Thermodynamic and optical properties of naphthalene ... optical properties of naphthalene, fluorene...

Click here to load reader

  • date post

    10-Mar-2020
  • Category

    Documents

  • view

    14
  • download

    0

Embed Size (px)

Transcript of Thermodynamic and optical properties of naphthalene ... optical properties of naphthalene, fluorene...

  • D Thermodynamic and optical properties of naphthalene, fluorene and fluorenone derivatives

    Juliana Andreia Silva Alves Oliveira Doutoramento em Química 2016 Departamento de Química e Bioquímica

    Faculdade de Ciências da Universidade do Porto

    Orientador Manuel João dos Santos Monte

    Professor Associado do Departamento de Química e Bioquímica

    Faculdade de Ciências da Universidade do Porto

    Co-orientador Maria das Dores Melo da Cruz Ribeiro da Silva

    Professora Associada do Departamento de Química e Bioquímica

    Faculdade de Ciências da Universidade do Porto

    .0

    .2

    .4

    .6

    .8

    .0 Liquid

    Crystal

    Vapor

  • FCUP

    I

    To Mom, Dad and B

  • II

  • FCUP

    III

    Abstract

    This dissertation describes the thermodynamic and optical study of 16 fluorene

    derivatives, 4 fluorenone derivatives and 3 naphthalene derivatives, some of which were

    synthesized for this purpose.

    Differential scanning calorimetry analysis was performed in order to detect transitions

    between condensed phases and to determine their enthalpies and temperatures of

    transition.

    The crystalline vapor pressures of all the compounds studied were measured using

    the Knudsen mass-loss effusion method and/or a static method based on capacitance

    manometers. The latter method also allowed the measurement of the liquid vapor pressures

    of some of the compounds, enabling phase diagram representations. Sublimation and

    vaporization properties (standard molar enthalpy, entropy and Gibbs energy) were

    determined from the vapor pressure dependency with temperature, and occasionally using

    also Calvet microcalorimetry.

    The standard molar enthalpies of formation in the crystalline phase, were derived from

    the standard massic energy of combustion, at T = 298.15 K, measured by combustion

    calorimetric techniques for some of the compounds studied. For these compounds, the

    combination of the standard molar enthalpies of formation in the crystalline phase and the

    standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation,

    in the gaseous phase. The determined results enabled the evaluation of the thermodynamic

    stability of the compounds by means of the Gibbs energy of formation, in crystalline and

    gaseous phases.

    After convenient tests on a new apparatus, fluorescence spectroscopic

    measurements were performed to determine the fluorescence quantum yield and emission

    properties of the compounds studied.

    Keywords: Fluorene derivatives; Fluorenone derivatives; Naphthalene derivatives; Vapor

    pressure; Sublimation; Vaporization; Fusion; Combustion; Enthalpy; Entropy; Gibbs energy;

    Fluorescence; Quantum yield; Volatility; Stability.

  • IV

    Resumo

    Nesta dissertação é descrito o estudo termodinâmico e ótico de 16 derivados do

    fluoreno, 4 derivados da fluorenona e 3 derivados do naftaleno, alguns dos quais foram

    sintetizados neste trabalho.

    Calorimetria diferencial de varrimento foi realizada com os objetivos de detetar as

    transições entre as fases condensadas e determinar as respetivas temperaturas e entalpias

    molares de fusão padrão.

    As pressões de vapor da fase cristalina de todos os compostos estudados foram

    medidas utilizando o método de efusão de Knudsen e/ou um método estático baseado em

    manómetros de capacitância. O método estático também permitiu a medição pressões de

    vapor da fase líquida de alguns dos compostos, possibilitando a representação dos

    respetivos diagramas de fase. As propriedades de sublimação e vaporização (entalpia,

    entropia e energia de Gibbs molar padrão) foram determinados a partir da dependência da

    pressão do vapor com a temperatura e, ocasionalmente, usando também microcalorimetria

    Calvet.

    As entalpias molares de formação padrão na fase cristalina, foram derivadas a partir

    de energias mássicas de combustão padrão, a T = 298.15 K, determinadas por calorimetria

    de combustão para alguns dos compostos estudados. Para estes compostos, a

    combinação das respetivas entalpias molares de formação padrão na fase cristalina com

    as entalpias molares de sublimação padrão permitiu o cálculo das entalpias molares de

    formação padrão, na fase gasosa. Estes resultados permitiram a avaliação da estabilidade

    termodinâmica dos compostos por meio da energia de Gibbs de formação, das fases

    cristalinas e gasosas.

    Após testes convenientes a um novo aparelho, as propriedades de emissão dos

    compostos estudados, incluindo o rendimento quântico de fluorescência, foram

    determinadas por espectroscopia de fluorescência.

    Palavras-chave: Derivados do fluoreno; Derivados da fluorenona; Derivados do naftaleno;

    Pressão de vapor; Sublimação; Vaporização; Fusão; Combustão; Entalpia; Entropia;

    Energia de Gibbs; Fluorescência; Rendimento quântico; Volatilidade; Estabilidade.

  • FCUP

    V

    Acknowledgments

    I’d like to express my deepest gratitude,

    To Professor Manuel João Monte, for the guidance throughout the years, for the

    fruitful discussions and incentive, and for challenging me daily to develop the rational

    thinking essential to a good scientist, which greatly contributed to the realization of this work.

    To Professor Maria da Dores Ribeiro da Silva, for the support and availability, for the

    transmitted knowledge and the constant encouragement.

    To the late Professor Manuel Ribeiro da Silva, for always teaching me something new,

    for all the given opportunities that lead to this point and for all they may lead to in the future.

    To all the professors and colleagues in the RG2 and RG3 groups, in which I include

    Mr. Carlos Torres, who in one way or another contributed to this work, I thank the regard

    with which I was received and all the support provided.

    A special mention to Ana Rita Figueira, for being a ‘partner in crime’, for the contagious good mood, invaluable lessons and always prompt and unconditional

    assistance that cannot be put into words.

    To Professor Fernanda Borges and Alexandra Gaspar, for kindly welcoming me into

    their group and providing me with the necessary tools for what was to be a brief

    collaboration and ended up becoming a long ‘synthetic’ endeavor.

    To Joana, Tiago, Maria João and Sílvia, for representing the purest definition of

    friendship. The past years wouldn’t have been the same without you.

    To my loving parents and my dear B, for the never ending patience, encouragement,

    support and love. For the constant reminder that it would all be worth it.

    Again and always, to Professor Alice.

    Thanks are also due to the Department of Chemistry and Biochemistry of the Faculty

    of Sciences, University of Porto, and to CIQ-UP (Centro de Investigação em Química), for

    providing the facilities and conditions necessary for the execution of this work.

    And, finally, to FCT (Fundação para a Ciência e Tecnologia) for the award of the Ph.

    D. research grant (SFRH/BD/80372/2011), included in the research project PTDC/QUI-

    QUI/102814/2008, and for granting the financial support for the presentation of this research

    in international scientific conferences.

  • VI

  • FCUP

    VII

    General index

    Page

    Abstract III

    Resumo IV

    Acknowledgments V

    General index VII

    Figure index XV

    Table index XX

    1. Introduction 1

    1.1. Aim of the study 3

    1.2. Compounds studied 4

    1.3. Methods used 7

    References 9

    2. Synthesis 13

    2.1. Introduction 15

    2.2. General information 15

    2.2.1. Reagents and solvents 15

    2.2.2. General procedures and instrumentation 15

    2.2.3. Synthetic yields and purity degrees 17

    2.3. Synthetic procedures 18

    2.3.1. Halogenated fluorene derivatives 18

    2.3.1.1. 2,7-Difluorofluorene 18

    2.3.1.2. 2,7-Dichlorofluorene 19

    2.3.1.3. 2,7-Diiodofluorene 19

    2.3.1.4. 2-Chlorofluorene 20

    2.3.1.5. 9-Chlorofluorene 24

    2.3.1.6. 9-Iodofluorene 25

    2.3.2. Halogenated fluorenone derivatives 27

    References 28

    3. Experimental methods 29

    3.1. Purification and characterization 31

    3.1.1. Purification methods 31

    3.1.2. Purity analysis 31

  • VIII

    3.2. Calorimetric methods 33

    3.2.1. Differential calorimetry 33

    3.2.1.1. Introduction to differential calorimetry 33

    3.2.1.2. Power compensation calorimetry: Differential scanning calorimeter 34

    3.2.1.2.1. Typical thermogram and treatment of experimental results 35

    3.2.1.2.2. Calibration 36

    3.2.1.2.3. Description of the apparatuses 37

    3.2.1.2.4. Experimental procedure 38

    3.2.1.3. Heat flux calorimetry: Calvet Microcalorimeter 39

    3.2.1.3.1. Typical thermogram and treatment of