Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000...

13
Thermal e×ects on wellbore stress Strongly time dependent strongly depenendent of the silica content of the rock. Under steady-state conditions,

Transcript of Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000...

Page 1: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Thermal e�ects on wellbore stress

Strongly time dependent

strongly depenendent of the silica content of the rock.

Under steady-state conditions,

Page 2: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Time-temperature e�ects

© Cambridge University Press (Fig. 6.14a,b pp. 194)Zoback, Reservoir Geomechanics

Page 3: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Stability through cooling?

Cooling Reference

© Cambridge University Press (Fig. 6.14c pp. 194 and Fig. 6.3pp. 173)

Zoback, Reservoir Geomechanics

Page 4: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Rock strength anisotropy

© Cambridge University Press (Fig. 4.12, pp. 106)Zoback, Reservoir Geomechanics

Page 5: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Rock strength anisotropy e�ects onbreakouts

© Cambridge University Press (Fig. 6.16a,b pp. 199)Zoback, Reservoir Geomechanics

Page 6: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Two mechanisms

Stresses exceed intact rock strengthStresses activate slip on weak bedding planes

© Cambridge University Press (Fig. 6.16c pp. 199)Zoback, Reservoir Geomechanics

Page 7: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Chemical e�ectsWater Activity ( ) can to increased pore pressure

Page 8: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

from breakout data

Page 9: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Example

© Cambridge University Press (Fig. 7.7 pp. 223)Zoback, Reservoir Geomechanics

Page 10: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Wellbore stability

Page 11: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

De�ning a "stable" wellbore

© Cambridge University Press (Fig. 10.1a,b pp. 304)Zoback, Reservoir Geomechanics

Page 12: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Emperical model: Maximum 90breakouts

© Cambridge University Press (Fig. 10.2a,b pp. 305)Zoback, Reservoir Geomechanics

Page 13: Thermal eects on wellbore stress - John T. Foster · 2018-12-10 · ANALYSIS 300 400 3000 4000 5000 6000 100 TENSILE FRACTURES 200 Stress (MPa) e TEXAS The University of at Austin

Comprehensive model

Design based on pore pressure and frac gradient

Model considering collapse pressure Final design

© Cambridge University Press (Fig. 10.3a,b,c pp. 307)Zoback, Reservoir Geomechanics