Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node...

57
Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto Hills, CA Zhimin Wan, AIBT, San Jose, CA Masuyasu Tanjyo, Nissin, Kyoto, Japan Temel Buyuklimanli, EAG, Windsor, NJ Solid State Technology August 2009

Transcript of Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node...

Page 1: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Thermal Processing Issues

For 22nm Node Junction

ScalingJohn Borland, J.O.B. Technologies, Aiea, HI

Susan Felch, Los Alto Hills, CA

Zhimin Wan, AIBT, San Jose, CA

Masuyasu Tanjyo, Nissin, Kyoto, Japan

Temel Buyuklimanli, EAG, Windsor, NJ

Solid State Technology August 2009

Page 2: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Executive Overview

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

2

Junction scaling for 22nm node planar and FinFET

CMOS requires low energy implantation but the surface

oxide thickness will determine the energy (>83eV) and

dose. Engineering the surface amorphous layer

maximizes dopant activation, reduces implant damage

and junction leakage with sub-melt laser or flash lamp

annealing. The annealing process and equipment must

be optimized to prevent strain relaxation, high-k/metal

gate stack failure and wafer breakage.

Page 3: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Outline• Executive Overview

• Introduction

– Defect and junction leakage reduction

– JOB Technologies:

• 22nm low defect and leakage p+ USJ

• 22nm high activation n+ USJ

• 22nm eSiC strain by implant ation

• 16nm FinFET high tilt implant retained dose

• Planar CMOS Doping

• FinFET CMOS Doping

• MSA Process And Equipment Design Issues

• Summary

• AcknowledgementsJ.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

3

Page 4: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

4

NEC IEDM-2008: Transistor Leakage (A+B+C+D)

A=HALO (BTBT)

B=HALO & PAI (EOR damage)

C=Residual implant damage & HALO?

D=STI stress induced leakage

Page 5: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Low Damage Implantation

• Improve self-amorphization, lower critical implant doses for

amorphization and smooth amorphous interfaces thereby

reducing EOR damage and residual implant damage while

enhancing dopant activation with MSA

– Higher implant beam current or dose rate improves self-amorphization

– Lower implant wafer temperature (cold or cryo-implantation) 0C to -160C

using chilled water of liquid nitrogen wafer cooling

– Use molecular dopants (B18H22, B36H44, As4 or P4) improves self-

amorphization

– Use heavier ions for PAI (In, Sb or Xe), also He-PAI

• Stable defects and reduction in residual implant damage

thereby improving junction leakage

– Higher MSA peak temperature

– Pre/post MSA diffusion-less spike/RTA<900C

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

5

Page 6: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Outline• Introduction

• Planar CMOS Doping

– 22nm and 16nm node

• FinFET CMOS Doping

• MSA Process And Equipment Design Issues

• Summary & Next

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

6

Page 7: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

C. Jen, AIBT Semicon/Taiwan 2008 seminar

Page 8: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technology (Strategic

Marketing, Sales & Technology)

8

Implant Energy Versus Xj

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Xj (nm)

Imp

lan

t E

ne

rgy

(e

V)

B

BF2

BF3

B

BF3

BF2

32nm Node

45nm Node

Borland, Semiconductor International, Dec. 2006, p.49

22nm Node

Page 9: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

9

22nm Node p+ USJ Using

Xe-PAI & Laser Annealing

John Ogawa Borland, J.O.B. Technologies, Aiea, Hawaii

Zhimin Wan, AIBT, San Jose, CA

Shankar Muthukrishnan & Jeremy Zelenko, Applied Materials, Sunnyvale, CA

Iad Mirshad & Walt Johnson, KLA-Tencor, San Jose, CA

Temel Buyuklimanli, EAG, East Windsor, NJ

INSIGHTS 2009

April 27, 2009

Page 10: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Experimentation & Results

• B: 100-350eV/1E15

– B, Ge-PAI+B or Xe-PAI+B

• BF2: 500-890eV/1E15

– BF2, Ge-PAI+BF2 or Xe-PAI+BF2

J.O.B. Technologies (Strategic

Marketing, Sales & Technology)

10

DSA Laser Annealing 1175C1325C & DSA+900C spike anneal

Page 11: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

PCOR-SIMS

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

11

PAI

EOR DefectsGe+B TED=3.4nm!

Xe+B TED=2.7nm!

Page 12: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+16

1E+17

1E+18

1E+19

1E+20

1E+21

1E+22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O IN

TE

NS

ITY

(arb

itra

ry u

nits)

B C

ON

CE

NT

RA

TIO

N (

ato

ms/c

c)

DEPTH (nm)

B

O->

B

O->

B

O->

B

O->

B

O->

Ge+BF2 (no anneal)

Ge+BF2 (1325C anneal)

Ge+BF2 (1175C anneal)

Ge+BF2 (1225C anneal)

Ge+BF2 (1275C anneal)

Xj:= 8.2nm-1.8nm=6.4nm

Xj=12.4nm-1.8nm=10.6nm

Xj=10.6nm-1.8nm=8.8nm

Xj=11.4nm-1.8nm=9.6nm

Xj=.=12.2nm-1.8nm=10.4nm

BF2+Ge-PAI Sample21 PCOR_HDR

Surface Oxide

1.8nm

Ge+BF2-TED=2.4-4.2nm!

Page 13: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

13

1E-02

1E-01

1E+00

1E+01

1E+02

1E+17

1E+18

1E+19

1E+20

1E+21

1E+22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O IN

TE

NS

ITY

(arb

itra

ry u

nits)

B C

ON

CE

NT

RA

TIO

N (

ato

ms/c

c)

DEPTH (nm)

B

O->

B

O->

B

O->

B

O->

B

O->

Xe+B (1325C anneal)

B (1325C anneal)

Ge+B (1325C anneal)

BF2 (1325C anneal)

Ge+BF2 (1325C anneal)

Xj@@5.0E18 B: 12.08nmXj@@5.0E18 B: 9.237nm

Xj@@5.0E18 B: 12.86nm

Xj@@5.0E18 B: 8.437nm Xj@@5.0E18 B: 12.45nm

Sample 10(1325Canneal)

2/19/2009

Surface Oxide

Xe TED=2.5nm (B)

Ge TED=3.5nm (B), 4.2nm (BF2)

PAI-EOR

Defects

B retained dose 1E15/cm2

BF2 retained dose 5.5E14/cm2

Poor Leakage

Page 14: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technology (Strategic

Marketing, Sales & Technology)

14

Retained Dose <6E14/cm2 Limits MSA Dopant

Activation Level To <Bss (<1.2E20/cm3)!

0

2E+14

4E+14

6E+14

8E+14

1E+15

1.2E+15

0 2 4 6 8 10 12 14 16

Xj Junction Depth @ 5E18/cm3 (nm)

Bo

ron

Re

tain

ed

Do

se

(1

/cm

2)

B

BF2

BF3

Borland, Semiconductor International, Dec. 2006, p.49

B18H22 Tool-1

B2H6 Tool-1&2

Flash Rs=Bss>1E20/cm3

Flash Rs=9E19/cm3

Flash Rs=5E19/cm3

B18H22 Tool-2

Page 15: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

15

Toxide=0.3nmToxide=2.3nm

Page 16: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

% B Dose In 2.0nm Surface Oxide

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

16B Xj (nm)

B (%)

Page 17: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

22nm Node p+ Junction

Scaling Using B36H44 And

Laser AnnealingJ. Borland, J.O.B. Technologies

M. Tanjyo, Nissin Ion Equipment

J. Zelenko, Applied Materials

I. Mirshad & W. Johnson, KLA-Tencor

T. Buyuklimanli, EAG

IEEE/RTP-2009

Oct. 1, 2009

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

17

Page 18: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

18

1E-02

1E-01

1E+00

1E+01

1E+02

1E+17

1E+18

1E+19

1E+20

1E+21

1E+22

0 1 2 3 4 5 6 7 8 9 10

O IN

TE

NS

ITY

(arb

itra

ry u

nits)

B C

ON

CE

NT

RA

TIO

N (

ato

ms/c

c)

DEPTH (nm)

B

B36

B36 1325C

Surface

oxide

Kawasaki et al., Renesas, IWJT-

2009, paper S2-4

0.8nm diffusion

0nm diffusion

Page 19: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1175C

1225C

1275C

1325C

Laser Annealing Temperature

RsL

Ju

nct

ion

Lea

kag

e C

urr

ent

(A/c

m2)

Page 20: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

20In TED=3.8nm diffusion

Ge TED=5.2nm

Xe TED=3.6nm

All Good Leakage

Page 21: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

21

Xe-PAI=14nm

Good Leakage

<1E-7A/cm2

Poor Leakage

>1E-2A/cm2

Page 22: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

22

Xj-EOR= -7nm for Xe-PAI & -9nm for Ge-PAI

Page 23: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Xe-PAI No Anneal & 1325C Anneal

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

23

PAI=14nm

Toxide=2.3nm

Page 24: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

24

Xe+B No Anneal

Xe+B 1325C Laser Anneal

Native Oxide 2.3nm

Xe-PAI ~14nm

Page 25: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

B TW Results

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

25

1000

1500

2000

2500

3000

3500

1175 1225 1275 1325

B

B+Ge5E14

B+Ge1E14

B+Xe1E14

B+Xe+875

B+Xe5E13

Page 26: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Quantox Lifetime Results

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

26

0

50

100

150

200

250

300

B36 Ge+B36 Ge+B36 1E14 Xe+B36 900RTA

Xe+B36 Xe+B36 5E13 In+B36 900RTA

In+B36 In+B36 5E13 In-PAI

1175C

1225C

1275C

1325C

Page 27: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

50 10010

Xj (nm)

RS

(ohms/sq.)

100

1000

500

5000

5005

50Boron solid solubility:

B <1225C (Bss=5E19/cm3) RD=1E15/cm2

B 1325C (Bss=1E20/cm3)

Ge+B 1325C (Bss=1.3E20/cm3)

Xe+B 1325C (Bss=3.5E20/cm3)

BF2 1175C (Bss=3E19/cm3) RD=5.5E14/cm2

BF2 1325C (Bss=4E19/cm3)

Ge+BF2 1175C (Bss=6E19/cm3)

Ge+BF2 1225C (Bss=6E19/cm3)

Ge+BF2 1275C (Bss=7E19/cm3)

Ge+BF2 1325C (Bss=8E19/cm3)

B36 1325C (Bss=1.2E20/cm3) RD=6.7E14/cm2

Ge+B36 1325C (Bss=1E20/cm3)

In+B36 1325C (Bss=1E20/cm3)

Xe+B36 1325C (Bss=1.2E20/cm3)

Page 28: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

SPE Low LSA

Power

Medium

LSA Power

High LSA

Power

B500eV

5keVGe+B

10keVGe+B

20keVGe+B

B18H22

BF2

RsL Junction Leakage Current (A/cm2)

Borland et al., JOB Tech/Renesas/FSM/KT, Solid State Technology, July 2008

B 500eV Xj=15nm

Ge-PAI Xj-EOR=+15nm (1E-7A/cm2)

5keV=9nm Xj-EOR=+6nm (4E-6A/cm2)

10keV=16nm Xj-EOR=-1nm (3E-4A/cm2)

20keV=32nm Xj-EOR=-17nm (3E-4Acm2)

PAI Enhances Dopant

Activation (Bss)

Page 29: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Insight-2009 & IWJT-2009

• IWJT

– Varian He-PAI excellent junction leakage

– UJT He-PAI no EOR defects and (low leakage IIT-2004)

• Oleg of IBM

– Insight invited paper said that series resistance more critical than SCE

so this drives to deeper junctions. Higher dopant activation by adding

up to 8 laser passes for As n+ USJ. But gate oxide failure at

temperature >1300C.

– IWJT invited paper said because of difficulties with epi or implant for

eSiC a HYBRID approach is another option (SEG+implant) .

• AMD/Dresden IWJT

– With eSiGe BF2 SDE implant leakage is 5x higher than B and

amorphization reduces strain.

– For eSiC by C-implantation no significant nMOS device improvement.

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

29

Page 30: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

22nm Node n+ SiC Stressor

Using Deep PAI+C7H7+P4 With

Laser Annealing

John Borland1, Masayasu Tanjyo2, Nariaki Hamamoto2, Tsutomu Nagayama2, Shankar

Muthukrishnan3, Jeremy Zelenko3, Iad Mirshad4, Walt Johnson4, Temel Buyuklimanli5, Steve

Robie5, Hiroshi Itokawa6, Ichiro Mizushima6 and Kyoichi Suguro6

1) J.O.B. Technologies, Aiea, HI

2) Nissin Ion Equipment, Kyoto, Japan

3) Applied Materials, Sunnyvale, CA

4) KLA-Tencor, San Jose, CA

5) EAG, Sunnyvale, CA

6) Toshiba Corporation, Yokohama, Japan

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

30

IEEE/RTP-2009

Page 31: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

31

Xe+C7+P2 (1200C fRTP)

C7+P2 (1200C fRTP)

Intel reported

LSA

Pss=1.8E21/cm3

This

Work

Page 32: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

32

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1E+12

1E+13

1E+14

34.55 34.75 34.95 35.15 35.35 35.55 35.75

Inte

nsit

y

Theta (deg)

C-substituted Si by HRXRD

Slot 1

Slot 2

Slot 4

Slot 5

Slot 6

Slot 8

Slot 9

Slot 10

P4+C (no PAI, Ge-PAI, Xe-PAI & Sb-PAI)

P4+C7 (no PAI, Ge-PAI, Xe-PAI & Sb-PAI)

Page 33: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Outline• Introduction

• Planar CMOS Doping

• FinFET CMOS Doping

– 16nm Node Bulk or SOI?

• MSA Process And Equipment Design Issues

• Summary & Next

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

33

Page 34: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Summary of FinFET At VLSI Sym-2008 &

IEDM-2008

• VLSI Sym 2008:

• Planar CMOS to 22nm Node

– Intel said SRAM needs Bulk FinFET/Trigate at 16nm or Floating Body

Cell (Mark Bohr)

• HK/MG+strain-Si makes pMOS almost equal to nMOS at 45nm node

• IEDM 2008:

• ITRS-2008 update (Iwai-san TIT):

– FD-SOI CMOS delayed until 2013

– FinFET delayed to 2015 (16nm node)

• Intel:

– Stated that FinFET not ready for 22nm node manufacturing (K. Kuhn).

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

34

Page 35: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales & Technology)

IBM Double Gate Fin FET With 30 & 45

Degree High Tilt High Current Implants

Kedzierski et al, IEDM-2001

SDG (symmetrical double-gate) & ADG (asymmetrical double-gate)

Page 36: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

36

UJT/Panasonic, IEDM-2008, section 37.3

PLAD not conformal

asymmetrical device

Lenoble et al., ST/IMEC,

VLSI Sym. 2006, section 2.1

Page 37: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

37

High Tilt p+ & n+ Molecular

Implantation For 3-D Structures:

Retained chemical Dose Versus

Electrical Activation Limited

Conformal DopingJohn Ogawa Borland

J.O.B. Technologies, Aiea, Hawaii

&

Masayasu Tanjyo, Tsutomu Nagayama and Nariaki Hamamoto

Nissin Ion Equipment, Kyoto, Japan

INSIGHTS 2009

April 28, 2009

Page 38: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

P-Type Dopant Implant MatrixNissin Claris 0 to 60 Degree Tilt Angle (BF2 & B18H22)

IMEC Quantum-X 0 to 45 Degree Tilt Angle (monomer B)

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

38

Page 39: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Retained Chemical Dose Versus Tilt Angle

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

39

0.00E+00

2.00E+14

4.00E+14

6.00E+14

8.00E+14

1.00E+15

1.20E+15

1.40E+15

0 10 20 30 40 50 60 70

Reta

ined

Do

se (

ato

ms/c

m2)

Tilt Angle

BF2

B18

B

Surface Sputter Dose Limit?Surface Reflectance

Dose Limit?

Page 40: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Bss Dopant Electrical Activation Level

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

40

0.00E+00

2.00E+19

4.00E+19

6.00E+19

8.00E+19

1.00E+20

1.20E+20

1.40E+20

0 10 20 30 40 50 60 70

Bs

s (

ca

rrie

rs/c

m3

)

Tilt Angle (degrees)

BF2

B18

B

Page 41: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Boron Solid Solubility1400C=5E201100C=3E201000C=2E20900C=1.2E20800C=5E19700C=2.3E19600C=1E19

25nm

50 10010

Xj (nm)

RS

(ohms/sq.)

100

1000

500

5000

5005

50

B

BF2

B18H22

At 0, 45 & 60 Degree Tilt

FLA at <1200C

Page 42: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Implant Matrix With 2.0nm Surface Oxide To

Determine If Retained Dose Is Sputter Or

Surface Reflection Limited

• B18H22:

– 200eV/1E15, 0 & 45 degree tilt

– 200eV/2E15, 0 degree tilt

– 500eV/1E15, 0 & 45 degree tilt

– 500eV/2E15, 0 degree tilt

– 1keV/1E15, 0 degree tilt

• B36H44:

– 200eV/1E15, 0 degree tilt

– 500eV/1E15, 0 degree tilt

• B:

– 500eV/1E15, 45 degree tilt

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

42

Page 43: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

B, B18 & B36 Retained Dose

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

43

B36

B18

B18/2E15

B

Page 44: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Surface Oxide Effects

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

44

2.0nm

Initial Surface

Oxide Thickness

B

B36

B18

B18/45 tilt

B18/2E15

Page 45: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

45

B, B18 & B36 Dose Loss Study:

As suggested by EAG repeat test with Si/SiGe Epi marker layer. I suggest we use

2nm oxide/10nm Si/40nm SiGe Epi wafer and also without 2nm oxide but with hydrogen

surface termination which will be free of native oxide except oxide grown during implant.

H2/Si/SiGe SiO2/Si/SiGe

•Control no implant X X

•B (200eV/1E15) X X

•B18 (200eV/1E15) X X

•B36 (200eV/1E15) X X

Page 46: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Outline• Introduction

• Planar CMOS Doping

• FinFET CMOS Doping

• MSA Process And Equipment Design Issues

• Summary & Next

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

46

Page 47: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

NEC & Selete IWJT 2007:Differences For

Flash & Spike Results Temperature?

J.O.B. Technology (Strategic

Marketing, Sales & Technology)

47

Bss (atoms/cm3)

Borland’s IWJT 2007 Joint NEC (S4-8) and Joint Selete (S4-7) papers

Page 48: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

48

Extension Results (Leakage)

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

900C spike Spike+FLA FLA+Spike Flash SPE SPE+FLA FLA+SPE

B200eV

5keVGe+B

890eVBF2

5keVGe+BF2

4keVB18H22

RsL Junction Leakage Current (A/cm2)

F effect: Noda (MRS 2008), Yamamoto

(IWJT 2008), England (IIT 2008 P41)

Yamamoto et al., IWJT 2008,

MSA pins F in substitutional

site and degrades leakage!

>1200C?Borland & Kiyama, JOB/DNS, IIT-2008

Page 49: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

IMEC Now Also Using <900C Spike/RTA

For Diffusion-less Pre or Post MSA For

Defect Reduction

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

49

C. Ortolland et al., IMEC, IWJT-2009, paper S4-4, p.

Page 50: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

MSA Process & Equipment Design Issues• Flash

– Wafer slip, warpage & breakage require special hardware and

confidential know-how and wafer edge damage pre-screening.

– Pre-heat temperature >450C or >750C and limits max peak temperature

– +/- 60C temperature variation across the wafer.

– 1-50msec dwell time but if too short surface still amorphous

• Laser

– Wafer slip, warpage & breakage.

– Localized hot spots (+50C) causing poly-Si line breakage

– 100usec to 1msec dwell times

– Pre-heat temperature >400C

– Laser stitching pattern and gate stack shadowing requires quad-mode

wafer rotation

• Other Integration Issues

– High-k/metal gate stack failure >1300C

– eSiGe strain relaxation >1200C, eSiC max Csub>1300CJ.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

50

Page 51: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

51

Others also see this LSA effect so keep Temp <1200C

Page 52: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

52

Kubo et al., Fujitsu, IEEE/RTP 2008

Page 53: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

53

Timans, Mattson, Semicon/West WCJUG July 2008

Page 54: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Nara et al., Selete, ECS May 2008

Page 55: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

55

Onizawa et al., Selete, VLSI Sym

2009, paper 8B-4, p. 162

Page 56: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Executive Overview

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

56

Junction scaling for 22nm node planar and FinFET CMOS

requires low energy implantation but the surface oxide

thickness will determine the energy (>83eV) and dose.

Engineering the surface amorphous layer maximizes dopant

activation, reduces implant damage and junction leakage with

sub-melt laser or flash lamp annealing. The annealing process

and equipment must be optimized to prevent strain relaxation,

high-k/metal gate stack failure and wafer breakage. JOB Technologies:

22nm low defect and leakage p+ USJ

22nm high activation n+ USJ

22nm eSiC strain by implant ation

16nm FinFET high tilt implant retained dose

Page 57: Thermal Processing Issues For 22nm Node Junction Scaling...Thermal Processing Issues For 22nm Node Junction Scaling John Borland, J.O.B. Technologies, Aiea, HI Susan Felch, Los Alto

Acknowledgements

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

57

We are grateful to Jeremy Zelenko of Applied Materials for support

with the DSA laser anneals, David Liu and Yuen Lim of Frontier

Semiconductor for RsL junction leakage measurements, Walt Johnson

& Iad Mirshad of KT for 4PP, Lifetime & TW measurements.