Thermodynamic Cycle Presentation

29
Thermodynamic Cycles

Transcript of Thermodynamic Cycle Presentation

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 1/29

Thermodynamic Cycles

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 2/29

• Look at different cycles that approximate realprocesses

• You can categorize these processes several

different ways• Power Cycles vs. Refrigeration

• Gas vs. Vapor

• Closed vs. open• Internal Combustion vs. External Combustion

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 3/29

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 4/29

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 5/29

WQ

Q-W=0 Q=W

In addition, we know that the efficiency for aCarnot Cycle is:

η th Carnot 

 L

 H 

T ,  = −

1

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 6/29

Carnot Cycle is not a good model for most realprocesses

• For example• Internal combustion engine

• Gas turbine

• We need to develop a new model, thatis still ideal

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 7/29

 Air-Standard Assumptions

• Air continuously circulates in a closedloop and behaves as an ideal gas

• All the processes are internallyreversible

• Combustion is replaced by a heat-addition process from the outside

• Heat rejection replaces the exhaust

process

• Also assume a constant value for Cp,

evaluated at room temperature

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 8/29

erminology for Reciprocating Devices

r   V 

 BDC 

TDC 

= =max

minCompression Ratio

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 9/29

Mean Effective Pressure

∫=2

1PdV W 

V PW    ∆=

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 10/29

v

v

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 11/29

1-2 Isentropic Compression

2-3 Constant Volume Heat Addition

3-4 Isentropic Expansion

4-1 Constant Volume Heat Rejection

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 12/29

hermal Efficiency of the Otto Cycle

η thnet 

in

net 

in

in out  

in

out 

in

Q

Q

Q

Q Q

Q

Q

Q

= = =  −

= −1

Apply First Law Closed System to Process 2-3, V = Constant

∫   =+=+=∆=−

3

223,23,23,

2323,23,

00   PdV W W W 

U W Q

bother net 

net net 

Q U 

Q Q mC T T  

net 

net in v

,

, ( )

23 23

23 3 2

=

= = −

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 13/29

Apply First Law Closed System to Process 4-1,V = Constant

001

441,41,41,

4141,41,

=+=+=

∆=−

∫   PdV W W W 

U W Q

bother net 

net net 

Q U 

Q Q mC T T  Q mC T T mC T T  

net 

net out v

out v v

,

, ( )( ) ( )

41 41

41 1 4

1 4 4 1

=

= − = −= − − = −

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 14/29

η th Ottoout 

in

v

v

QQ

mC T T  

mC T T  

,

( )

( )

= −

= −  −

1

1 4 1

3 2

η th OttoT T T T 

T T T 

T T T 

,( )( )

( / )

( / )

= −   −−

= −  −

1

11

1

4 1

3 2

1 4 1

2 3 2

Recall processes 1-2 and 3-4 are isentropic, so

1

3

4

4

3

1

2

1

1

2

T and  

−−

⎟⎟ ⎠ ⎞⎜⎜

⎝ ⎛ =⎟⎟

 ⎠ ⎞⎜⎜

⎝ ⎛ =

k k 

vvT 

vv

T T 

v3 = v2 and v4 = v1

T T 

T T 

or 

T T 

T T 

2

1

3

4

4

1

3

2

=

=

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 15/29

η th OttoT T T T 

T T T 

T T T 

,( )( )

( / )

( / )

= −   −−

= −  −

1

11

1

4 1

3 2

1 4 1

2 3 2

1

η th Otto

T ,   = −1 1

2

Is this the same as the Carnot efficiency?

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 16/29

Efficiency of the Otto Cycle vs. Carnot Cycle

• There are only two temperatures in theCarnot cycle

• Heat is added at TH

• Heat is rejected at TL

• There are four temperatures in the Otto

cycle!!• Heat is added over a range of temperatures

• Heat is rejected over a range of temperatures

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 17/29

1

1

1

2

2

1 1−

=⎟⎟

 ⎠

 ⎞⎜⎜

⎝ 

⎛ =

r V 

Since process 1-2 is isentropic,

η th Otto   k r ,  = −

−1

1

1

η th Otto

T ,   = −1 1

2

Increasing Compression RatioIncreases the Efficiency

Typical CompressionRatios for GasolineEngines

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 18/29

Why not use higher compression Ratios?

• Premature Ignition• Causes “Knock” 

• Reduces the Efficiency

• Mechanically need a better design

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 19/29

Diesel Engines

• No spark plug• Fuel is sprayed into hot compressed air

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 20/29

State Diagrams for the Diesel Cycle

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 21/29

Diesel Cycle Otto Cycle

The onlydifference

is inprocess2-3

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 22/29

Consider Process 2-3

• This is the step where heat is transferred into thesystem

• We model it as constant pressure instead of constant

volume23,23,   uuuwq out bin   −=∆=−( )2323,   T T C hvPuq  pin   −=∆=∆+∆=

Consider Process 4-1• This is where heat is rejected

• We model this as a constant v process

• That means there is no boundary work 

uwq   ∆=− 4141

( )4141   T T C uqq vout    −=∆=−=

( )14   T T C q vout   −=

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 23/29

 As for any heat engine…

in

out 

in

net th

q

q

q

w−== 1η 

( ) ( )2314  and   T T C qT T C q  pinvout    −=−=

( )23

14,

)(1

T T C 

T T C n

 p

vdieselth

−−=

  ( )

( )23

141

T T k 

T T 

−−=

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 24/29

Rearrange

( )

( )1

11

232

141,

−−=

T T kT 

T T T n dieselth

PV 

PV 

T P P

V r c

3 3

3

2 2

2

3 2

3

2

3

2

= =

= =

  where

rc is called the cutoff ratio – it’s the ratio ofthe cylinder volume before and after thecombustion process

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 25/29

( )

( )1

11

2

141,

−−=

c

dieselth

r kT 

T T T n

PV 

PV 

T V V 

P

P

4 4

4

1 1

1

4 1

4

1

4

1

= =

=

  where

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 26/29

k k 

k k 

V PV P

V PV P

3344

2211 and 

=

=

( )( )111

2

141,

−−=

c

dieselthr kT T T T n 14

  PP

Since Process 1-2 and Process 3-4

are both isentropic

V V 

PP

V V 

PP

2

3

2

3

1

4

1

4=

1 1

k c

r V V  =⎟⎟

 ⎠ ⎞⎜⎜

⎝ ⎛ =

2

3

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 27/29

)( )111

2

1,

−−=

c

cdieselth

r kT r T n

Finally, Since process 1-2 is

isentropic

1

1

2

2

1

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ =

vv

T T 

The volume ratiofrom 1 to 2 is the

compression ratio, r

1

2

1 1  −

⎟ ⎠

 ⎞⎜⎝ 

⎛ =

r T 

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 28/29

( )⎥⎦⎤⎢

⎣⎡

−−−=

− 1111

1,

c

c

k dieselthr k 

r r 

η 

k=1.4

8/19/2019 Thermodynamic Cycle Presentation

http://slidepdf.com/reader/full/thermodynamic-cycle-presentation 29/29

The efficiency of the Otto cycle is always higher than theDiesel cycle

Why use the Diesel cycle?Because you can use higher compression ratios