TheUrbanAtmosphere: turbulence& parameterizaonsefm.princeton.edu/UrbanCourse/Lecture 5.pdf · 2015....

48
The Urban Atmosphere: turbulence & parameteriza7ons Elie BouZeid Princeton University Civil & Environmental Engineering Lecture 5

Transcript of TheUrbanAtmosphere: turbulence& parameterizaonsefm.princeton.edu/UrbanCourse/Lecture 5.pdf · 2015....

  • The  Urban  Atmosphere:  turbulence  &    

    parameteriza7ons

    Elie  Bou-‐ZeidPrinceton  University

       Civil  &  Environmental  EngineeringLecture  5

  • Turbulence & Leonardo Da Vinci

     Leonardo  Da  Vinci  already  observed  that  sometimes  fluid  flow  seems  to  “degenerate”  into  what  looks  like  random  motion                  

                     

       

    "ʺObserve  the  motion  of  the  surface  of  the  water,  which  resembles  that  of  hair,  which  has  two  motions,  of  which  one  is  caused  by  the  weight  of  the  hair,  the  other  by  the  direction  of  the  curls;  thus  the  

    water  has  eddying  motions,  one  part  of  which  is  due  to  the  principal  current,  the  other  to  random  and  reverse  motion."ʺ  

    Slide  2  

  • Turbulence & Osborne Reynolds

     Osborne  Reynolds  found  that:    If  the  viscous  forces  dominate:  flow  stays  laminar  

     When  inertial  forces  (the  non-‐‑linear  term)  begin  to  dominate,  flow  transits  to  turbulence  

     He  then  characterized  that  Balance  using  the  Reynolds  number    

    Re UL UDorυ υ

    =

    e.g. 10 m building in a 1m/s wind

    Where  does  Re  come  from?  

    Slide  3  

  • What is turbulence? Inertial forces >> viscous forces

    w = < w >L C = < C >L

    probe  

    w = < w >T + w′ C = < C >T + C′

    probe  

    0 10 20 30 40 50-0.5

    0

    0.5

    time (s)ve

    locity

    (m/s)

    0 10 20 30 40 50-0.5

    0

    0.5

    time (s)

    veloc

    ity (m

    /s)

    Slide  4  

  • Turbulent vortices Slide  5  

  • Turbulent structures and mean flow

    Stagna/on  points  Recircula/on  region  Horseshoe  vortex  

    Slide  6  

  • Turbulent plume dispersion Slide  7  

  • Turbulent plume dispersion Slide  8  

  • Reynolds decomposition for turbulence  Reynolds proposed a very ingenious

    idea: write the velocity u as a sum of the mean flow and the turbulent departure from the mean

     He then split the Navier-Stokes equations along these lines to get one equation for the mean, and another for the turbulence

    u u u′= +

    ui∂u j∂ xi

    u u u′= +

    v = v + ′v p = p + ′pw = w + ′w ρ = ρ + ′ρ

    what is ′u ?

    Slide  9  

  • Some  Rules  of  Reynolds  averaging  

      It  really  represents  ensemble  averaging:  ergodicity  allows  us  to  equate  that  to  /me  and/or  space  averaging  

      Rules  of  the  Reynolds  decomposi/on  are  the  same  as  any  other  sta/s/cal  opera/on  that  involves  averaging  

    if u = u + ′u

    Where u is the mean of the series u, for example u is a series of velocity measurements

    u = 1N

    uii=1

    N

    ∑ and similarly we have v = v + ′v

    Then the following apply

    u + v = u + v cu = cu if c is a constant

    u =u uv = uv

    while uv = uv + ′u ′v

    Slide  10  

  • Some  Rules  of  Reynolds  averaging  dudt

    = dudt

    in practice not in theory, only with spectral gap, i.e. when mean changes much more slowly than turbulent fluctuations

    ′u = 0

    ′u ′v , ′u 2, ′v ′u 2, ′v 2 ′u 2 not necessarily equal to 0, most often ≠ 0 in turblence

    urms = ′u2( )1/2

    u ′v = u ′v = 0

    Turbulence intensity = I = σ uu

    = std(u)u

    ′u ′v is the covariance of u and v

    and ′u ′v

    σ uσ vis their correlation coefficient

    Slide  11  

  • Turbulence in Rivers

    Flow around a boulder

    Falls Missisippi & Illinois

    Slide  12  

  • Turbulence in Oceans

    waves

    wake of an island

    wake of a hovercraft Tidal instability (U WA)

    Slide  13  

  • The scales of turbulence η L

    Dissipation)range inertial)range energy)production)range

    production  =  P  dissipation  =  ε   cascade  

    Slide  14  

    ©  2011    Elie  Bou-‐Zeid  

  • The scales of turbulence   Energy Production Range: Large  scales  –  Affected  by  boundary  conditions    flow  specific  –  Interacts  with  the  mean  flow  :  transforms  the  mean  kinetic  energy  

    (MKE)  into  Turbulent  kinetic  energy  (TKE)  –  Produces  almost  all  convective/advective  fluxes  

      Inertial  subrange:  Intermediate  scales  –  Does  not  interact  with  boundaries  or  mean  flow    flow  independent  –  Receives  the  cascading  TKE  &  passes  it  on  to  smaller  scales  –  Turbulence  is  homogeneous  and  isotropic    Kolmogorov  theory  

      Dissipation  rage:  Smallest  scales    –  Does  not  interact  with  boundaries  or  mean  flow    flow  independent  –  Dissipates  all  the  TKE  into  heat  (low  source  of  heat)  –  The  smallest  turbulent  scale  is  called  the  Kolmogorov  scale  

    Slide  15  

  • Index (Einstein) notation to simplify things

      In  index  notation  an  equation  can  have  many  “repeated”  indices  &  many  “free”  indices  

      Each  index,  repeated  or  free,  takes  the  values  denoting  all  spatial  (or  other)  dimensions    e.g.  in  ui  ,  i  can  be  1,  2,  or  3  where    1    indicates  the  x-‐‑direction      (u1  =  u,  x1  =  x)  2    indicates  the  y-‐‑direction      (u2  =  v,  x2  =  y)  3    indicates  the  z-‐‑direction      (u3  =  w,  x3  =  z)  

    Slide  16  

  • Index (Einstein) notation to simplify things

      A  free  index,  if  used,  should  appear  in  every  term  of  the  equation,  but  only  once.  

      For  an  equation  with  1  free  index,  the  index  will  denote  a  vector  equation  where  the  value  of  the  free  index  tells  us  what  direction  we  are  considering.  For  the  momentum  equation  for  example  with  a  free  index  i,  i=1  denotes  the  x-‐‑momentum  equation  while  i=2  denotes  the  y-‐‑momentum  equation  

      An  equation  with  no  free  indices  will  be  a  scalar  equation    An  equation  with  2  free  indices  will  be  a  tensor  equation  

    Slide  17  

  • Index (Einstein) notation to simplify things   Repeated  indices  –  If  the  term  has  a  repeated  index,  the  repetition  means  one  should  

    replace  the  repeated  index  with  all  the  coordinates  (x  and  y  and  z)  and  sum  the  terms,  for  example:    

     –  A  repeated  (dummy)  index,  should  appear  twice,  or  not  at  all,  in  

    each  term    

       –  A  dummy  index  cannot  appear  more  than  twice  in  a  single  term,  

    but  we  can  have  more  than  one  dummy  index  in  a  term            (uiui)(vivi)  

    ∂ui∂xi

    =∂u1∂x1

    +∂u2∂x2

    +∂u3∂x3

    = ∇.u

    is a repeated index, no free indices is a free index, no repeated indices

    i i

    i

    u x iT x i∂ ∂∂ ∂

    Slide  18  

  • Equations in index notation ∂ρ∂t

    +∇. ρu( ) = 0 ⎯ →⎯ ∂ρ∂t +

    ∂ ρui( )∂xi

    = 0

    ∂u

    ∂t+ u.∇u= − 1

    ρ∇p +ν∇2u

    − fc k

    ×U+ 1−

    ′θvθv

    ⎝⎜⎞

    ⎠⎟g

    ∂ui∂t

    + u j∂ui∂x j

    = − 1ρ∂p∂xi

    +ν∂2ui∂x j

    2+ fcεij3u j −δ i3 1−

    ′θvθv

    ⎝⎜⎞

    ⎠⎟g

    εijk is the alternating unit tensor =1 for even permutatins of (i,j,k):123,231,312−1 for odd permutatins of (i,j,k):132,213,321

    0 if any index is repeated, e.g. 112,233,333

    ⎨⎪⎪

    ⎩⎪⎪

    δ ij is the Kronecker delta = 1 if i = j0 if i ≠ j

    ⎧⎨⎪

    ⎩⎪

    Slide  19  

  • Decomposing  the  con/nuity  equa/on  ∂ui∂xi

    = 0

    ∂ ui + ui′( )∂xi

    =∂ ui( )∂xi

    +∂ ui′( )∂xi

    = 0 (1)

    Apply the Reynolds Averaging

    ∂ ui( )∂xi

    +∂ ui′⎛⎝⎜

    ⎞⎠⎟

    ∂xi= 0

    ∂ui∂xi

    = 0 (2)

    Subtract the mean equation from the full equation (1)-(2)

    ∂ui′

    ∂xi= 0 (3)

    Slide  20  

  • Decomposing  the  momentum  equa/on  ∂ui∂t

    + u j∂ui∂x j

    = − 1ρ∂p∂xi

    +ν∂2ui∂x j

    2+ fcεij3u j −δ i3 1−

    θv′

    θv

    ⎝⎜⎜

    ⎠⎟⎟g

    Apply the Reynolds decomposition to every term

    ∂ ui + ui′( )∂t

    + u j + u j′( ) ∂ ui + ui′( )

    ∂x j

    = − 1ρ

    ∂ p + p′( )∂xi

    +ν∂2 ui + ui′( )

    ∂x j2

    + fcεij3 u j + u j′( )−δ i3 1− θv′θv⎛

    ⎝⎜⎜

    ⎠⎟⎟g

    Apply Reynolds averaging on the whole equation , i.e. on every term

    Noting that terms with the mean of a perturbation are zero∂ ui′

    ∂t, u j′

    ∂ui∂x j

    , fcεij3 u j′ = 0

    ∂ui∂t

    + u j∂ui∂x j

    = − 1ρ∂p∂xi

    +ν∂2ui∂x j

    2+ fcεij3u j −δ i3g −

    ∂ ui′u j′⎛⎝⎜

    ⎞⎠⎟

    ∂x jThis is the equation for the mean flow, the equation of conservation of mean momentum

    Slide  21  

  • Decomposition of the energy conservation equation

      Mean  Conservation  of  Energy  

    ∂θ∂t

    + u j∂θ∂x j

    =κ ∂2θ∂x j2 −

    1ρcp

    ∂Ri∂xi

    −Leρcp

    E −∂ θ ′u j′⎛⎝⎜

    ⎞⎠⎟

    ∂x j

    ∂θ∂t

    + u j∂θ∂x j

    =κ ∂2θ

    ∂x j2−

    1ρcp

    ∂Ri∂xi

    −Leρcp

    E

    Slide  22  

  • Turbulent  flux  terms?  

    ∂ ui′u j′( )∂x j

    : Effect of turbulence on mean flow

    ui′u j′ : turbulent stress applied on the mean flow

    acts almost like a very strong viscosity

    ∂ θ′u j′( )∂x j

    : Effect of turbulence on mean temperature field

    θ′u j′ : turbulent heat flux, acts almost like a very strong diffusivity

    Similarly : C′u j′ : turbulent flux of pollutants, water vapor,etc.

    Slide  23  

  • Why  are  the  turbulent  flux  terms  important  –  1  ?  

     Climate,  weather  and  other  models  cannot  solve  the  full  equa/ons:  too  demanding  computa/onally  

     They  solve  the  mean  equa/ons  only  

     But  in  these  equa/ons  we  have  these  addi/onal  unknowns,  the  turbulent  fluxes,  that  we  need  to  model:  turbulence  closure  problem  

    Slide  24  

  • Simplest  turbulence  closure:  K-‐theory  

      The  K  theory  follows  conven/onal  turbulence  modeling  approaches  and  postulates  that  turbulence  acts  as  a  strong  (eddy)  viscosity  for  momentum  and  strong  (eddy)  diffusivity  for  heat  and  scalars,  for  example  

    u′w′ = −Kmdudz

    v′w′ = −Kmdvdz

    Km = eddy viscosity

    θ ′w′ = −Khdθdz

    q′w′ = −Kqdqdz

    Kh,q = eddy diffusivities

    Slide  25  

  • Why  are  the  turbulent  flux  terms  important  –  2  ?  

     At  the  surface,  these  turbulent  fluxes  are  the  fluxes  of  heat,  water  vapor,  momentum  from  the  surface  to  the  atmosphere  

     We  need  to  model  (special  surface  closure)  or  measure  them  near  the  ground  to  describe  urban-‐atmosphere  interac/ons  

    Slide  26  

  • Vertical surface fluxes of sensible heat or any scalar

    27   Slide  27  

  • How are they related to H and LE? H = ρcp ′w ′θ = vertical (dynamic) heat flux

    ′w ′θ = H ρcp= vertical kinematic heat flux

    LE =Lv × E = ρLv ′w ′q = vertical (dynamic) latent heat fluxLv ′w ′q = vertical kinematic latent heat fluxτ s = surface stress ≡ vertical dynamic momentum fluxes

    =ρ ′u ′w2+ ′v ′w

    2( )1/2 = ρu*2 > 0u*

    2 ≡ friction velocity > 0

    ′u ′w , ′v ′w = vertical kinematic flux of u,v-momentum

      Kinematic  fluxes  are  equivalent  to  Reynolds  fluxes  in  the  ABL  and  represent  the  transport  of  a  variable  per  unit  area  per  unit  time,  normalized  by  average  mass  per  unit  volume  (ρ)  or  average  heat  capacity  per  unit  volume  (ρcp)    

    28   Slide  28  

  • Similarity for the ASL flow over rough wall

    PHW W LτΔ =z  

    U  =  ū  ρ,  µ  of  the  fluid  

    Flow  over  rough  wall  under  steady  state  conditions:  what  is  U?  

    ΔP  

    Surface  stress  τs

    We can reformulate the question as: what is / ?Without changing anythingabout the problem fundamentals

    dU dz

    Slide  29  

    ΔP : kg m−1s−2 U : ms−1

    ρ : kg m−3 µ : kg m−1 s−1

    z : m τ : kg m−1 s−2

  • Similarity for the ASL flow over rough wall

    z  U  =  ū  

    ρ,  µ  of  the  fluid  

    4  parameters  –  3  dimensions:  we  need  1  non-‐‑dimensional  variable  

    ΔP  

    Surface  stress  τs

    Slide  30  

    Outside  of  the  viscous  sublayer    the  viscous  force  is  small  

    ΔP : kg m−1s−2 U : ms−1

    ρ : kg m−3 µ : kg m−1 s−1

    z : m τ : kg m−1 s−2

    τ / ρz dU / dz

    = ??

  • Surface  flux  models:  The  Monin-‐Obukhov  similarity  theory  

    τ s / ρ

    z du / dz= cst Recall that u* = τ / ρ

    This is the appropriate velocity scale in the ASLu*

    z du / dz= cst = κ 0.4 is the von karman constant

    ⇒ du =u*κ

    1z

    dz

    du0

    u∫ =

    u*κ

    1z

    dzz0

    z

    why z0 (it is called the surface roughness length)? see next slide

    uu*

    =1κ

    lnzz0

    ⎛⎝⎜

    ⎞⎠⎟

    This is called log-law or law-of-the-wall.

    It applies for any wall-bounded flow over smooth or rough surfaces.e.g.measure the wind profile at 6 points in the first 20 meters, you can extrapolate to 150 m

    Slide  31  

  • Log-profile of velocity & z0 : smooth wall

    Viscous sublayer ~ few mm

    Real profile

    Fictitious extension of log profile

    Roughness elements

      z0  is  an  integration  constants  that  indirectly  represents  the  viscous  friction  forces  at  the  surface  

    32  

    ln(z)"

    Slide  32  

  • Log-profile of velocity & z0 : rough wall

    Real profile

    Fictitious extension of log profile

    Roughness elements

      z0  is  an  integration  constants  that  indirectly  represents  the  pressure/form  drag  due  to  small  roughness  elements  as  well  as  viscous  friction  

    Viscous sublayer ~ few mm

    33  

    ln(z)"

    Slide  33  

  • Log-profile of velocity & d : very rough walls Over surfaces with large roughness elements, we introduce the displacement height d. This is needed when the height of the roughness element h z

    uu*

    = 1κ

    ln z − dz0

    ⎝⎜⎞

    ⎠⎟

    for vegetation height h, z0 ≈1

    10h & d ≈ 2

    3h

    for buildings of height h, z0 ≈ ??h , d ≈ ??husually depends on building density

    What is d for buildings that aresodense that they are almost touching each other?

    34  

    Slide  34  

  • Real profile

    Fictitious extension of log profile

    Viscous sublayer ~ few mm

    Log-profile of velocity & d : very rough walls

    Roughness elements

      d  represents  the  average  height  above  the  surface  of  the  large  roughness  elements.  We  ignore  it  when      d  

  • Model  for  d  and  z0  

    Slide  36  

    AT=Ad,on  next  slide  

    λp  =  plan  area  covered  by  building/total  lot  area  =  Ap  /  AT    zd  =  d  =  displacement  height  zH  =H  =  average  building  height  

    λp  

  • Model  for  d  and  z0  (Macdonal,  Griffiths  and  Hall,  Atmospheric  Environment,  32(11),  pp.  1857-‐1864,  1998)

    Area  density  =  λ  =  λp  =  plan  area  covered  by  building/total  lot  area  =  Ap  /  Ad  Frontal  density  =  λf    

       =  total  fontal  (perpend.  to  wind)  area  of  buildings/total  lot  area  =  Af  /  Ad  A=  empirical  fieng  parameter    H  =  average  height  of  buildings  CD=  drag  coefficient  of  1  building  =  1.2    κ  =  0.4  =  von  Karman  constant   Slide  37  

  • Monin and Obukhov: stability effects Monin and Obukhov postulated that the effect of all the fluxes can be lumped into one variable the ratio of the mechanical/shear generation of TKE over thebouyant production or destruction

    38  

    Slide  38  

  • Turbulent Kinetic Energy equation

    ∂e∂t

    + u j∂e∂x j

    = δ i3gρui′θ ′

    ⎛⎝⎜

    ⎞⎠⎟ − ui

    ′u j′∂ui∂x j

    −∂u j′e∂x j

    − 1ρ∂ui′ ′p∂xi

    −υ∂ ′ui∂x j

    ⎝⎜

    ⎠⎟

    2

    I II III IV V VI VIII: local storage of TKE also called tendencyII: advection of TKE by mean flowIII: bouyant producation of destruction of TKEIV: shear production of TKEV: mean turbulent transport termVI: mean pressure transport termVII: = ε = molecular dissipation

    39  

    TKE = e = ′ui ′ui =′u 2 + ′v 2 + ′w 2

    2

  • Monin and Obukhov: stability effects Monin and Obukhov postulated that the effect of all the fluxes can be lumped into one variable the ratio of the mechanical/shear generation of TKE over thebouyant production or destruction

    −u*

    3 /κ zgθv

    w′θv′⎛⎝⎜

    ⎞⎠⎟= −

    θvu*3

    κ z g w′θv′⎛⎝⎜

    ⎞⎠⎟

    where w′θv′ is called the bouyancy flux

    Hence they formulated with this ratio a length scale representing effect of stability, this is now a new parameter to dimensional analysis formulations of a "similarity solution". The stability parameter they presented is :

    ζ= zL

    = −κ z g w′θv′

    ⎛⎝⎜

    ⎞⎠⎟

    θvu*3

    where L = −θvu*

    3

    κ g w′θv′⎛⎝⎜

    ⎞⎠⎟

    is the Obukhov length scale

    40  

    Slide  40  

  • With surface heat and moisture fluxes 1 3 1 2/ : : ( ) : : :dU dz s kgm z d m kgm s L mρ τ− − − −−

    ⇒ 2 non-dimensional numbers τ / ρ

    z − d( )dU / dz ANDz − d

    L

    κ z − d( )u*

    dudz

    = φmz − d

    L⎛⎝⎜

    ⎞⎠⎟ = φm ς( ) ς =

    z − dL

    : stability parameter

    How do you deterimne φm ?

    upon integration from the point of zero velocity (at z0 )to z

    u =u*κ

    lnz − d

    z0

    ⎛⎝⎜

    ⎞⎠⎟− Ψm

    z − dL

    ⎛⎝⎜

    ⎞⎠⎟ +Ψm

    z0L

    ⎛⎝⎜

    ⎞⎠⎟

    ⎣⎢⎢

    ⎦⎥⎥

    whereΨm (ς ) =1−φm (x)

    x0

    ς

    ∫ dx

    upon integration from z1 to z2

    u 2 − u1 =u*κ

    lnz2z1

    ⎝⎜⎞

    ⎠⎟− Ψm (ς2 ) +Ψm (ς1)

    ⎣⎢⎢

    ⎦⎥⎥

    41  

    Slide  41  

  • Similarly for the profiles of q and θ κ (z − d0 )u*

    dudz

    = φm(ς ) momentum

    κu*(z − d0 )w 'θ '

    dθdz

    = φh (ς ) heat

    κu*(z − d0 )w 'q '

    dqdz

    = φv (ς ) water vapor,CO2

    Under neutral condition (no heat/bouyancy flux at the surface), all φ 's =1

    42  

    z0

    z0,h

    z0,v

    Slide  42  

  • How to compute Ψ or Φ ? Experiments

    , , , ,

    , , , ,

    0 1: ( ) 1 5 ( ) 5

    1 : ( ) 6 ( ) 5 5ln( )m v h m v h

    m v h m v h

    ς φ ς ς ψ ς ςς φ ς ψ ς ς

    < < = + → = −

    < = → = − −

    ( )

    ( )

    ( )

    1/ 22,

    21/ 4

    ,

    21/ 4

    0 : ( ) ( ) 1 16

    1( ) 2ln , 1 162

    1 1( ) 2ln ln 2arctan( ) , 1 162 2 2

    m v h

    v h

    m

    x x

    x x x x

    ς φ ς φ ς ς

    ψ ς ς

    πψ ς ς

    −< = = −

    ⎛ ⎞+→ = = −⎜ ⎟⎝ ⎠

    ⎛ ⎞+ +⎛ ⎞→ = + − + = −⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

    Stable  ABL,  Brutsaert  2005:      

    Unsatble  ABL,  Brutsaert  1982:      

    43  

    Slide  43  

  • Monin-Obukhov Similarity Theory (MOST) for the ASL

     The  log-‐‑law  and  MOST  only  apply  in  the  Atmospheric  Surface  Layer  

     Technically,  they  only  apply  for  steady  state  condition  and  for  very  large  homogeneous  surfaces  

     In  practice,  they  could  be  applied  when  d/dt  

  • Variation of velocity profiles with stability

    45  

    Slide  45  

  • The diurnal cycle, a sequence of ABLs

    46  

    Slide  46  

  • Convective and Stable ABLs 47  

    Slide  47  

  • Recommended  Readings  

     Tennekes  and  Lumley,  A  first  course  in  Turbulence  

     Stull,  Boundary  Layer  Meteorology  

     Wyngaard,  Turbulence  in  the  Atmosphere