (1~10 eV)

•Denser film•Smaller grain size•Better adhesion

High vacuum•Directional•Good for lift-off•Lower impurity

Low vacuum•Poor directionality•Better step coverage•Gas atom implanted in the film

Point source•Poor uniformity

Parallel plate source•Better uniformity

Component evaporate at different rate•Poor stoichiometry control

All component sputter with similar rate•Maintains stoichiometry

Page 10: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

10

– Low-Pressure CVD (LPCVD)

– Plasma-Enhanced CVD (PECVD)

– Atmosphere-Pressure CVD (APCVD)

– Metal-Organic CVD (MOCVD)

Examples: SiO2: SiH4 and O2Si3N4: SiH4 and NH3

Page 11: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

11

Page 12: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

12

ALD deposition

• Based on two self-limiting half reactions• Deposition of one atomic layer per cycle (slow)• Superior thickness control of very thin layers

0

10 20 30 40 50

0 40 80 120 160 200 240

Time (s)

W

Al2

O3

T = 177°C 1 - 5 - 1 - 5 (W)1 - 5 - 1 - 5 (Al

2O

3)

Process Material Grain size

Film density

Deposition rate

Substrate temperature Directional

Thermal evaporation

Metal or low melting point

materials

10 ~100 nm

poor 0.1 ~ 2 nm/s 50 ~ 100°C yes

E-beam evaporation

Both metal and

dielectrics

10 ~100 nm

poor 1 ~ 10 nm/s 50 ~ 100°C yes

SputteringBoth metal

and dielectrics

~ 10 nm good

Metal: ~ 10 nm/sDielectrics:

0.1 ~ 1 nm/s

~ 200°C Some degree

PECVD Many dielectrics

10 ~100 nm

good 1 ~ 10 nm/s 200 ~ 300°C Some degree

LPCVD Many dielectrics

1 ~ 10 nm excellent 1 ~ 10 nm/s 600 ~ 1200°C isotropic

Page 13: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

13

Electroplating/Anodization

Inert Electrode (Pt, C)

CuSO4

H2O

Electrolyte

Wafer

DC source

V

• Metals– Cu, Au, Cr ….

• Efficient use of material• Less dense than evaporation/sputtering• Requires seed layer (Strike/Flash)

Reduction reaction Cu+ + e- → Cu

AnodeCatode Resist process

Resist removal

W/Au Metallization ProcessW/Au flash deposition

Photo Resist process

Electroplating

Resist removal

Au etch (I/KI)

W etch (CF4 RIE)

Page 14: Thin film deposition - University of Colorado Boulderecee.colorado.edu/~ecen4375/s10/secure/L8 Deposition.pdf · • Reactive sputtering – Chemical Vapor Deposition – Laser ablation

14

– Laser ablation• Maintains composition• Used for perovskites

– Ferro-electric materials– High-temperature superconductors

– Spin-on/liquid deposition• Spin-on glass and dopants• Sol-gel deposition• Spray-on deposition

Alternate thin film deposition