Thermal modeling and management of cluster storage systems xunfei jiang 2014

42
Thermal Modeling and Management of Cluster Storage Systems Xunfei Jiang Advisor: Xiao Qin Department of Computer Science and Software Engineering, Auburn University, Auburn, AL Download the dissertation at: http://www.eng.auburn.edu/~ xqin/theses/PhD-Jiang-Thermal_Model.pdf The abstract of this dissertation can be found at: https:// etd.auburn.edu/handle/10415/4202

description

Thermal Modeling and Management of Storage Systems Author: Jiang, Xunfei Abstract: Energy consumption of data storage systems has increased significantly for the past decades. There is an urgent need to build energy-efficient data storage systems. Computing cost of IT facilities and cooling cost of air conditioners contribute to a large portion of the total energy consumption of data centers. A large amount of researchers focus on reducing the computing cost by balancing workload or powering off idle data nodes to save energy. In recent years, growing attention has been paid to decreasing the cooling cost. Temperature is a major contributor to cooling cost, and thermal management has become a popular topic in building energy-efficient data centers. Extensive research of thermal impacts of processors and memories has been presented in literature, however, the thermal impacts of disks have not been fully investigated. In this dissertation, experiments are conducted to characterize the thermal behavior of processors and disks by using real-world benchmarks (e.g., postmark and whetstone). The profiling results show that disks have comparable thermal impacts as processors to overall temperature of a data node. Then, we develop an approach to generate thermal models for estimating temperatures of processors, disks, and data nodes. We validate the thermal models by comparing the predictions with real measurements by temperature sensors deployed on data nodes. We further propose an energy model to estimate the total energy cost of data nodes. Finally, by applying our thermal and energy models, we propose thermal management strategies for building energy-efficient data centers. These strategies include a thermal-aware task scheduling strategy, thermal-aware data placement strategies for homogeneous and hybrid storage clusters, and a predictive thermal-aware data transmission strategy.

Transcript of Thermal modeling and management of cluster storage systems xunfei jiang 2014

  • 1. Thermal Modeling and Management of Cluster Storage Systems Xunfei Jiang Advisor: Xiao Qin Department of Computer Science and Software Engineering, Auburn University, Auburn, AL Download the dissertation at: http://www.eng.auburn.edu/~xqin/theses/PhD-Jiang- Thermal_Model.pdf The abstract of this dissertation can be found at: https://etd.auburn.edu/handle/10415/4202
  • 2. Outline Motivation Related Work Thermal Modeling Thermal Management Results 2
  • 3. Motivation On Facebook, 500 terabytes of new data every day High definition: 1h -> 1GB 144 TB/day Standard definition: 1h->1/3 GB 48 TB/day Until 2011, there are 509,147 data centers reported by Emerson. 3
  • 4. Motivation (cont.) Energy Consumption of Data Centers 4
  • 5. Motivation (cont.) Cooling Cost VS Outlet Temperature What contribute to outlet temperatures? Power down memory units Change inter-seek time or seek-time Reduce CPU frequency CPU Disk Mather-board Memory 5
  • 6. Motivation (cont.) Why study thermal impact of disks ? Teradata equipment 6
  • 7. Motivation (cont.) Data transfer Energy Predictor Best Solution How to reduce energy cost 7
  • 8. Related Work Reduce Energy Cost Computing Cost Power off data nodes Workload distribution Cooling Cost Reducing the outlet temperatures of data nodes Balance temperature distribution Optimizing the air recirculation 8
  • 9. Related Work (cont.) Disk Temperature Models hA T dQ dt Steady temperature(45.22C) 48 minutes External temperature: 28C dQ/dt: heat transfer rate h: heat transfer coefficient A: area T: temperature difference Source: Sudhanva Gurumurthi, Anand Sivasubramaniam, and Vivek K. Natarajan, Disk drive roadmap from the thermal perspective: A case for dynamic thermal management. ISCA05. (The Pennsylvania State University) 9
  • 10. Related Work (cont.) Disk Temperature Models Seek time Inter-seek time Inter-seek time Seek-time Idle Acceleration Coast Deceleration Data transfer Source: Youngjae Kim, S. Gurumurthi, and A. Sivasubramaniam. Understanding the performance-temperature interactions in disk i/o of server workloads. HPCA2006. (The Pennsylvania State University) 10
  • 11. Thermal Modeling Testbed Node CPU Intel(R) Celeron(R) [email protected] Network 1 Gigabit Ethernet network card Disk WD-500GB SATA disk Operating Ubuntu 10.04(lucid) System Linux kernel 2.6.32-43 Software and Tools Exterior temperature sensors and Minigoose iostat and sensors 11
  • 12. Model Disk Temperature Previous disk temperature models Heat transfer Disk activity Our new method Disk utilization hard to collect data easy to collect data Percentage of CPU time during which I/O requests were issued to the disk. 12
  • 13. Model Disk Temperature (cont.) Impact of Transactions on Disks Experiments 1 2 3 File number 100 100 100 File size 1.E+6 - 1.E+8 1.E+6 - 1.E+8 1.E+6 - 1.E+8 Transaction numbers 1000 2000 5000 Benchmark Postmark Task Configuration buffering : default to true (use buffered stdio function instead of lower level raw system calls) 13
  • 14. Model Disk Temperature (cont.) Impact of Transactions on Disks Preliminary results disk utilization 100% 29 28.8 28.6 28.4 28.2 28 27.8 27.6 27.4 heat up stage steady stage cool down stage 0 10 20 30 40 50 60 70 80 90 100110120130140150 Temperature ( C) Time (min) 1000 transactions 2000 transactions 5000 transactions 14
  • 15. Model Disk Temperature (cont.) Heat Up Stage Polynomial Model Tdisk(t) = * t2 + * t + Logarithmic Model Tdisk(t) = * ln(t) + 28.9 28.7 28.5 28.3 28.1 27.9 27.7 27.5 Real Measurement Polynomial Fit Logarithmic Fit 0 5 10 15 20 25 30 Temperature ( C) Time (min) 15
  • 16. Model Disk Temperature (cont.) Steady Stage Tdisk = 28.7 Cool Down Stage The same process as the heat up stage 16
  • 17. Impact of Disk Utilization Various Utilizations Buffering false: lower level raw system calls. set various write block size 28.37 28.87 28.89 29.11 14.24 28.9 53.49 80.57 100 80 60 40 20 0 29.2 29 28.8 28.6 28.4 28.2 28 16 32 64 128 Utilization (%) Temperature ( C) Write Block Size (KB) Temperature Utilization 17
  • 18. Impact of Disk Utilization Parameters for Models of Disk Temperature under Various Utilizations Utiliz ation (%) Polynomial Fit Logarithmic Fit Err(%) Err(%) 14 -0.0018 0.0486 27.6310 1.15 0.2130 27.497 0.18 29 -0.0007 0.0392 27.5599 0.17 0.1983 27.559 0.19 53 -0.0001 0.0257 27.6838 0.27 0.1918 27.733 0.17 80 -0.0018 0.0958 27.4431 0.61 0.2382 27.526 0.21 100 -0.0029 0.1085 27.6833 0.27 0.2733 27.758 0.43 On average, Logarithmic models fit the disk temperatures better than Polynomial models. 18
  • 19. Generate Disk Model for a Specific Utilization 29 28.8 28.6 28.4 28.2 28 27.8 27.6 27.4 27.2 27 WordCount: average disk utilization 18.60% 0 5 10 15 20 25 30 Temperature ( C) Time (min) 14.24% 28.92% 53.49% 80.57% 100% 18.60% Logarithmic Fit Real Value Precision Error: 0.48% 19
  • 20. Impact of disks on Outlet Temperature Multiple Disks 4 3.5 3 2.5 2 Inlet/outlet Temperature Difference 0 10 20 30 40 50 60 70 80 90 100110120 # of disks Initial difference Peak difference 1 2.45 2.95 2 2.8 3.06 3 2.9 3.38 4 3.38 3.75 Temperature ( C) Time (min) 1 disk 2 disks 3 disks 4 disks increase 0.3C 20
  • 21. Thermal Profiling of CPU Impact of CPU on CPU Temperature Whetstone Floating-point benchmark Small modifications Change the number of LOOPs Various the utilization of CPU Interior sensor Monitor CPU temperature 21
  • 22. Thermal Profiling of CPU (cont.) 60 55 50 45 40 35 30 Min Average Max 4000 8000 10000119001195012000 Temperature (C) LOOPS 100 90 80 70 60 50 40 30 20 10 0 4000 8000 10000119001195012000 Utilization (%) LOOPS 22
  • 23. Modeling CPU Temperature Polynomial Model TCPU(t) = * t2 + * t + Logarithmic Model TCPU(t) = * ln(t) + Real Measurement Polynomial Fit Logrithmic Fit 52 50 48 46 44 42 40 0 100 200 300 400 500 600 Temperature ( C) Time (sec) 23
  • 24. CPU Temperature Models Parameters for Models of CPU Temperature under Various Utilizations Utiliza tion (%) Polynomial Fit Logarithmic Fit Error(%) Error(%) 13.8 -9*E-06 0.007 40.41 2.25 0.23 40.06 2.52 26.7 -1*E-05 0.0011 41.57 6.48 0.57 40.01 2.37 33.1 -1*E-06 0.0005 42.01 2.32 0.52 40.20 2.15 65.2 -1*E-06 0.004 45.17 4.11 1.10 40.02 3.93 77.9 -2*E-05 0.0016 44.96 2.58 1.13 41.55 2.34 90.5 -1*E-05 0.0014 45.74 1.87 1.16 42.11 1.31 On average, the precisions of Logarithmic models are better than those of Polynomial models. 24
  • 25. Outlet Temperature Model Outlet Temperature Toutlet = a + b * TCPU + c * Tdisk + Tinlet 26.2 26 25.8 25.6 25.4 25.2 25 24.8 real measurement estimate value 0 10 20 30 40 50 60 70 Temperature ( C) Time (min) Precision error: 0.5 % 25
  • 26. Energy Prediction Model Energy Prediction Model Computing Cost Model Performance Model Thermal Model COP Model Total Energy Cost Computing Cost Cooling Cost Utilization & Execution Time Utilization Tinlet Workload 26
  • 27. Energy Prediction Model (cont.) Performance Model Utilizations of CPU and disks Execution time Computing Cost Model = + ( ( 27 ))
  • 28. Energy Prediction Model (cont.) COP (Coefficient of Performance) Model COP(T) = PC /PAC COP(T) = 0.0068*T2 + 0.0008*T + 0.458 28 8 7 6 5 4 3 2 1 0 10 12 14 16 18 20 22 24 26 28 30 Coefficient of Performance (Heat Removed / Work) CRAC Supply Temperature ( C) Source: Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh Sharma. Making scheduling "cool": temperature-aware workload placement in data centers. ATEC05
  • 29. PTMS: Predictive Thermal Management System Data Transmission 1 2 3 4 Direct Transmission Archive Transmission 5 6 7 8 9 Node1 Node 2 Compressed Transmission How will data transmission methods affect energy? 29
  • 30. Preliminary Experiments Testbed Node 1 Node 2 CPU Intel(R) Celeron(R) [email protected] Network 1 Gigabits Ethernet network card Disk WD-500GB SATA disk WD-160GB SATA disk Operating Ubuntu 10.04(lucid) System Linux kernel 2.6.32-43 Ubuntu 10.04(lucid) Linux kernel 2.6.32-38 30
  • 31. Preliminary Experiments Dataset 1 A Single Text File 507.7 MB Dataset 2 Linux kernel package 454.8 MB 40,927 small source code files 31
  • 32. Preliminary Experiments Dataset 1 (single text file) Methods DT AT CT Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Execution Time(s) 17 17 18 20 42 47 AVG U(%) 65.7 63.9 63.0 61.5 93.4 17.9 CPUAVG U(%) 20.3 65.0 19.3 55.9 6.8 19.0 DiskMAX T(C) 47 48 47 48 49 43 CPUMAX T(C) 33 33 33 33 33 33 DiskData 507.7 507.7 111.2 Transferred(MB) Compression Ratio(%) 100 100 21.9 Total Energy Cost(J) 4036.9 4459.2 9952.8 32
  • 33. Preliminary Experiments Dataset 2 (Linux Kernel package) Methods DT AT CT Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Execution Time(s) 81 90 40 60 49 57 AVG U(%) 20.8 16.1 24.2 17.4 68.6 15.7 CPUAVG U(%) 27.4 23.0 56.7 69.1 45.9 61.5 DiskMAX T(C) 46 44 46 44 48 46 CPUMAX T(C) 33 32 32 33 33 32 DiskData 454.8 475.8 103.8 Transferred(MB) Compression Ratio(%) 100 100 23 Total Energy Cost(J) 16164 15938 16718 33
  • 34. Preliminary Experiments Conclusion on Experimental Results Dataset 1 Dataset 2 Least Thermal-friendly CT CT Least Energy Consumption DT AT 34
  • 35. Predictive Thermal Management System (PTMS) Framework Method Selector Energy Predictor Runtime Data Monitor Monitor Node n Node 1 Prediction Request Energy Cost Data Transmission Request Method Data PTMS (Predictive Thermal Management system) 35
  • 36. Experiments Datasets Human Genome Dataset 60 GB NIHs (National Institutes of Health) NCBI Multimedia Dataset 50 GB millions of songs Strategies DT/AT/CT/PTMS 36
  • 37. Experimental Results Human Genome Dataset Transmission time and total energy cost of transferring the Human Genome dataset 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 0 12000 10000 8000 6000 4000 2000 0 Time Energy DT AT CT PTMS Energy Consumption (J) Execution Time (s) Transmission Strategies 37
  • 38. Experimental Results (cont.) Multimedia Dataset Transmission time and total energy cost of transferring the multimedia dataset 4000000 3500000 3000000 2500000 2000000 1500000 1000000 500000 0 5000 4000 3000 2000 1000 0 Time Energy DT AT CT PTMS Energy Consumption (J) Execution Time (s) Transmission Strategies 38
  • 39. Experimental Results (cont.) Overall Energy Cost 1,163,600 819,665 3,503,273 816,701 4,000,000 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0 DT AT CT PTMS Energy Consumption (J) 39
  • 40. Conclusion Thermal Modeling Approach Model CPU and disk temperatures Model Outlet Temperature CPU, disk and inlet temperatures Predictive Thermal Management System Choose the most energy-efficient strategy for data transmission 40
  • 41. Thank you! 41
  • 42. Related Work (cont.) Predictive Thermal Management Performance Effective Dynamic Thermal Management (DTM) a predictive algorithm use response mechanisms C-Oracle predict temperature and performance impacts various thermal management reactions select the best reaction 42