Thermodynamic properties of liquid manganese-silicon alloys

7
Thermodynamic Properties of Liquid Manganese-Silicon Alloys NAZIR AHMAD AND JOHN N. PRATT Vapor pressure measurements have been made on twenty two manganese-silicon alloys in the liquid state, at temperatures between 1400 to 1900 K, using a torsion-effusion technique. The thermodynamic properties of the system have been calculated from the observed vapor pressures of manganese over the alloys at 1700 K. The activities of the components show very strong negative deviations from ideality and the heats of forma- tion are markedly exothermic. Excess free energies evaluated from the vapor pres- sures have been combined with the calorimetrically measured heats of formation, avail- able in the literature, to obtain the excess entropies of mixing which are found to be moderately negative. The present results are assessed with respect to the existing phase equilibria and other thermodynamic data for the solid and liquid states. Among the fac- tors influencing the properties of these alloys, a tendency to form covalent linkages in the liquid state appears most significant. THIS study of liquid manganese-silicon alloys is a part of the continuing program of research at the authors' laboratory aimed at correlating 1 the ther- modynamic properties with component characteris- tics such as size, valency, electronegativity, magnetic interactions and chemical bond effects. Previous work on binary liquid alloys of manganese with copper, 2 gold, 3 and tin 4 has shown that the factors responsible for solid phase equilibria may persist in the liquid state and therefore influence its thermodynamic prop- erties. It has been suggested that such properties of liquid manganese-copper alloys owe their behavior mainly to the magnetic interactions while the electro- negativity factor has been seen to be more significant in manganese-gold alloys. The thermodynamic prop- erties of manganese-tin liquids have been attributed to the differences of size, valency, and possibly some covalent clustering of tin. The present investigation was undertaken to examine the effect of alloying man- ganese with a more strongly covalent element and to provide data for an improved assessment of the ther- modynamic properties of the system. As with above examples, the relative volatility of manganese makes the manganese-silicon alloys am- menable to study by means of a vapor pressure method and the torsion-effusion technique has again been employed. EXPERIMENTAL DETAILS The principles of the torsion-effusion technique and its use in vapor pressure measurements of metals have been reviewed by Carter .5 The specimen is con- tained in an effusion cell suspended from a fine wire, within a vertical vacuum chamber. The cell is pro- vided with two orifices, so disposed, in its front and NAZ1R AHMAD, formerly Research Student/Research Fellow, Department of Physical Metallurgyand Science and Materials, Univer- sity of Birmingham,is now Research Associate, Department of Mate- rials Science and Engineering,Massachusetts Institute of Technology, Cambridge, MA 02139 and JOHN N. PRATT is Reader in Metallur- gical Thermochemistry, Department of Physical Metallurgy and Science of Materials, University of Birmingham,Birmingham,England. Manuscript submitted February 17, 1978. METALLURGICALTRANSACTIONSA rear vertical faces, that the effusing vapor cause a rotation of the cell about the axis of suspension. In free suspension, the equilibrium deflection occurs when the torque due to the effusing vapor is balanced by that in the suspension, so that the vapor pressure is given by: p : 27ot/(alq~fl + a2q2f2) when p is the pressure, z the torsion constant of the suspension, ~ the deflection, al, a2, ql and q2, respec- tively, the orifice areas and the distances from the axis of rotation, and fl and fz the Freeman and Searcy correction factors for orifice geometry and molecu- lar distribution. The high temperature torsion-effusion apparatus used in the present investigations is essentially the same as described previously, ~ but a number of modi- fications have been made to improve its operation. A revised diagram of the present apparatus is shown in Fig. 1. The water-cooled vacuum envelope, evacuated through a side arm of the lower (furnace) chamber is unchanged. The original slit-tube heating element has now been replaced by a uniform tantalum tube (C), 15.3 cm long, 3.8 cm diam and 0.045 cm wall thickness with tantalum leads connected to either end. This provides a more uniform current flow through the heating element and results in a longer zone of uni- form temperature. Power to the heater is now car- ried through the vacuum chamber base plate (E) by means of two water-cooled (Edwards Type 9A High Current) electrodes (F), with consequent improvement of vacuum conditions. As before, a 500 amp, 8 V transformer supplies power, but the input to this is now controlled by a Stanton-Redcroft (Model LVP-C) temperature controller and programmer. The feed- back to the controller is from a Pt/13 pct RhPt ther- mocouple (S) which has its hot junction contacting, but electrically insulated from, the inside wall of the heating element. Programmed heating and cooling rates (0 to 10~ and constant temperature con- trol (+0.5~ are obtainable between 800 to 1600~ and continuous measurements of vapor pressures during heating and cooling are now achievable. Some modifications have now been made to the radiation ISSN 0360-2133/78/1211-1857500.75/0 1978AMERICANSOCIETYFOR METALSAND VOLUME 9A, DECEMBER 1978-1857 THE METALLURGICAL SOCIETYOF AIME

Transcript of Thermodynamic properties of liquid manganese-silicon alloys

Thermodynamic Properties of Liquid Manganese-Silicon Alloys

NAZIR AHMAD AND JOHN N. PRATT

Vapor p r e s s u r e m e a s u r e m e n t s have been made on twenty two m a n g a n e s e - s i l i c o n al loys in the liquid s ta te , at t e m p e r a t u r e s between 1400 to 1900 K, us ing a to r s ion-e f fus ion technique. The the rmodynamic p roper t i e s of the sys tem have been calculated f rom the observed vapor p r e s s u r e s of manganese over the al loys at 1700 K. The ac t iv i t ies of the components show very s t rong negat ive deviat ions f rom ideal i ty and the heats of fo rma- t ion a re markedly exo thermic . Excess f ree ene rg ies evaluated f rom the vapor p r e s - s u r e s have been combined with the c a l o r i m e t r i c a l l y measu red heats of format ion , avai l - able in the l i t e ra tu re , to obtain the excess en t rop ies of mixing which a re found to be modera te ly negat ive . The p resen t r e su l t s a re a s s e s s e d with r e spec t to the exis t ing phase equ i l ib r i a and other the rmodynamic data for the solid and liquid s ta tes . Among the fac- to rs inf luencing the p rope r t i e s of these a l loys , a tendency to fo rm covalent l inkages in the liquid s tate appears mos t s ignif icant .

THIS study of liquid m a n g a n e s e - s i l i c o n al loys is a par t of the continuing p rog ram of r e s e a r c h at the au tho r s ' l abora tory a imed at co r re l a t ing 1 the the r - modynamic p roper t i e s with component c h a r a c t e r i s - t ics such as s ize, valency, e lec t ronegat iv i ty , magnet ic in te rac t ions and chemical bond effects . P r ev ious work on b ina ry liquid al loys of manganese with copper, 2 gold, 3 and t in 4 has shown that the fac tors r espons ib le for solid phase equ i l ib r i a may p e r s i s t in the liquid state and therefore inf luence its t he rmodynamic prop- e r t i e s . It has been suggested that such p rope r t i e s of liquid manganese -coppe r a l loys owe the i r behavior main ly to the magnet ic in te rac t ions while the e l ec t ro - negat ivi ty factor has been seen to be more s igni f icant in manganese -go ld a l loys . The the rmodynamic prop- e r t i e s of m a n g a n e s e - t i n l iquids have been a t t r ibuted to the d i f fe rences of s ize , valency, and poss ib ly some covalent c lus te r ing of t in . The p re sen t inves t iga t ion was under taken to examine the effect of a l loying man- ganese with a more s t rongly covalent e lement and to provide data for an improved a s s e s s m e n t of the the r - modynamic p rope r t i e s of the sys tem.

As with above examples , the re la t ive vola t i l i ty of manganese makes the m a n g a n e s e - s i l i c o n a l loys a m- menable to study by means of a vapor p r e s s u r e method and the to r s ion -e f fus ion technique has again been employed.

EXPERIMENTAL DETAILS

The p r inc ip les of the to r s ion -e f fus ion technique and i ts use in vapor p r e s s u r e m e a s u r e m e n t s of meta l s have been reviewed by Car te r .5 The spec imen is con- ta ined in an effusion cel l suspended f rom a fine wire, within a ve r t i c a l vacuum chamber . The cell is pro- vided with two or i f ices , so disposed, in i ts f ront and

NAZ1R AHMAD, formerly Research Student/Research Fellow, Department of Physical Metallurgy and Science and Materials, Univer- sity of Birmingham, is now Research Associate, Department of Mate- rials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 and JOHN N. PRATT is Reader in Metallur- gical Thermochemistry, Department of Physical Metallurgy and Science of Materials, University of Birmingham, Birmingham, England.

Manuscript submitted February 17, 1978.

METALLURGICAL TRANSACTIONS A

r e a r v e r t i c a l faces, that the effusing vapor cause a ro ta t ion of the cel l about the axis of suspens ion . In free suspens ion , the equ i l ib r ium deflect ion occurs when the torque due to the effusing vapor is ba lanced by that in the suspension, so that the vapor p r e s s u r e is given by:

p : 27ot / (alq~f l + a2q2f2)

when p is the p r e s s u r e , z the to r s ion constant of the suspens ion , ~ the deflection, al, a2, ql and q2, r e spec - t ively, the or i f ice a r e a s and the d i s tances f rom the axis of rotat ion, and f l and fz the F r e e m a n and Searcy co r rec t ion fac tors for or if ice geomet ry and molecu- lar d i s t r ibu t ion .

The high t e mpe r a t u r e to r s ion -e f fus ion appara tus used in the p resen t inves t iga t ions i s e s s e n t i a l l y the same as desc r ibed previous ly , ~ but a n u m b e r of modi- f ica t ions have been made to improve its operat ion. A r ev i sed d iag ram of the p re sen t appara tus is shown in Fig . 1. The wate r -coo led vacuum envelope, evacuated through a side a r m of the lower (furnace) chamber is unchanged. The or ig ina l s l i t - tube heating e l emen t has now been rep laced by a un i form tan ta lum tube (C), 15.3 cm long, 3.8 cm d iam and 0.045 cm wall th ickness with tan ta lum leads connected to e i ther end. This provides a more un i form cu r r en t flow through the heat ing e lement and r e su l t s in a longer zone of uni- fo rm t e m p e r a t u r e . Power to the hea ter is now car - r ied through the vacuum chamber base plate (E) by means of two wate r -coo led (Edwards Type 9A High Current ) e lec t rodes (F), with consequent improvemen t of vacuum condit ions. As before , a 500 amp, 8 V t r a n s f o r m e r suppl ies power, but the input to this is now control led by a Stanton-Redcrof t (Model LVP-C) t e m p e r a t u r e con t ro l l e r and p r o g r a m m e r . The feed- back to the con t ro l l e r is f rom a P t /13 pct RhPt ther - mocouple (S) which has i ts hot junct ion contact ing, but e l ec t r i ca l ly insula ted from, the ins ide wall of the heat ing e lement . P r o g r a m m e d heat ing and cooling r a t e s (0 to 10~ and constant t e mpe r a t u r e con- t ro l (+0.5~ a re obtainable between 800 to 1600~ and continuous m e a s u r e m e n t s of vapor p r e s s u r e s dur ing heating and cooling a re now achievable . Some modif icat ions have now been made to the rad ia t ion

ISSN 0360-2133/78/1211-1857500.75/0 �9 1978 AMERICAN SOCIETY FOR METALS AND VOLUME 9A, DECEMBER 1978-1857

THE METALLURGICAL SOCIETY OF AIME

shie ld ing (H and L) which now cons is t s of two inner shields of t an ta lum su r rounded by three of molybde- num; a lumina space r s are used to e l imina te contact between ve r t i c a l shields and the a s s e m b l y is made s table by enc los ing in an a lumina tube (I). A s e r i e s of c i r cu l a r shie lds (J) have been added beneath the heat- ing e l emen t . The design of the effusion cel l su s - pens ion sys t em (Q) has been s impl i f ied by the e l im ina - t ion of the magnet ic control sys t em and cel l me a s - u r e m e n t s a re now made by de t e rmin ing the free ro- ta t ion of the cel l f rom observa t ions of def lect ions of

0

R

0

.•

M-

L

F

-A

.C

5

U

E

~I~OXI~AT[ SCAt[

i 1 12 13 d~ C.ms

Fig. 1--The torsion-effusion apparatus.

1858-VOLUME 9A, DECEMBER 1978

the ga lvanometer mixer (X). Tungs ten to r s ion wire of 0.005 cm diam is now used in a l l exper imen t s , suspens ion lengths being va r i ed between 16.0 to 27.0 cm accord ing to the magnitude of the vapor p r e s s u r e involved and the sens i t iv i ty r equ i red . The effusion cel ls , as before , have been machined f rom boron ni - t r ide . Diff icul t ies were encountered due to the in- s tab i l i ty at high t e m p e r a t u r e s of some grades of this ma te r i a l , but t r i a l s have shown that Union Carbide grade HD 0092 is sa t i s fac to ry and this is therefore no rma l ly used. Dur ing exper imen ta l runs the nomina l cel l t e mpe r a t u r e is indicated by means of the in s i t u 20 pct R h - P t / 5 pct R h - P t thermocouple (U) located just beneath the effusion cell . This is ca l ib ra ted to give t rue cel l t e m p e r a t u r e s by making vapor p r e s - sure m e a s u r e m e n t runs with the pure meta l s s i l ve r and manganese , for which the vapor p r e s s u r e s a re accura te ly es tabl i shed, 7 over the t e mpe r a t u r e range of in t e re s t . The n e c e s s a r y t e mpe r a t u r e cor rec t ions a re found to be reproduc ib le for given heat ing e lement and shield a s s e m b l i e s .

Alloys were p repa red f rom spec t roscop ica l ly pure components . Approximate ly 1.0 g samples , careful ly weighed to 0.00002 g, were mel ted under a rgon by R. F. heat ing in boron n i t r ide c ruc ib les su r rounded by a graphite susceptor ; the r e su l t ing ingots were used without fu r the r t r ea tmen t for the liquid alloy vapor p r e s s u r e s tudies . Some al loys, pa r t i cu l a r ly those in the s i l i c o n - r i c h range, were p repared di- r ec t ly in the effusion cell immedia te ly p r io r to the vapor p r e s s u r e m e a s u r e m e n t s .

EXPERIMENTAL RESULTS

The equat ions for vapor p r e s s u r e s of manganese over the a l loys were calculated on the a s sumpt ion that they approximate to C laus ius -C lapey ron behavior over the t e m p e r a t u r e range of in t e re s t . L inea r equat ions of the fo rm:

log p = - A / T + B

were computed by least square ana lys i s of the raw data and a re p resen ted in Table I. Assoc ia ted unce r - ta in t ies in A and B were calculated f rom the s tandard deviat ions , s, of the p a r a m e t e r s accord ing to the fo rmula : +s . t~ where t~ is a probabi l i ty factor for a s s u m i n g n o r m a l d i s t r ibu t ion of the data and 95 pct confidence limits.S The uncer t a in t i e s in log p values due to ext rapola t ion to 1700 K were es t ima ted using the fo rmula :

1 (x K _ ~)2 ]1/2

where x is 1 / T , T being the m i d - t e m p e r a t u r e within the range of m e a s u r e m e n t , xK is 1/1700 K and n is the n u m b e r of observa t ions .

For the a l loys , the ac t iv i t i es and par t i a l thermody- n a m i c p rope r t i e s of manganese at 1700 K (Table II) have been calculated d i rec t ly f rom the above vapor p r e s s u r e equat ions and the a s s e s s e d data for pure manganese . 7 Cor responding values for s i l icon were evaluated us ing the Gibbs-Duhem re la t ion , while in - t eg ra l va lues were obtained by the usual summat ion of the pa r t i a l s . Al l p rope r t i e s r e fe r to the pure liquid f o r ms of the components as the s tandard s ta tes .

METALLURGICAL TRANSACTIONSA

Table 1. The Vapor Pressures of Mn Over Liquid Mn-Si Alloys

logp (atm)* = - A / T + B

Nmn A B • &log p, 1700 K Temp. Range, K

0.100 16044 • 496 4.380 • 0.269 0.0297 i9lM- 1775 0.167 15685 • 191 4,509 • 0.106 0.0141 1886 - 1693 0.290 15393 • 417 4,733 • 0.250 0.0196 1737 - 1592 0.303 15320 • 183 4.736 • 0.110 0.0118 1591 - 1802 0.386 14817 • 432 4.749 • 0,261 0.0283 1576 - 1664 0.395 15079 • 722 4,946 • 0.427 0.0405 t590 - 1774 0.438 14694 • 692 4.921 • 0.411 0.0370 1760 - 1590 0.481 14621 • 487 5,045 • 0.293 0.0206 1721 - 1593 0.530 15222 • 1097 5,589 • 0.655 0.0520 1744- 1590 0.567 15115 • 640 5,688 • 0.383 0.0235 1734 - 1608 0.590 15737 • 781 6,198 • 0.459 0.0313 1756 - 1648 0.650 14590 • 785 5,897 • 0.461 0.0437 1800 - 1615 0.662 15458 • 1041 6,436 • 0.619 0.0283 1696 - 1637 0.700 14500 • 692 6,014 • 0.412 0.0554 1800- 1573 0.725 12470 • 495 4,950 • 0.329 0.0541 1608 - 1403 0.750 12428 • 350 4,989 • 0.232 0.0348 1593 - 1425 0.750 12477 • 226 5,032 • 0,144 0.0296 1440 - 1720 0.773 12337 • 142 4,982 • 0.092 0.0192 1402 - 1641 0.830 12267 • 555 5,069 • 0.293 0.0642 1638 - 1403 0.867 12576 • 5.334 • 0.284 0.0581 1680 - 1402 0.868 12469 • 215 5,274 • 0.139 0.0301 1403 - 1708 0.895 12718 • 142 5,448 • 0.089 0.0087 1519 - 1644 1.000 12673 • 185 5,490 • 0.t15 0.0137 I527 - 1693

*1 atm = 101325 Pa.

T h e p r e c i s i o n of t he e v a l u a t e d p r o p e r t i e s w a s e s t i -

m a t e d f r o m t h e u n c e r t a i n t i e s r e c o r d e d in T a b l e I . C o n s i d e r i n g a n a v e r a g e d e r r o r v a l u e f o r the e q u i - a t o m i c c o m p o s i t i o n a n d t h e s c a t t e r in t he m e a s u r e -

m e n t s on p u r e m a n g a n e s e , t he u s u a l m e t h o d of e r r o r p r o p a g a t i o n s w a s a p p l i e d . A s s u m i n g a p o s s i b l e e r r o r

of +5 K in t e m p e r a t u r e a n d +0.02 NMn in c o m p o s i t i o n , t he e r r o r l i m i t s f o r the p r o p e r t i e s of t he e q u i a t o m i c a l l o y a r e :

AGMn = -- 49 ,321 + 1452 J / g - a t o m .

AG = - 37 ,367 + 1377 J / g - a t o m ,

A/-/ = - 24 ,690 • 3008 J / g - a t o m ,

AS = 7 .4 6 0 • 1 .452 J / d e g . g - a t o m .

T h e v a p o r p r e s s u r e o b s e r v a t i o n s m a d e d u r i n g b o t h h e a t i n g a n d c o o l i n g a r e p r e s e n t e d d i a g r a m a t i c a l l y in F i g . 2. T h e b r o k e n l i n e s i n d i c a t e v a l u e s o b t a i n e d d u r -

i ng h e a t i n g w h e r e a s t he s o l i d l i n e s c o r r e s p o n d to

c o o l i n g e x p e r i m e n t s . W h e r e b o t h t y p e s of o b s e r v a - t i o n s a r e m a d e d u r i n g a s i n g l e r u n , t h e f o r m e r a r e t r e a t e d a s c h a r a c t e r i s t i c of the s t a r t i n g a l l o y co rn -

p o s i t i o n a nd t h e l a t t e r a s r e p r e s e n t a t i v e of the f i n a l

c o m p o s i t i o n ; t h i s w a s e s t i m a t e d f r o m the w e i g h t l o s s of m a n g a n e s e d u r i n g the e x p e r i m e n t . T h e v a l i d i t y of t h i s t r e a t m e n t i s s u p p o r t e d by t he c o n s i s t e n c y of the r e s u l t i n g a c t i v i t y d a t a p l o t t e d in F i g . 3, w h e r e the i d e n t i c a l l y f l a g g e d p o i n t s a r e r e s u l t s f r o m the s a m e

e x p e r i m e n t a l r u n . A n o m a l o u s e v a p o r a t i o n , r e s u l t i n g in a d e l a y e d e s -

t a b l i s h m e n t of e q u i l i b r i u m p r e s s u r e s , w a s a l w a y s o b - s e r v e d d u r i n g i n i t i a l h e a t i n g of l i qu id a l l o y s c o n -

t a i n i n g a p p r o x i m a t e l y 55 to 65 a t . pc t m a n g a n e s e , i . e .

in t he v i c i n i t y of the c o m p o u n d MnsSi3 ( s e e F i g . 5). D e p e n d i n g on t he e x a c t m a n g a n e s e c o n t e n t (<>MnsSi3) of t he a l l o y , c o n t i n u o u s l y d e c r e a s i n g o r i n c r e a s i n g v a p o r p r e s s u r e s w e r e n o t e d on h o l d i n g a t c o n s t a n t

t e m p e r a t u r e f o r s h o r t p e r i o d s . S y s t e m a t i c c y c l i n g

e x p e r i m e n t s i n d i c a t e d t h a t t h i s b e h a v i o r i s a s s o c i a - t e d w i th t he s l u g g i s h d i s s o l u t i o n of MnsSi3 a n d s l o w d i s p e r s i o n of i t s c o m p o n e n t s t h r o u g h o u t t he l i qu id p h a s e . F o r a l l o y s on t h e m a n g a n e s e - r i c h s i d e of t he

c o m p o u n d , t he a p p r o a c h to h o m o g e n e i t y a f t e r m e l t i n g w i l l r e s u l t in a g r a d u a l m a n g a n e s e i m p o v e r i s h m e n t

of the i n i t i a l l i q u i d s a nd h e n c e to f a l l i n g v a p o r p r e s - s u r e s ; the s i m i l a r h o m o g e n i z a t i o n of the s i l i c o n - r i c h a l l o y s , on t he o t h e r h a n d , wi l l be a c c o m p a n i e d by a g r a d u a l m a n g a n e s e - e n r i c h m e n t of the l i qu id p h a s e a n d s o by i n c r e a s i n g v a p o r p r e s s u r e s . B e c a u s e of t h i s b e h a v i o r , on ly r e s u l t s o b t a i n e d d u r i n g c o o l i n g r u n s h a v e b e e n u s e d in d e t e r m i n i n g t he v a p o r p r e s s u r e of a l l o y s in t h i s c o m p o s i t i o n r a n g e .

DISCUSSION

Activities of manganese and silicon at 1700 K plot- ted in Fig. 3 show very strong negative deviations from ideality, but these observations are in reason- able agreement with liquid alloy activity data at 1673 K recently obtained by Batalin and Sudavtsova ~ in molten chloride electrolyte galvanic cell studies (1520 to 1700 K). Somewhat smaller negative devia- tions from ideal behavior have been reported by Petrushevskii, Kocherov, Geld, Zamyatin and Suchilni- key z~ following Knudsen vapor pressure measurements at 1623 K. However, coincident with the completion of the present work, z~ Gee and Rosenqvist 12 reported a further vapor pressure study of the same system, using a transport method over various temperature ranges between 1517 and 1977 K. Computation of man- ganese activities at 1673 K from their vapor pres- sure equations and from those of Table I show good

NMn aMn aSi

Table II. Thermodynamic Properties of Liquid Manganese-Silicon Alloys at 1700 K (Reference States: Mn(I) and Si(I))

(k J/g-atom) (J/deg �9 g-atom) (k J/g-atom) AG, AS, AH,

AGMn AGsi ASMn ASsi A/tMn A/~Si k J /g -a tom J/deg �9 g-atom kJ/g-atom

0.1 0.0008 0.8934 0.2 0.0023 0.752 0.3 0.0049 0.5830 0.4 0.0117 0.3613 0.5 0.0305 0.1656 0.6 0.0929 0.0408 0.7 0.2852 0.0052 0.8 0.5829 0.0006 0.9 0.8645 6.7 X 10 "s

-100.776 -1.594 21.338 0.795 -64.501 -0.234 -11.5t4 2.849 -6.669 -85.851 -4.029 17.573 1.456 -55.978 -1.552 -20.393 4.678 -12.439 -75A66 -7.627 15.062 2.301 -49.560 -3.715 -27.891 6.130 -17.468 -62.865 -14.389 11.715 4.176 -42.949 -7.289 -33.777 7.192 -21.552 -49.321 -25.414 5.021 9.895 -40.786 -8.594 -37.367 7.460 -24.690 -33.581 -45.212 -8.368 2 5 , 5 6 8 -47.806 -1.745 -38.233 5.205 -29.380 -17.732 -74.325 -9.205 2 6 . 9 5 3 -33.380 -28.506 -34.710 1.644 -31,920 -7.627 -104.847 9.623 -31.698 +8.732 -158.733 -27.070 1.360 -24.761 -2.059 -I35.846 2.092 14.3t3 +1.498 -111.512 -15.439 3.314 -9.803

METALLURGICAL TRANSACTIONS A VOLUME 9A, DECEMBER 1978-1859

3-0

2-5

~2"0 x

0

e~

o 1-5

1"0

0"5

"x, "~.

' ~ " x , , "=,

\ x ' , "=,

,x,,

I I i I

5-5 6.0 11T~10 4 (OK)

NMn

o 0100 �9 0167 o 0.290 m 0303 �9 0386 �9 0395

* 0"438 �9 0"481 �9 0"530 " 0"567 �9 0"590

NMn

0-650 0662

x {)700 0-725

�9 0750 �9 0-750 e 0-773 T 0"830 + 0"867 * 0"868 �9 0"895

1 I

65 7-0

Fig. 2--Vapor pressures of manganese over liquid man- ganese-silicon alloys, 1 atm = 1.01325 • l0 s Pa.

a g r e e m e n t be tween these two mos t r e c e n t i nves t iga - t ions ove r mos t of the compos i t ion range , but dev ia te f rom each o the r a t the h ighes t manganese contents . A s i s d e m o n s t r a t e d below, however , in th is r ange the r e s u l t s of the p r e s e n t s tudy appea r mos t cons i s t en t with va lues ind ica ted by the phase d i a g r a m . A com- p a r i s o n of the v a r i o u s l iquid s ta te s tud ies i s shown in F ig . 4.

The va l id i ty of the p r e s e n t r e s u l t s and the g e n e r a l cons i s t ency of the t h e r m o d y n a m i c da ta for the s y s t e m is a l so con f i rmed by c o m p a r i s o n with va lues com- puted f rom the phase d i a g r a m and f r o m t h e r m o d y n a m i c s tud ies of so l id a l l o y s . The phase d i a g r a m shown in F ig . 5 is l a r g e l y a s compi led by Shunk 13 but modif ied, in the s i l i c o n - r i c h r eg ions , in a c c o r d a n c e with the r e i n v e s t i g a t i o n s by M a g e r and Wach te l . 14 T h e r e have been two s ign i f i can t s tud ies of f r ee e n e r g i e s of f o r m a - t ion in the so l id s t a t e . Us ing a Hz/HC1 equ i l i b ra t i on technique, R o s s e m y r and Rosenqv i s t 15 have d e t e r m i n e d f r ee e n e r g i e s of f o rma t ion of MnSi2, MnSi and MnsSi3

at 1363 K, while a m o r e ex tens ive s tudy of the t h e r - modynamic p r o p e r t i e s of so l id a l loys (0 to 100 pct Si, 950 to 1100 K) has been made by E r e m e n k o , Lukashenko mad Sidorko TM by means of mol ten ch lo r ide e l e c t r o l y t e ga lvanic ce l l m e a s u r e m e n t s . A c t i v i t i e s of manganese along the l iquidus , obta ined f rom liquid and so l id s t a t e s tud ies and r e f e r r e d to a un i fo rm liquid manganese s t anda rd , a r e c o m p a r e d with each o ther in F ig . 6. A l so included a r e manganese r i ch data, d e r i v e d f rom the phase d i a g r a m a s s u m i n g Raoul t ian behav io r in the /3-Mn so l id so lu t ions , and s i l i con ac t i v i t i e s at 1700 K computed f rom the fo rm of the l iquidus r e l a t - ing to pure so l id s i l i con . The gene ra l l y good a g r e e - ment of the v a r i o u s da ta d e m o n s t r a t e s the mutual con- s i s t e n c y of the phase d i a g r a m and of the t h e r m o d y - namic p r o p e r t i e s of the so l id and l iquid a l l oys . The anomalous compos i t ion dependence of the computed points (open c i r c l e s ) in the r eg ion NMn = 0.6 to 0.7 is thought to be due to the s ens i t i v i t y of these va lues to the t rue m a n g a n e s e - r i c h so l idus of the e s s e n t i a l l y

1860-VOLUME9A, DECEMBER 1978 METALLURGICAL TRANSACTIONS A

10 1"0

-9

-8

7

6

a ' 5

"4

.3

.2

.1

0 0 1 .2 .3 4 .5 .6 .7 .8 .9

NNn Fig. 3--Activities of manganese and silicon in liquid man- ganese-silicon alloys at 1700 K.

1,0

S tO 15 1 5 0 0 " ~

.8

- 6 c'-

.4

.2

o

o o o �9

0 i 1 i i i

0 .2 .4 .~, ' - 8 ' ~ .0 NM n

Fig. 4--Comparison of experimental data for manganese activity coeff ic ients in liquid m a n g a n e s e - s i l i c o n al loys: o P e t r u s h e v s k i i et al (1623 K), �9 Batal in and Sudavtsova (1673 K), ~ Gee and Rosenqv i s t (1673 K), and -- P r e s e n t work (1673 K).

WEIGHT PER CENT S I L I C O N z o z~, 3o 4 0 5 0 6 0 7 0 o o 9 o

1401

130q

120r

Fig. 5- -The m a n g a n e s e - s i l i - con equ i l ib r ium d i a g r a m .

u I 1 0 0

E

I O 0 0 9[ m.

tll i - ~ n n I

8 0 0

7 0 0

600

5O0 L

0 Ma

METALLURGICAL TRANSACTIONS A

w g

11

( | - I d . )

Y~.,,;5. ( r - M . ) - \

IG.1

8tO*,f

15.3'

IO 2 0

'r iol 1 1 l ~85 o - ~

~ 4 l J I I

1 0 7 5 "

1 0 4 0 *

I

3O

OSO i I

! ' 1- , I I I

I , I

I

I I

4 0 5 0 6 0 7 0 eO 9 0 I 0 0

ATOMIC PER CENT S I L I C O N S'u

VOLUME9A, DECEMBER i978-1861

0 0

asi

M.5si 2 at

o 1 ; aMn *

0

1 . MnSi

2 Mnll$ 19 1

/

1 . . . . �9 NON-ISOTHE RMA

0 ?~ I I r I [ i 1 I

0 -2 4 .6 .8 10 si Nlqn Nn

Fig. 6--Comparison of liquid, solid and computed activity data for manganese-silicon alloys. �9 Eremenko e t a l , • Rossemyr and Rosenqvist, �9 Batalin and Sudavtsova, u Gee and Rosenqvist, [] Calculated from phase diagram, and - - Present work.

s t o i c h i o m e t r i c phase , MnsSi3, in e q u i l i b r i u m with the l iquidus in th is r ange .

I n t e g r a l hea t s and e n t r o p i e s of f o rma t ion of the l iquid a l loys y ie lded by the p r e s e n t vapor p r e s s u r e s tud ies alone a r e given in Tab le II . The hea t s a r e c o n s i d e r a b l y l e s s e x o t h e r m i c than the equiva lent quant i t i es sugges t ed by the emf s tud ies by Ba la t in and Sudavstova , 9 but the p r e s e n t va lues a r e s i m i l a r in magni tude to those obta ined, by Ge r tman and Geld, t~ by d i r e c t c a l o r i m e t r y at 1743 K and r e a s s e s s e d by Chart ; ts these c a l o r i m e t r i c hea t s of f o r m a t i o n a r e , however , s ign i f i can t ly l e s s a s y m m e t r i c with r e s p e c t to compos i t ion . Since the c a t o r i m e t r i c a l l y m e a s u r e d hea t s of f o r m a t i o n should be m o r e a c c u r a t e than those obtained f r o m the v a p o r p r e s s u r e t e m p e r a t u r e coef- f i c ien t s , the e n t r o p i e s of fo rma t ion have f inal ly been ca l cu la t ed by combining the c a l o r i m e t r i c hea t s with the p r e s e n t i n t e g r a l f r ee e n e r g i e s at 1700 K; the v a r i a t i o n of &H be tween 1700 and 1743 K is con- s i d e r e d to be neg l ig ib l e . The r e s u l t i n g va lues of the t h r e e i n t e g r a l e x c e s s p r o p e r t i e s of the s y s t e m a r e p lo t ted in F ig . 7. T h e s e show that the l iquid man- g a n e s e - s i l i c o n a l l oys a r e c h a r a c t e r i z e d by v e r y m a r k e d e x o t h e r m i c behav ior ; of the l iquid manganese a l l o y s so f a r i nves t iga t ed only the m a n g a n e s e - g o l d s y s t e m , 3 with i ts excep t iona l ly l a rge e l e c t r o c h e m i c a l f a c t o r , has shown m o r e nega t ive hea t s . I t is obvi- ous that s i m i l a r h e t e r o p o l a r i t y of bonding wi l l not ex i s t be tween manganese and s i l i con , s ince the e l e c - t r onega t i v i t y d i f f e rence be tween these e l e m e n t s i s much s m a t t e r aad indeed i s c lo se ly c o m p a r a b l e with those ex i s t i ng in the b i n a r i e s of manganese with copper , n i cke l and t in . Cons ide ra t ion of the types of i n t e r m e d i a t e phases o c c u r r i n g in the so l id s ta te , however , shows that i n t e rcomponen t covalent bonding is a p r edominan t f e a tu r e of the m a n g a n e s e - s i l i c o n

s y s t e m , p a r t i c u l a r l y in the c e n t r a l compos i t ion r e - g ions . The l a rge negat ive hea t s of f o r m a t i o n of the l iquids a r e thus mos t p robab ly a t t r i bu t a b l e to the e x i s t e n c e of s i m i l a r covalent i n t e r ac t i ons in the mol ten a l l oys . The magni tude of the hea t s fu r the r sugges t s that a t endency to fo rm cova l en t ly - l i nked c l u s t e r s may wel l occur and that th is , through a r e - duct ion of conf igura t iona l en t ropy , may be r e s p o n s i b l e for a s ign i f ican t pa r t of the o b s e r v e d nega t ive e x c e s s e n t r o p i e s . However , the m a j o r p a r t of the l a t t e r mus t be a t t r i bu t ed to t h e r m a l s o u r c e s , s ince the covalent bonding p r e s e n t ove r much of the s y s t e m is a c c o m - pan ied by nega t ive dev ia t ions f rom Neumann-Kopp behav io r in the so l i d s 19'2~ and p robab ly a t so in the l iquid s t a t e . It wi l l be o b s e r v e d that the e x c e s s en- t r o p i e s of the l iquids a r e l e s s nega t ive in the man- g a n e s e - r i c h r e g ions and this is thought to be a t t r i bu - t ab le to the m o r e m e t a l l i c bonding l ike ly to ex i s t at these compos i t i ons . The sugges t ed v a r i a t i o n of bond c h a r a c t e r a c r o s s the l iquids is suppor t ed by r e p o r t e d s tud ies of the so lu t ion of hydrogen in m a n g a n e s e - s i l i c on m e l t s . 21 So lub i l i t i e s a r e l ea s t in concen t r a t ed a l l oys (30 to 60 a t . pct manganese ) and r e l a t i v e l y g r e a t e r at the manganese r i c h compos i t ions ; the hea t s of solut ion in these two r eg ions a r e r e s p e c - t ive ly endo-and exo the rmic . Th is sugges t s that the m a n g a n e s e - r i c h a l l oys , be ing more m e t a l l i c al low the hydrogen r e a d i l y to fo rm m e t a l l i c l inkages on solut ion, while in the concen t ra t ed a l loys the p r e f e r - ence for covalent i n t e r ac t ion be tween manganese and s i l i con r e d u c e s the f ac i l i t y for l inkages with hydrogen and hence inhibi ts i t s so lub i l i ty . P e r s i s t e n c e of mi - c ro inhomogene i t i e s in at l e a s t some of the l iquids is a l so ind ica ted by the o b s e r v a t i o n of a b n o r m a l l y low hea t s of fusion for MnsSi3.19 T h e s e have been i n t e r - p r e t e d as due to the enhancement of Mn-Si covalent bonding on me l t ing so that q u a s i - m o l e c u l a r groups of MnSi type a r e f o r m e d leaving o the r p a r t s of m i c r o - inhomogeneous r eg ions r i c h e r in manganese . Th is s u g ges t ion is cons i s t en t with the f o r m s of anomalous vapor p r e s s u r e behav io r o b s e r v e d in the p r e s e n t work dur ing the in i t i a l heat ing of a l l oys in the v ic in i ty of the compound MnsSi3. That a t endency to fo rm molecu -

�9 2 .4 .6

E o 10

S &

20 I

x

~ 3o

40

NMn

1.0

-8 1.0 E >/oo 2 6~

6% <~

I

Fig. 7- -Excess integral thermodynamic proper t ies of liquid manganese-s i l icon alloys.

1862-VOLUME 9A, DECEMBER 1978 METALLURGICAL TRANSACTIONS A

350

300

E 2 5 O o S

~ "

8 - 2 0 0 >

"r- <~ 3 0 O

250

Z E Z

~ M n ~ i

i I i 1 i t I I

gi M n - N i

i + q , , . ,

2 0 0 0 I I I I 1 I t I t -2 .4 "6 ' 8 1"0

N M n Fig. 8--Heats of vaporization of manganese from manganese- silicon and manganese-nickel liquid alloys.

i a r a s s o c i a t i o n s i s n o t m e r e l y t r a n s i e n t b u t i s p r o b a -

b l y c h a r a c t e r i s t i c o f t h e s t e a d y e q u i l i b r i u m s t a t e o f

s o m e l i q u i d m a n g a n e s e - s i l i c o n a l l o y s i s m o s t c l e a r l y d e m o n s t r a t e d b y c o m p a r i n g t h e h e a t s of v a p o r i z a t i o n o f m a n g a n e s e f r o m t h e s e a l l o y s w i t h t h o s e f r o m m a n - g a n e s e - n i c k e l a l l o y s i n t h e l i q u i d s t a t e . ~ l V a l u e s of t h e s e h e a t s f o r t h e t wo s y s t e m s , c a l c u l a t e d d i r e c t l y

f r o m t h e e q u i l i b r i u m v a p o r p r e s s u r e e q u a t i o n s , a r e c o m p a r e d in F i g . 8. A s w o u l d b e e x p e c t e d , s i m i l a r v a l u e s a r e o b s e r v e d f o r t h e m a n g a n e s e - r i c h r e g i o n s

o f b o t h s y s t e m s , b u t i n c o n t r a s t t o t h e e s s e n t i a l l y c o n -

s t a n t o r m o n o t o n i c v a r i a t i o n a c r o s s t h e m a n g a n e s e -

n i c k e l a l l o y s , t h e i n t e r m e d i a t e m a n g a n e s e - s i l i c o n c o m p o s i t i o n s e x h i b i t s i g n i f i c a n t l y i n c r e a s e d h e a t s o f

v a p o r i z a t i o n . T h i s t h u s p r o v i d e s v e r y d i r e c t e v i d e n c e o f t h e e x i s t e n c e o f e n h a n c e d i n t e r a c t i o n s b e t w e e n m a n -

g a n e s e a n d s i l i c o n a t o m s in t h e s e p a r t i c u l a r r e g i o n s .

A C K N O W L E D G M E N T S

F i n a n c i a l s u p p o r t f o r t h e r e s e a r c h p r o g r a m h a s

b e e n p r o v i d e d b y t h e U n i t e d S t a t e s G o v e r n m e n t t h r o u g h t h e E u r o p e a n R e s e a r c h O f f i c e of t h e U n i t e d S t a t e s A r m y . T h e a u t h o r s w i s h to a c k n o w l e d g e c o n - s t r u c t i v e c o m m e n t b y D r . J . W . J o h n s o n of A r m y M a - t e r i a l s a n d M e c h a n i c s R e s e a r c h C e n t e r , W a t e r t o w n ,

M a s s a c h u s e t t s , a n d P r o f e s s o r J o h n F . E l l i o t t o f M a s -

s a c h u s e t t s I n s t i t u t e of T e c h n o l o g y .

R E F E R E N C E S

1. J. N. Pratt: Rev. Int. Hautes Temper. etRefract., 1957, vol. 4, p. 97. 2. P. J. Spencer and ]. N. Pratt: Tran~ Faraday Soc., 1968, vol. 64, p. 1470. 3. P. J. Spencer and J. N. Pratt: Rev. Int. Hautes Tempe~ etRefract., 1968,

vol. 5, p. 155. 4. P. J. Spencer and J. N. Pratt: Tran~ TMS-AIME, 1968, vol. 242, p. 1709. 5. E. D. Carter: Physicochemical Measurements in Metals Research, part 1, R. A.

Rapp, ed, pp. 21-94, Wiley-lnterscience, New York, 1970. 6. P. J. Spencer and J. N. Pratt: Brit. J. AppL Phy~, 1967, vol. 18, p. 1473. 7. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D.

Wagman: Selected Values of the Thermodynamic Properties of the Elements, ASM, Metals Park, Ohio, 1973.

8. O. L Davies: Statistical Methods in Research and Production, Oliver and Boyd, London, 1967.

9. G. 1. Batalin and V. S. Sudavtsova: Ukrain. Khim Zhur., 1974, vol. 40, no. 5, p. 542.

10. M. S. Petrushevskii, P. V. Kocherov, P. V. Geld, V. M. Zamyatin, and S. I. Suchilnikov: Rus~ J. Phy~ Chen~, 1973, vol. 47, p. 158.

11. J. N. Pratt and N. Ahmad: Final Tech. Report, U.S.D.A. Grant No. DA-ERO- 124-74-G0060, June 1975.

12. R. Gee and T. Rosenqvist: Scand ,L Metall., 1976, vol. 5, p. 57. 13. F. A. Shunk: Constitution of Binary Alloys, 2rid Supplement, McGraw-Hill,

New York, 1969. 14. T. Mager and E. Wachtel: Z. Metalk., 1970, vol. 61, p. 853. 15. L. Rossemyr and T. Rosenqvist: Tran~ TMS-AIME, 1962, vol. 224, p. 140. 16. V. N. Eremenko, G; M. Lukashenko, and V. P. Sidorko: Soy. PowderMet.

Met. Ceram., 1964, vol. 5, p. 393; 1965, vol. 9, p. 765. 17. Yu. M. Gertman and P. V. Geld: [sv. Vys. Uchebn. Zaved. Chem. Met,, 1959,

vol. 9, p. 15. 18. T. G. Chart: A Critical Assessment of Thermochemical Data for Transition

Metal-Silicon Systems, N.P.L. Report Chem. 18, National Physical Laboratory, Teddington, England, 1972.

19. S. M. Letun and P. V. Geld: High Temp., 1965, vol. 3, p. 39. 20. S. M. Letun, P. V. Geld, and N. N. Serebrennikov: Russ. MetalL, 1965, vol. 6,

p. 97; Izv. Vys. Uchebn. Zaved. Chem. Met., 1965, vol. 4, p. 5; 1966, vol. 12, p. 5.

21. T. K. Kostina, B. A. Baum, P. V. Geld, and K. T. Kuroschkin: Russ. Metall., 1971, vol. 4, p- 8t.

METALLURGICAL TRANSACTIONS A VOLUME 9A, DECEMBER 1978-1863