Thermodynamic 2016

228
Chemical thermodynamic and Energetic

Transcript of Thermodynamic 2016

Page 1: Thermodynamic 2016

Chemical thermodynamic and Energetic

Page 2: Thermodynamic 2016
Page 3: Thermodynamic 2016
Page 4: Thermodynamic 2016
Page 5: Thermodynamic 2016

P.E transform into K.E.

Page 6: Thermodynamic 2016
Page 7: Thermodynamic 2016
Page 8: Thermodynamic 2016
Page 9: Thermodynamic 2016
Page 10: Thermodynamic 2016
Page 11: Thermodynamic 2016
Page 12: Thermodynamic 2016
Page 13: Thermodynamic 2016
Page 14: Thermodynamic 2016

Macroscopic Science

Deals with large no. of atom or molecule not individual atom or molecule.

Page 15: Thermodynamic 2016
Page 16: Thermodynamic 2016
Page 17: Thermodynamic 2016
Page 18: Thermodynamic 2016
Page 19: Thermodynamic 2016

e

Page 20: Thermodynamic 2016
Page 21: Thermodynamic 2016

Exchange Neither matter

nor energyIs called isolated system.

Page 22: Thermodynamic 2016
Page 23: Thermodynamic 2016

System which contain more

then one phase is called

heterogeneous system.

Page 24: Thermodynamic 2016
Page 25: Thermodynamic 2016
Page 26: Thermodynamic 2016
Page 27: Thermodynamic 2016
Page 28: Thermodynamic 2016
Page 29: Thermodynamic 2016
Page 30: Thermodynamic 2016
Page 31: Thermodynamic 2016
Page 32: Thermodynamic 2016
Page 33: Thermodynamic 2016
Page 34: Thermodynamic 2016
Page 35: Thermodynamic 2016
Page 36: Thermodynamic 2016
Page 37: Thermodynamic 2016
Page 38: Thermodynamic 2016
Page 39: Thermodynamic 2016
Page 40: Thermodynamic 2016
Page 41: Thermodynamic 2016
Page 42: Thermodynamic 2016
Page 43: Thermodynamic 2016

Const T

Page 44: Thermodynamic 2016

All reaction carried out in lab are at constant P.

Page 45: Thermodynamic 2016
Page 46: Thermodynamic 2016
Page 47: Thermodynamic 2016
Page 48: Thermodynamic 2016

Since the temperature

change, internal energy also change.

But T does change in

the system.

Page 49: Thermodynamic 2016
Page 50: Thermodynamic 2016
Page 51: Thermodynamic 2016
Page 52: Thermodynamic 2016
Page 53: Thermodynamic 2016
Page 54: Thermodynamic 2016
Page 55: Thermodynamic 2016
Page 56: Thermodynamic 2016
Page 57: Thermodynamic 2016
Page 58: Thermodynamic 2016
Page 59: Thermodynamic 2016
Page 60: Thermodynamic 2016
Page 61: Thermodynamic 2016
Page 62: Thermodynamic 2016
Page 63: Thermodynamic 2016
Page 64: Thermodynamic 2016
Page 65: Thermodynamic 2016

Against an External Pex

Pex

V2

And the Volume change.

Page 66: Thermodynamic 2016
Page 67: Thermodynamic 2016
Page 68: Thermodynamic 2016
Page 69: Thermodynamic 2016
Page 70: Thermodynamic 2016
Page 71: Thermodynamic 2016
Page 72: Thermodynamic 2016
Page 73: Thermodynamic 2016
Page 74: Thermodynamic 2016
Page 75: Thermodynamic 2016
Page 76: Thermodynamic 2016
Page 77: Thermodynamic 2016
Page 78: Thermodynamic 2016
Page 79: Thermodynamic 2016
Page 80: Thermodynamic 2016
Page 81: Thermodynamic 2016
Page 82: Thermodynamic 2016
Page 83: Thermodynamic 2016

2 3 4

Page 84: Thermodynamic 2016
Page 85: Thermodynamic 2016

The process take place in infinite

steps.

Page 86: Thermodynamic 2016
Page 87: Thermodynamic 2016
Page 88: Thermodynamic 2016

Path dependence nature of work

• Work is not the property of the system.• Not state funtion.W = - P (V2-V1)

A(V1) B

(V2)

W1 Expand Path1

W2 Pex2

W3 exapnsion reversibly 3

Page 89: Thermodynamic 2016
Page 90: Thermodynamic 2016
Page 91: Thermodynamic 2016
Page 92: Thermodynamic 2016
Page 93: Thermodynamic 2016

q + W

Page 94: Thermodynamic 2016

It indicate small change.

Page 95: Thermodynamic 2016
Page 96: Thermodynamic 2016
Page 97: Thermodynamic 2016
Page 98: Thermodynamic 2016
Page 99: Thermodynamic 2016

The process in which T of the system

remain Constant.

Page 100: Thermodynamic 2016

a process in which heat is not allowed

enter or leave the system.

Page 101: Thermodynamic 2016

A process in which

pressure remain

constant.

Page 102: Thermodynamic 2016

A process in which

Volume remain

constant.

Page 103: Thermodynamic 2016
Page 104: Thermodynamic 2016
Page 105: Thermodynamic 2016
Page 106: Thermodynamic 2016
Page 107: Thermodynamic 2016
Page 108: Thermodynamic 2016
Page 109: Thermodynamic 2016

Concept of Heat

• Another way of exchanging energy system and surrounding.• Not property of system. Not state

funtion.• Heat exchange only possible by path.• Heat is path dependence.• Eg. Rod heat transfer

Page 110: Thermodynamic 2016
Page 111: Thermodynamic 2016
Page 112: Thermodynamic 2016
Page 113: Thermodynamic 2016
Page 114: Thermodynamic 2016
Page 115: Thermodynamic 2016
Page 116: Thermodynamic 2016
Page 117: Thermodynamic 2016
Page 118: Thermodynamic 2016

qp

Heat content of the system at constant

pressure.

= qp

Page 119: Thermodynamic 2016
Page 120: Thermodynamic 2016

In general enthalpy change is given by

Page 121: Thermodynamic 2016
Page 122: Thermodynamic 2016
Page 123: Thermodynamic 2016
Page 124: Thermodynamic 2016
Page 125: Thermodynamic 2016
Page 126: Thermodynamic 2016
Page 127: Thermodynamic 2016
Page 128: Thermodynamic 2016

1

Page 129: Thermodynamic 2016
Page 130: Thermodynamic 2016
Page 131: Thermodynamic 2016
Page 132: Thermodynamic 2016
Page 133: Thermodynamic 2016
Page 134: Thermodynamic 2016
Page 135: Thermodynamic 2016
Page 136: Thermodynamic 2016
Page 137: Thermodynamic 2016
Page 138: Thermodynamic 2016
Page 139: Thermodynamic 2016
Page 140: Thermodynamic 2016
Page 141: Thermodynamic 2016
Page 142: Thermodynamic 2016
Page 143: Thermodynamic 2016
Page 144: Thermodynamic 2016
Page 145: Thermodynamic 2016
Page 146: Thermodynamic 2016

The component present in small quantity.

The component present in Large quantity.

Page 147: Thermodynamic 2016
Page 148: Thermodynamic 2016
Page 149: Thermodynamic 2016
Page 150: Thermodynamic 2016
Page 151: Thermodynamic 2016
Page 152: Thermodynamic 2016
Page 153: Thermodynamic 2016
Page 154: Thermodynamic 2016
Page 155: Thermodynamic 2016
Page 156: Thermodynamic 2016
Page 157: Thermodynamic 2016
Page 158: Thermodynamic 2016
Page 159: Thermodynamic 2016

IUPAC Guideline for writing thermochemical equations

Page 160: Thermodynamic 2016
Page 161: Thermodynamic 2016
Page 162: Thermodynamic 2016
Page 163: Thermodynamic 2016
Page 164: Thermodynamic 2016
Page 165: Thermodynamic 2016
Page 166: Thermodynamic 2016
Page 167: Thermodynamic 2016
Page 168: Thermodynamic 2016
Page 169: Thermodynamic 2016
Page 170: Thermodynamic 2016
Page 171: Thermodynamic 2016
Page 172: Thermodynamic 2016
Page 173: Thermodynamic 2016
Page 174: Thermodynamic 2016
Page 175: Thermodynamic 2016
Page 176: Thermodynamic 2016
Page 177: Thermodynamic 2016
Page 178: Thermodynamic 2016

Again Supply energy

Page 179: Thermodynamic 2016

Each step supply energy

Page 180: Thermodynamic 2016
Page 181: Thermodynamic 2016

Bond dissociation enthalpyAmount of energy require to break 1 mole of of a particular bond of a particular polyatomic gaseous molecules forming free gaseous atoms and radicals at constant temperature and pressure.STEP 1: CH4(g) → CH3(g) + H(g) ; Δbond H° = +427 KJmol-1

STEP 2: CH3(g) → CH2(g) + H(g) ; Δbond H° = +439 KJmol-1

STEP 3: CH2(g) → CH(g) + H(g) ; Δbond H° = +452 KJmol-1

STEP 4: CH(g) → C(g) + H(g) ; Δbond H° = +347 KJmol-1

Average bond enthalpy ΔC-HH° = ¼ (ΔaH°) = ¼ (1665 KJmol-1) = 416 KJmol-1

Page 182: Thermodynamic 2016
Page 183: Thermodynamic 2016
Page 184: Thermodynamic 2016
Page 185: Thermodynamic 2016
Page 186: Thermodynamic 2016
Page 187: Thermodynamic 2016
Page 188: Thermodynamic 2016
Page 189: Thermodynamic 2016
Page 190: Thermodynamic 2016
Page 191: Thermodynamic 2016
Page 192: Thermodynamic 2016
Page 193: Thermodynamic 2016
Page 194: Thermodynamic 2016
Page 195: Thermodynamic 2016
Page 196: Thermodynamic 2016
Page 197: Thermodynamic 2016
Page 198: Thermodynamic 2016
Page 199: Thermodynamic 2016
Page 200: Thermodynamic 2016
Page 201: Thermodynamic 2016

Entropy• Entropy change(∆S) of a system in a process

which is equal to the amount of heat transferred in a reversible manner(qrev) divided by the absolute temperature(T), at which the heat is absorbed.

• ∆S = = • 1 e.u. = 1 JK-1

• Entropy measure the disorder in the system.• Higher the disorder more is entropy

Page 202: Thermodynamic 2016

Entropy change for a phase change

• Phase change physical state of matter.• During phase change, both the phases

exist at equilibrium and temperature remain constant.• ∆S = Solid to liquid• ∆S = liquid to gas• ∆S = solid to gas

Page 203: Thermodynamic 2016

Different process accompanying entropy change

• Solid to liquid to gas entropy increases.• Solid or liquid dissolve in a solvent, entropy of the

substance increase.• When gas dissolve in solvent, entropy decreases.• When the gas mix, entropy increase.• Increase molecular complexity result in the increase in

entropy.• Spontaneous process, expansion of gas, disorder of

the system increase entropy.• Eg. When the Tr leave classroom entropy increase.

Page 204: Thermodynamic 2016
Page 205: Thermodynamic 2016
Page 206: Thermodynamic 2016
Page 207: Thermodynamic 2016

Unit- SI is J or kJCGS is cal or kcal.

Page 208: Thermodynamic 2016
Page 209: Thermodynamic 2016
Page 210: Thermodynamic 2016
Page 211: Thermodynamic 2016
Page 212: Thermodynamic 2016
Page 213: Thermodynamic 2016
Page 214: Thermodynamic 2016
Page 215: Thermodynamic 2016
Page 216: Thermodynamic 2016
Page 217: Thermodynamic 2016
Page 218: Thermodynamic 2016
Page 219: Thermodynamic 2016
Page 220: Thermodynamic 2016
Page 221: Thermodynamic 2016
Page 222: Thermodynamic 2016
Page 223: Thermodynamic 2016

Important of 3rd law of thermodynamic

• It gives the starting place from which to measure entropy.

• Entropy of a substance determine at any temperature higher then 0K at any state.

• Stand molar entropy (S˚) can be measure at 25˚C and 1 atm.

• Spontaneity of the reaction and ∆S˚ can be calculated.

Page 224: Thermodynamic 2016

• ∆S = qrev/ T = • For infinitesimal change, dS = .• If Cp = molar heat capacity at const P, then• Cp = or dH = Cp.dT• dS = • If temperature change from T1 to T2, then the

entropy change ∆S will be.• ∆S = • ∆S = 2.303 Cp log

Entropy change at different T and constant pressure

Page 225: Thermodynamic 2016
Page 226: Thermodynamic 2016
Page 227: Thermodynamic 2016

Entropy change at different T and constant pressure

Page 228: Thermodynamic 2016