Thermoelectric Materials - UPRMacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8B.pdf · are known as...

58
Thermoelectric Materials Thermoelectric devices are based on a phenomenon known as the thermoelectric effect which is the direct conversion of a temperature gradient across two dissimilar materials into electricity. The materials used are known as thermoelectric materials. The thermoelectric effect is reversible i.e. it directly conver;ng electricity into a temperature gradient. The thermoelectric effect is based on a combina;on of two different effects, namely, the Seebeck effect and the Pel4er effect. Water/Beer Cooler

Transcript of Thermoelectric Materials - UPRMacademic.uprm.edu/pcaceres/Courses/Smart/SMD-8B.pdf · are known as...

ThermoelectricMaterialsThermoelectricdevicesarebasedonaphenomenonknownasthethermoelectriceffectwhichisthedirectconversionofatemperaturegradientacrosstwodissimilarmaterialsintoelectricity.Thematerialsusedareknownasthermoelectricmaterials.Thethermoelectriceffectisreversiblei.e.itdirectlyconver;ngelectricityintoatemperaturegradient.

Thethermoelectriceffectisbasedonacombina;onoftwodifferenteffects,namely,theSeebeckeffectandthePel4ereffect.

Water/BeerCooler

Whatisthermoelectricity?Thermoelectricityistheconversionofheatdifferen;alsintoelectricityandviceversa.Thermoelectricenergyconversionisoneofthedirectenergyconversiontechnologiesthatrelyontheelectronicproper;esofthematerial(semiconductor)foritsefficiency.ItisbasedontheSeebeck(PowerGenera;on)andPel;ereffects(HeatPumping).

SeebeckEffectIn1821,ThomasSeebeckaGermanEstonianphysicistfoundthatanelectriccurrentwouldflowcon;nuouslyinaclosedcircuitmadeupoftwodissimilarmetals,ifthe junc;ons of themetals weremaintained at twodifferenttemperatures.If the temperaturegradient is reversed, thedirec;onofthecurrentisreversed.

WhereSistheSeebeckcoefficient.Itisdefinedasthevoltagegeneratedperdegreeoftemperaturedifferencebetweenthetwopoints.

Sisposi;vewhenthedirec;onofthecurrentisthesameasthedirec;onofthevoltage

ThebasisoftheSeebeckeffectiselectronmobilityinconductorsandsemiconductors,whichisafunc;onoftemperature

Whentwodifferentmetalsarejoined,therela;vedifferenceinelectronmobilityineachofthemetalswillmakethattheelectronsfromthemore“mobile”metaljumptothelessmobilemetal.

Apoten4aldifferenceiscreatedbetweenthetwoconductors.Intheabsenceofacircuit,thiscauseschargetoaccumulateinoneconductor,andchargetobedepletedintheotherconductor.

Example:TypeKthermocouple

Measure ?

TheSeebeckEffectTheSeebeckeffectistheconversionofheatdifferencesdirectlyintoelectricity.Whentwodissimilarmaterialswithdifferentcarrierdensi;esareconnectedtoeachotherbyanelectricalconductorandheatisappliedtoonesideoftheconnectors,someoftheheatinputisconvertedtoelectricalcurrent,asthehigherenergymaUerreleasesenergyandcoolstoalowerenergystate.Thenetworkispropor;onaltothetemperaturedifferenceandSeebeckcoefficient.

Thesimplestthermoelectricgeneratorconsistsofathermocouple,comprisingap‐typeandn‐typethermo‐elementconnectedelectricallyinseriesandthermallyinparallel.

Heatispumpedintoonesideofthecoupleandrejectedfromtheoppositeside.Anelectricalcurrentisproduced,propor;onaltothetemperaturegradientbetweenthehotandcoldjunc;ons

Explana1onofSeebeckEffectInathermoelectricmaterialtherearefreecarrierswhichcarrybothchargeandheat.

Ifamaterialisplacedinatemperaturegradient,whereonesideiscoldandtheotherishot,thecarriersatthehotendwillmovefasterthanthoseatthecoldend.Thefasterhotcarrierswilldiffusefurtherthanthecoldcarriersandsotherewillbeanetbuildupofcarriers(higherdensity)atthecoldend.Inthesteadystate,theeffectofthedensitygradientwillexactlycounteracttheeffectofthetemperaturegradientsothereisnonetflowofcarriers.Thebuildupofchargeatthecoldendwillalsoproducearepulsiveelectrosta;cforce(andthereforeelectricpoten;al)topushthechargesbacktothehotend.

Theelectricpoten;alproducedbyatemperaturedifferenceisknownastheSeebeckeffectandthepropor;onalityconstantiscalledtheSeebeckcoefficient(α orS).Ifthefreechargesareposi;ve(thematerialisp‐type),posi;vechargewillbuilduponthecoldwhichwillhaveaposi;vepoten;al.Similarly,nega;vefreecharges(n‐typematerial)willproduceanega;vepoten;alatthecoldend.Ifthehotendsofthen‐typeandp‐typematerialareelectricallyconnected,andaloadconnectedacrossthecoldends,thevoltageproducedbytheSeebeckeffectwillcausecurrenttoflowthroughtheload,genera;ngelectricalpower.

α2σ isthematerialspropertyknownasthethermoelectricpowerfactor.Forefficientopera;on,highpowermustbeproducedwithaminimumofheat(Q). κ= Thermalconduc;vity.Thethermalconduc;vityactsasathermalshortandreducesefficiency.

Pel4erEffectIn1834,aFrenchscien;stJeanPel;erfoundthatathermaldifferencecanbeobtainedatthejunc;onoftwometals,ifanelectriccurrentismadetoflowinthem.

OppositeoftheSeebeckEffect.Theheatcurrent(q)ispropor;onaltothechargecurrent(I)andthepropor;onalityconstantisthePel;erCoefficient(Π).

Whentwomaterialsarejoinedtogether,therewillbeanexcessordeficiencyintheenergyatthejunc;onbecausethetwomaterialshavedifferentPel;ercoefficients.Theexcessenergyisreleasedtothela^ceatthejunc;on,causinghea;ng,andthedeficiencyinenergyissuppliedbythela^ce,crea;ngcooling.

TheSeebeckandthePel;ercoefficientsarerelatedtoeachotherthroughtheKelvinrela;onship–Tistheabsolutetemperature.

Π >0; Posi;vePel;ercoefficient.Highenergyholesmovefromleatoright.Thermalcurrentandelectriccurrentflowinsamedirec;on.

Π <0;Nega;vePel;ercoefficient

Highenergyelectronsmovefromrighttolea.

Thermalcurrentandelectriccurrentflowinoppositedirec;ons.

Ifanelectriccurrentisappliedtothethermocoupleasshown,heatispumpedfromthecoldjunc;ontothehotjunc;on.Thecoldjunc;onwillrapidlydropbelowambienttemperatureprovidedheatisremovedfromthehotside.Thetemperaturegradientwillvaryaccordingtothemagnitudeofcurrentapplied.

Whentwodissimilarmaterialswithdifferentcarrierdensi;esareconnectedtoeachotherbyanelectricalconductor,electricalcurrent(workinput),forcesthemaUertoapproachahigherenergystateandheatisabsorbed(cooling).Theenergyisreleased(hea;ng)asthemaUerapproachesalowerenergystate.Thenetcoolingeffectispropor;onaltotheelectriccurrentandPel;erEffectcoefficient.

ThePel1erEffect

ThompsonEffect

WilliamThompson(1824‐1907)alsoknownasLordKelvin.Heobservedthatwhenanelectriccurrentflowsthroughaconductor,theendsofwhicharemaintainedatdifferenttemperatures(gradienttemperature),heatisevolvedatarateapproximatelypropor;onaltotheproductofthecurrentandthetemperaturegradient.

ThompsonEffect=SeebeckEffect+Pel;erEffect

istheThomsoncoefficientinVolts/Kelvin

Therela;onshipsbetweenthedifferenteffectsarecalledtheKelvinrela;onships.

FirstKelvinrela;onship:

SecondKelvinrela;onship:

CoefficientofPerformance

where

ThermoelectricFigureofMerit(ZT)

Seebeck coefficient Electrical conductivity

Thermal conductivity

Temperature Bi2Te3

Freon

TH = 300 K TC = 250 K

RequirementsforaGoodThermoelectricMaterial

•  Generalconsidera;onsfortheselec;onofmaterialsforthermoelectricapplica;onsinvolve:–  Highfigureofmerit–  largeSeebeckcoefficientα(orS)–  highelectricalconduc;vityσ –  lowthermalconduc;vityκLaDce+κelectrons –  Possibilityofobtainingbothn‐typeandp‐typethermoelements.–  Noviablesuperconduc;ngpassivelegsdevelopedyet

•  Goodmechanical,metallurgicalandthermalcharacteris;cs–  Capableofopera;ngoverawidetemperaturerange.Especiallytrueforhightemperatureapplica;ons.

–  Toallowtheiruseinprac;calthermoelectricdevices–  Materialscostcanbeanimportantissue!

Thermalconduc;vityconsistsoftwoparts:la^ceconduc;vity(la^cevibra;ons=phonons),κLa,ce,andthermalconduc;vityofcharges(electronsandholes),κelectrons:

Currently,mostoftheresearcheffortsaredevotedtominimizingthela^ceconduc;vityofnewphases.

Minimizingthermalconduc1vity

Somewaystoreducethela^ceconduc;vity:(1)useofheavyelements,e.g.Bi2Te3,Sb2Te3andPbTe;(2)alargenumberNofatomsintheunitcell:thefrac;onofvibra;onalmodes(phonons)thatcarryheatefficientlyto1/N;(3)raUlingoftheatoms,e.g.filledskuUeruditeCeFe4Sb12;disorderinatomicstructure:randomatomicdistribu;onanddeficiencies.

Thelastapproachisnicelyrealizedin"Zn4Sb3",whichcanbecalledan"electron‐crystalandphonon‐glass"accordingtoSlack.Thismaterialhaselectricalconduc;vitytypicalforheavilydopedsemiconductorsandthermalconduc;vitytypicalforamorphoussolids.Infact,itsthermalconduc;vityisthelowestamongstate‐of‐theartthermoelectricmaterials:

Minimizethermalconduc4vityandmaximizeelectricalconduc4vityhasbeenthebiggestdilemmaforthelast40years.!

Bismuthtellurideisthestandardwith ZT=1tomatcharefrigeratoryouneed ZT=4‐5torecoverwasteheatfromcar ZT=2

Cantheconflic4ngrequirementsbemetbynano‐scalematerialdesign?

Reducethela^cethermalconduc;vityby:

• Complexcrystalstructureofhighatomicnumbermaterials.

• RaUlersinthestructure(AtomicDisplacementParameter–ADP).

• NanostructuredThermoelectrics

ComplexCrystalStructures

RaMlers:  Theseareweaklyboundatomsthatfillcages.  TheyhaveunusuallylargevaluesofAtomicDisplacementParameters  Proper1esofmanyclathrate‐likecompoundscanbeunderstoodbytrea1ng“raSler”atomsasEinsteinoscillatorsandframeworkatomsasaDebyesolid.  SkuSerudites,LaB6,Tl2SnTe5  ACharacteris1cEinsteintemperature(orfrequency)canbeassignedtoeachraSler

Eu8‐eGa16Ge30PhaseWiththeBa8Ga16Sn30ClathrateStructureType:a=10.62Å

EuNuclearDensityMapatCenterofLargeCage

TunnelingStates!

SrNuclearDensityMapatCenterofLargeCageTunnelingStates?

BaNuclearDensityMapatCenterofLargeCage(6dsiteof

clathratestructure)

X8Ga16Ge30(X=Ba,Sr,Eu)

ADPData(<u2>)From6dSite

AdvantagesofThermoelectrics• Absenceofmovingparts• Highreliability• Quietness• Lackofvibra;ons• Lowmaintenance• Simplestartup• Nopollu;on• Small• Lightweight• Nonoise• Precisetemperaturecontrol:within+/‐0.1C

DisadvantagesofThermoelectrics• Highcost• Lowefficiency• Typicallyabout3to7%

Applica1onsofThermoelectric

•  ConsumerApplica;ons

•  AutomobileApplica;ons

•  IndustrialApplica;ons

•  MilitaryandSpaceApplica;ons

ConsumerApplica1ons

BeerCooler

TEFridge

ChocolateCooler

AutomobileApplica1ons

SeatCooler/WarmerCanCooler

IndustrialApplica1ons

ElectronicCooler TEDehumidifier

MilitaryandSpaceApplica;ons

NightVision

BasicPrinciples• MacroscopicThermalTransportTheory–Diffusion

‐‐Fourier’sLaw‐‐DiffusionEqua1on

• MicroscaleThermalTransportTheory–Par1cleTransport

‐‐Kine1cTheoryofGases‐‐ElectronsinMetals‐‐PhononsinInsulators‐‐BoltzmannTransportTheory

BasicPrinciples

Heatisaformofenergy.Thethermalproper;esdescribehowasolidrespondstochangesinitsthermalenergy.

Theheatcapacity(C)ofasolidquan;fiestherela;onshipbetweenthetemperatureofthebody(T)andtheenergy(Q)suppliedtoit.

Themeasuredvalueoftheheatcapacityisfoundtodependonwhetherthemeasurementismadeatconstantvolume(CV)oratconstantpressure(CP).

Thermalconduc1vity

HotTh

ColdTc

L

Q(heatflow)

Fourier’sLawforHeatConduc1on

HeatDiffusionEqua1on

Specificheat

Heatconduc;on=Rateofchangeofenergystorage

1stlaw(energyconserva;on)

• Condi;ons:t>>t≡scaUeringmeanfree;meofenergycarriersL>>l≡scaUeringmeanfreepathofenergycarriers

Breaksdownforapplica;onsinvolvingthermaltransportinsmalllength/;mescales,e.g.nanoelectronics,nanostructures,NEMS,ultrafastlasermaterialsprocessing…

LengthScale

1m

1mm

1mm

1nm

Human

Automobile

BuSerfly

1km

Aircraf

Computer

WavelengthofVisibleLight

MEMS

WidthofDNA

MOSFET,NEMS

BloodCells

MicroprocessorModule

Nanotubes,Nanowires

Par1cletransport100nm

Fourier’slaw

l

D

D

TotalLengthTraveled=L

TotalCollisionVolumeSwept=πD2L

NumberDensityofMolecules=n

Totalnumberofmoleculesencounteredinsweptcollisionvolume=nπD2L

AverageDistancebetweenCollisions,mc=L/(#ofcollisions)

MeanFreePath

σ:collisioncross‐sec;onalarea

NumberDensityofMoleculesfromIdealGasLaw:n=P/kBT

kB:Boltzmannconstant1.38x10‐23J/K

MeanFreePath:

TypicalNumbers:

DiameterofMolecules,D≈2Å=2x10‐10mCollisionCross‐sec;on:σ≈1.3x10‐19m

MeanFreePathatAtmosphericPressure:

At1Torrpressure,mc≈300mm;at1mTorr,mc≈30cm

Wall

Wall

b:boundarysepara;on

Effec;veMeanFreePath:

z

z - z

z + z

u(z-z)

u(z+z)

θ qz

Net Energy Flux / # of Molecules

through Taylor expansion of u

u: energy

Integration over all the solid angles total energy flux

Thermal conductivity:

Specific heat Velocity Mean free path

EFF:WorkFunc;on

Energy

FermiEnergy–highestoccupiedenergystate:

FermiVelocity:

VacuumLevel

BandEdge

FermiTemp:

Metal

Fermi‐Diracequilibriumdistribu;onfortheprobabilityofelectronoccupa;onofenergylevelEattemperatureT

0

1

EFElectronEnergy,E

Occup

a;on

Probability,f

WorkFunc;on,F

IncreasingT

T=0KkTB

VacuumLevel

Density of States -- Number of electron states available between energy E and E+dE

Number density:

Energy density:

in 3D

SpecificHeat

ThermalConduc;vity

ElectronScaSeringMechanisms• DefectScaUering• PhononScaUering• BoundaryScaUering(FilmThickness,GrainBoundary)

e

Temperature,T

DefectScaUering

PhononScaUering

IncreasingDefectConcentra;on

BulkSolids

Meanfree;me:te=le/vF

in3D

MaUhiessenRule:

Electronsdominatekinmetals

Crystallinevs.GlasslikeThermalConduc;vity

P.W.Anderson,B.I.Halperin,C.M.Varma,Phil.Mag.25,1(1972).

InteratomicBonding

1‐DArrayofSpringMassSystem

Equa;onofmo;onwithnearestneighborinterac;on

Solu;on

Freq

uency,ω

Wavevector,K0 π/a

GroupVelocity:

SpeedofSound:

La^ceConstant,a

xn ynyn‐1 xn+1

Freq

uency,ω

Wavevector,K0 π/a

LATA

LO

TO

Op;calVibra;onalModes

TotalEnergyofaQuantumOscillatorinaParabolicPoten;al

n=0,1,2,3,4…;w/2:zeropointenergy

Phonon:Aquantumofvibra;onalenergy,w,whichtravelsthroughthela^ce

PhononsfollowBose‐Einsteinsta1s1cs.

Equilibriumdistribu;on:

In3D,allowablewavevectorK:

p:polariza;on(LA,TA,LO,TO)K:wavevector

DispersionRela;on:

EnergyDensity:

DensityofStates: Numberofvibra;onalstatesbetweenwandw+dw

La^ceSpecificHeat:

in3D

Freq

uency,w

Wavevector,K0 p/a

DebyeApproxima;on:

DebyeDensityofStates:

DebyeTemperature[K]

SpecificHeatin3D:

In3D,whenT<<θD,

ClassicalRegime

Ingeneral,whenT<<qD,

d=1,2,3:dimensionofthesample

Eachatomhasathermalenergyof3KBT

SpecificHeat(J/m

3 ‐K)

Temperature(K)

C∝T3

3ηkBT

Diamond

Kine;cTheory

l

Temperature,T/qD

BoundaryPhononScaUeringDefect

DecreasingBoundarySepara;on

IncreasingDefectConcentra;on

PhononScaUeringMechanisms

• BoundaryScaUering• Defect&Disloca;onScaUering• Phonon‐PhononScaUering

0.01 0.1 1.0

• Phononsdominatekininsulators