Thesis defense

34
Numerical methods for stochastic systems subject to generalized Levy noise by Mengdi Zheng Thesis committee: George Em Karniadakis (Ph.D., advisor) Hui Wang (Ph.D., reader, APMA, Brown) Xiaoliang Wan (Ph.D., reader, Mathematics, LSU)

Transcript of Thesis defense

Page 1: Thesis defense

Numerical methods for stochastic systems

subject to generalized Levy noiseby Mengdi Zheng!

Thesis committee: George Em Karniadakis (Ph.D., advisor)!Hui Wang (Ph.D., reader, APMA, Brown)!

Xiaoliang Wan (Ph.D., reader, Mathematics, LSU)

Page 2: Thesis defense

ContentsBesides motivation and introduction,

Page 3: Thesis defense

Motivation

Mathematical Reasons

Applicational Reasons

Mathematical Finance

!Levy flights in Chaotic

flows

Page 4: Thesis defense

Probability collocation method (PCM) in UQXt (ω ) ≈ Xt (ξ1,ξ2,...,ξn ) ω ∈Ω Ε[um (x,t;ω )] ≈ Ε[um (x,t;ξ1,ξ2,...,ξn )]

ξ1

ξ2ξ3

... ξn

O Ω

PCM

ξ1

ξ2Ω

O

MEPCMB1 B2

B3 B4

n = 2

I = dΓ(x) f (x) ≈a

b

∫ dΓ(x) f (xi )hi (x)i=1

d

∑ = f (xi ) dΓ(x)hi (x)a

b

∫i=1

d

∑a

b

Gauss integration:

u(x,t;ξ1i )i=1

d

∑ wi

n = 1

{Pi (x)}orthogonal to Γ(x)Pd (x)zeros of

Lagrange interpolation at zeros {xi ,i = 1,..,d}

Page 5: Thesis defense

sample path of a Poisson process

Jt

t

Introduction of Levy processes

Page 6: Thesis defense

Gauss quadrature and weights

generate orthogonal to{P j

k (ξj )}µ j (ξ j )

moment statistics

5 ways

tensor product

or sparse

grid

Ε[um (x,t;ω )]

017.5

3552.5

70

1 2 3 4

measure of

ξi

ξi

what if is a set of experimental data?ξi

subjective assumption of! distribution shapes

?ut + 6uux + uxxx = σ iξi ,

i=1

n

∑ x ∈!

u(x,0) = a2sech2 ( a

2(x − x0 ))

Data-driven UQ for stochastic KdV equations

M. Zheng, X. Wan, G.E. Karniadakis, Adaptive multi-element polynomial chaos with discrete measure: Algorithms and application to SPDEs, Applied Numerical Mathematics, 90 (2015), pp. 91–110.

A(k + n,n) = (−1)k+n−|i| n −1k + n− | i |

⎛⎝⎜

⎞⎠⎟(Ui1 ⊗ ...⊗Uin )

k+1≤|i|≤k+n∑

Sparse grids in Smolyak algorithm: level k, dimension n

sparse!grid

tensor!product!

grid

Page 7: Thesis defense

Construct orthogonal polynomials to discrete measures

1. (Nowak) S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliability Engineering & System Safety, 106 (2012), pp. 179–190.

2. (Stieltjes, Modified Chebyshev) W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comp., 3 (1982), no.3, pp. 289–317.

3. (Lanczos) D. Boley, G. H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems, 3 (1987), pp. 595–622.

4. (Fischer) H. J. Fischer, On generating orthogonal polynomials for discrete measures, Z. Anal. Anwendungen, 17 (1998), pp. 183–205.

f (k;N , p) = N!k!(N − k)!

pk (1− p)N−k ,k = 0,1,...,N .

10 20 40 80 100

10−4

10−3

10−2

10−1

100

polynomial order i

CP

U ti

me

to e

valu

ate

orth

(i)

NowakStieltjesFischerModified ChebyshevLanczos

C*i2n=100,p=1/2

polynomial order i

Bino(100, 1/2)

0 10 20 30 40 50 60 70 80 90 100

10−20

10−15

10−10

10−5

100

polynomial order i

orth

(i)

NowakStieltjesFischerModified ChebyshevLanczos

N=100, p=1/2

polynomial order i

Bino(100, 1/2)

orthogonality ?

cost ?

Bino(N , p)Binomial distribution

Page 8: Thesis defense

| f (ξ )µ(ξ )− QmBi f

i=1

Nes

∑Γ∫ |≤Chm+1 || EΓ ||m+1,∞,Γ | f |m+1,∞,Γ

{Bi}i=1Nes : elementsNes : number of elements

: number of elementsΓµ : discrete measure

QmBi Gauss quadrature + tensor product with exactness m=2d-1

h: maximum size of Bi

f : test function in W m+1,∞(Γ)

(when the measure is continuous) J. Foo, X. Wan, G. E. Karniadakis, A multi-element probabilistic collocation method for PDEs with parametric uncertainty: error analysis and applications, Journal of Computational Physics 227 (2008), pp. 9572–9595.

100 10110−6

10−5

10−4

10−3

10−2

Nes

abso

lute

erro

r

c=0.1,w=1

GENZ1d=2m=3bino(120,1/2)

Bino(120, 1/2)

100 10110−13

10−12

10−11

10−10

10−9

Nes

abso

lute

erro

rs

c=0.1,w=1

GENZ4d=2m=3bino(120,1/2)Bino(120, 1/2)

0 20 40 60 80 100−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1GENZ1 function (oscillations)

w=1, c=0.01w=1,c=0.1w=1,c=1 0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1GENZ4 function (Gaussian)

c=0.01,w=1c=0.1,w=1c=1,w=1

Multi-element Gauss integration over discrete measures

Page 9: Thesis defense

UQ of stochastic KdV equation with 1RVut + 6uux + uxxx = σ iξi ,i=1

n

∑ x ∈!

u(x,0) = a2sech2 ( a

2(x − x0 ))

2 3 4 5 6 7 8

10−3

10−2

d

error

l2u1aPCl2u2aPC

2 3 5 10 15 20 3010−7

10−6

10−5

10−4

10−3

10−2

Nes

error

l2u1

l2u2

C*Nel−4

h-convergence!of MEPCM

p-convergence of PCMPoisson distribution

Binomial distribution

σ i2local variance to the measure µ(dξ ) / µ(dξ )

Bi∫

adaptive !integration!

mesh

2 3 4 5 6

10−5

10−4

10−3

10−2

Number of PCM points on each element

erro

rs

2 el, even grid2 el, uneven grid4 el, even grid4 el, uneven grid5 el, even grid5 el, uneven grid

(MEPCM)!adaptive!

vs.!non-

adaptive!meshes

error of Ε[u2 ]

Improved !

Page 10: Thesis defense

ut + 6uux + uxxx = σ iξi ,i=1

n

∑ x ∈!

u(x,0) = a2sech2 ( a

2(x − x0 ))

(sparse grid) D. Xiu, J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Scientific Computing 27(3) (2005), pp. 1118– 1139.

17 153 256 969 4,84510−10

10−9

10−8

10−7

10−6

10−5

10−4

r(k)

erro

rs

l2u1(sparse grid)

l2u2(sparse grid)

l2u1(tensor product grid)

l2u2(tensor product grid)

sparse grid vs. tensor product grid

Binomial distribution

n=8

Improved !

2D sparse grid in Smolyak algorithm

UQ of stochastic KdV equation with multiple RVs

Page 11: Thesis defense

Summary of contributions (1)

✰ convergence study of multi-element integration over discrete measure

!✰ comparison of 5 ways to construct orthogonal

polynomials w.r.t. discrete measure !✰ improvement of moment statistics by adaptive

integration mesh (on discrete measure) !✰ improvement of moment statistics by sparse grid (on

discrete measure)

Page 12: Thesis defense

gPC for 1D stochastic Burgers equation

M. Zheng, B. Rozovsky, G.E. Karniadakis, Adaptive Wick-Malliavin Approximation to Nonlinear SPDEs with Discrete Random Variables, SIAM J. Sci. Comput., revised. (multiple discrete RVs)

D. Venturi, X. Wan, R. Mikulevicius, B.L. Rozovskii, G.E. Karniadakis, Wick-Malliavin approximation to nonlinear stochastic PDEs: analysis and simulations, Proceedings of the Royal Society, vol.469, no.2158, (2013). (multiple Gaussian RVs)

ut + uux =υuxx +σ c1(ξ;λ), x ∈[−π ,π ]

u(x,t;ξ ) ≈ u! k (x,t)ck (ξ;λ)k=0

P

∑Expand the solution:

∂u! k∂t

+ u! m∂u! n∂t

< cmcnck >=m,n=0

P

∑ υ ∂2u! k∂x2

+σδ1k ,

general Polynomial Chaos (gPC) propagator

k = 0,1,...,P.

ξ ∼ Pois(λ)

ck : Charlier polynomiale−λλ k

k!cm (k;λ)cn (k;λ) =< cmcn >= n!λ

nδmnk∈!∑

cm

by Galerkin projection : < uck >

nonlinear

How many numbers of terms !!!!there are !

u! m∂u! n∂t

< cmcnck >

?

(motivation)

Let us simplify the gPC propagator !

(P +1)3

Page 13: Thesis defense

Wick-Malliavin (WM) approximation

G.C. Wick, The evaluation of the collision matrix, Phys. Rev. 80 (2), (1950), pp. 268-272.

ξ ∼ Pois(λ)✰ consider with measure !✰ define Wick product as: ✰ define Malliavin derivative D as: !✰ the product of two polynomials can be approximated by: !!!✰ here !✰ define weighted Wick product : !✰ rewrite the product of two polynomials: !!✰ approximate the product of uv as:

Γ(x) = e−λλ k

k!δ (x − k)

k∈!∑

cm (x;λ)◊cn (x;λ) = cm+n (x;λ),

Dpci (x;λ) =i!

(i − p)!ci−p (x;λ)

cm (x)cm (x) = a(k,m,n)ck (x) =k=0

m+n

∑ Kmnpcm+n−2 p (x;λ)p=0

m+n2

∑Kmnp = a(m + n − 2p,m,n)

◊ pcm◊ pcn =

p!m!n!(m + p)!(n + p)!

Km+p,n+p,pcm◊cn

cmcn =Dpcm◊ pD

pcnp!p=0

m+n2

uv =Dpu◊ pD

pvp!

≈p=0

∑ Dpu◊ pDpv

p!p=0

Q

Page 14: Thesis defense

WM approximation simplifies the gPC propagator !ut + uux =υuxx +σ c1(ξ;λ), x ∈[−π ,π ]

∂u! k∂t

+ u! m∂u! n∂t

< cmcnck >=m,n=0

P

∑ υ ∂2u! k∂x2

+σδ1k , k = 0,1,...,P.gPC propagator:

∂u! k∂t

+ u! ii=0

P

∑ ∂u! k+2 p−i∂x

Ki,k+2 p−i,Q =p=0

Q

∑ υ ∂2u! k∂x2

+σδ1k , k = 0,1,...,P.WM propagator:

How much less? Let us count the dots !

k=0 k=1 k=2 k=3 k=4

P=4, Q=1/2

Page 15: Thesis defense

Spectral convergence when Q ≥ P −1

ut + uux =υuxx +σ c1(ξ;λ) u(x,0) = 1− sin(x)

ξ ∼ Pois(λ) x ∈[−π ,π ] Periodic B.C.

Page 16: Thesis defense

concept of P-Q refinement

ut + uux =υuxx +σ c1(ξ;λ) u(x,0) = 1− sin(x)

ξ ∼ Pois(λ) x ∈[−π ,π ] Periodic B.C.

Page 17: Thesis defense

WM for stochastic Burgers equation w/ multiple RVs

ut + uux =υuxx +σj=1

3

∑ c1(ξ j;λ)cos(0.1 jt)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110−7

10−6

10−5

10−4

10−3

10−2

T

l2u2(T)

Q1=Q2=Q3=0

Q1=1,Q2=Q3=0

Q1=Q2=1,Q3=0

Q1=Q2=Q3=1

u(x,0) = 1− sin(x) ξ1,2,3 ∼ Pois(λ)

x ∈[−π ,π ] Periodic B.C.

How about 3 discrete RVs ? How about the cost in d-dim ?

C(P,Q)d the # of terms u! i∂u! j∂x

(P +1)3d the # of terms u! m∂u! n∂t

Let us find the ratio C(P,Q)d

(P +1)3d

P=3 Q=2

P=4 Q=3

d=2 61.0% 65.3%

d=3 47.7% 52.8%

d=4 0.000436% 0.0023%

C(P,Q)d

(P +1)3d

??

Cost: WM vs. gPC

Page 18: Thesis defense

Summary of contributions (2)

References

✰ Extend the numerical work on WM approximation for SPDEs driven by Gaussian RVs to discrete RVs with arbitrary distribution w/ finite moments

✰ Discover spectral convergence when for stochastic Burgers equations

✰ Error control with P-Q refinements ✰ Computational complexity comparison of gPC and

WM in d dimensions

Q ≥ P −1

D. Bell, The Malliavin calculus, Dover, (2007)

S. Kaligotla and S.V. Lototsky, Wick product in the stochastic Burgers equation: a curse or a cure? Asymptotic Analysis 75, (2011), pp. 145–168.

S.V. Lototsky, B.L. Rozovskii, and D. Selesi, On generalized Malliavin calculus, Stochastic Processes and their Applications 122(3), (2012), pp. 808–843.

Page 19: Thesis defense

M. Zheng, G.E. Karniadakis, ‘Numerical Methods for SPDEs with Tempered Stable Processes’,SIAM J. Sci. Comput., accepted.

N. Hilber, O. Reichmann, Ch. Schwab, Ch. Winter, Computational Methods for Quantitative Finance: Finite Element Methods for Derivative Pric- ing, Springer Finance, 2013.

S.I. Denisov, W. Horsthemke, P. Ha ̈nggi, Generalized Fokker-Planck equation: Derivation and exact solutions, Eur. Phys. J. B, 68 (2009), pp. 567–575.

Generalized Fokker-Planck Equation for Overdamped Langevin EquationOverdamped Langevin equation (1D, SODE, in the Ito’s sense)

Density satisfies tempered fractional PDEs (by Ito’s formula)

1D tempered stable (TS) pure jump process has this Levy measure

Page 20: Thesis defense

Generalized FP Equation for Overdamped Langevin Equation driven by TS white noise

Left Riemann-Liouville tempered fractional derivatives (as an example)

Fully implicit scheme in time, Grunwald-Letnikov for fractional derivatives

MC for Overdamped Langevin Equation driven by TS white noise

TFPDE

PCM for Overdamped Langevin Equation driven by TS white noise

Compound Poisson (CP) approximation

MC!(probabilistic)

PCM!(probabilistic)

TFPDE!(deterministic)

Page 21: Thesis defense

Histogram from MC vs. Density from TFPDEs

Zoomed in plots of P(x,T) by TFPDEs and MC/CP at T = 0.5 (left) and T = 1 (right): α = 0.5, c = 1, λ = 1, x0 = 1 and σ = 0.01 (left and right). In MC/CP: s = 105, δ = 0.01, △t = 1e −3 (left and right). In the TFPDEs: △t = 1e −5, and Nx = 2000 points on [−12, 12] in space (left and right).

jump intensity jump size distribution

Page 22: Thesis defense

Moment Statistics from PCM/CP vs. TFPDE

TFPDE vs. PCM/CP: error of the 2nd moment of the solution versus time with λ=10 (left) and λ=1 (right). α=0.5,c=2,σ=0.1,x0 =1 (left and right). For the TFPDE: finite difference scheme with △t = 2.5 × 10−5 , Nx equidistant points on [−12, 12], initial condition given by δD (left and right).

TFPDE costs much less computational time but more accurate than PCM/CP

Page 23: Thesis defense

M. Zheng, G.E. Karniadakis, Numerical methods for SPDEs with additive multi-dimensional Levy jump processes, in preparation.

Page 24: Thesis defense

How to describe the dependence structure among components!of a multi-dimensional Levy jump process ?

J. Kallsen, P. Tankov, Characterization of dependence of multidimensional Levy processes using Levy copulas, Journal of Multivariate Analysis, 97 (2006), pp. 1551–1572.

LePage’s representation of Levy measure:

Series representation:

τ = 1

τ = 100

Levy copula!+!

Marginal Levy!measure!

=!Levy measure

1

2

Page 25: Thesis defense

Analysis of variance (ANOVA) + FP = marginal distributionFP equation

ANOVA decomposition

ANOVA terms are related to marginal distributions

1D-ANOVA-FP for marginal distributions

2D-ANOVA-FP for marginal distributionsLePage’s representation

TFPDEs

Page 26: Thesis defense

0 0.2 0.4 0.6 0.8 1−2

0

2

4

6

8

10

12

x

E[u(

x,T=

1)]

E[uPCM]

E[u1D−ANOVA−FP]

E[u2D−ANOVA−FP]

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 13.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2x 10−4

T

L 2 nor

m o

f diff

eren

ce in

E[u

]

||E[u1D−ANOVA−FP−E[uPCM]||L2([0,1])/||E[uPCM]||L2([0,1])

||E[u2D−ANOVA−FP−E[uPCM]||L2([0,1])/||E[uPCM]||L2([0,1])

Moments: 1D-ANOVA-FP is accurate for E[u] in 10D

1D-ANOVA-FP 2D-ANOVA-FP PCM

1D-ANOVA-FP

2D-ANOVA-FP

noise-to-signal!ratio NSR ≈18.24%

Page 27: Thesis defense

Moments: 1D-ANOVA-FP is not accurate for in 10D

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

120

x

E[u

2 (x,T

=1)]

E[u2PCM]

E[u21D−ANOVA−FP]

E[u22D−ANOVA−FP]

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T

L 2 nor

m o

f diff

eren

ce in

E[u

2 ]

||E[u21D−ANOVA−FP−E[u2

PCM]||L2([0,1])/||E[u2PCM]||L2([0,1])

||E[u22D−ANOVA−FP−E[u2

PCM]||L2([0,1])/||E[u2PCM]||L2([0,1])

1D-ANOVA-FP 2D-ANOVA-FP PCM

1D-ANOVA-FP

2D-ANOVA-FP

Ε[u2 ]

NSR ≈18.24%

Page 28: Thesis defense

Moments: PCM vs. FP (TFPDE)

Initial condition of FP equation introduce error

0.2 0.4 0.6 0.8 110−10

10−8

10−6

10−4

10−2

l2u2

(t)

t

PCM/S Q=5, q=2PCM/S Q=10, q=2TFPDE

NSR 5 4.8%

Moments: PCM vs. MC

LePage’s representation (2D)

Ε[u2 ]

Ε[u2 ]LePage’s representation (2D)

100 102 104 10610−4

10−3

10−2

10−1

s

l2u2

(t=1)

PCM/S q=1PCM/S q=2MC/S Q=40

PCM costs less than MC

Q — # of truncation in series representation q — # of quadrature points on each dimension

Page 29: Thesis defense

Density: MC vs. FP equation (2D Levy) LePage’s !representation!2D — MC 3D — FP/TFPDE

Levy!copula

Page 30: Thesis defense

General picture of solving SPDEs w/ multi-dim jump processes

Page 31: Thesis defense

Summary of contributions (3, 4)✰ Established a framework for UQ of SPDEs w/ multi-

dimensional Levy jump processes by probabilistic (MC, PCM) and deterministic (FP) methods

✰ Combined the ANOVA & FP to simulate moments of solution at lower orders

✰ Improved the traditional MC method’s efficiency and accuracy

✰ Link the area of fractional PDEs & UQ for SPDEs w/ Levy jump processes

Page 32: Thesis defense

Future work ✰ Simulate SPDEs driven by higher-dimensional Levy

jump processes with ANOVA-FP ✰ Consider other jump processes than TS processes ✰ Consider nonlinear SPDEs w/ multiplicative multi-

dimensional Levy jump processes ✰ Application to the Energy Balance Model in climate

modeling ✰ Application to Mathematical Finance

Page 33: Thesis defense

Acknowledgements✰ Thanks Prof. George Em Karniadakis for advice and

support ✰ Thanks Prof. Xiaoliang Wan and Prof. Hui Wang to be

on my committee ✰ Thanks Prof. Xiaoliang Wan and Prof. Boris Rozovskii

for their innovative ideas and collaboration ✰ Thanks for the support from the NSF/DMS (grant

DMS-0915077) and the Airforce MURI (grant FA9550-09-1-0613)

Page 34: Thesis defense

Thanks for attending !