Thermal Cracking Analysis Model AND Pavement … · ; Slide No. 1 Thermal Cracking Analysis Model...

47
www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

Transcript of Thermal Cracking Analysis Model AND Pavement … · ; Slide No. 1 Thermal Cracking Analysis Model...

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 1

Thermal Cracking Analysis ModelAND

Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 2

THERMAL CRACKING ANALYSIS PACKAGE (TCAP)

Comprehensive Evaluation of Thermal Cracking in Asphalt Pavements

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 3

Thermal Cracking AnalysisInfluential Factors• Pavement Structure

Asphalt layer thickness. Interface condition.

• Environmental Conditions Pavement temperatures. Cooling/warming rates.

• Asphalt mixture properties Viscoelastic properties Thermal Volumetric properties Fracture and Crack Initiation Properties

• Asphalt mixture aging Property change with oxidative aging

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 4

Thermal Cracking AnalysisExisting Models• Aging of asphalt binder over time is not considered

“viscoelastic, fracture, and volumetric properties of asphalt material constant over time.”

• Thermal coefficient of contraction (CTC) is considered constant with temperature and usually estimated.

• Tensile strength is considered constant with temperature and time.

• Pavement temperature model (currently EICM) can be improved.

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 5

Thermal Cracking AnalysisSupportive Experimental Plan (Morian, N. 2014)

Asphalt Binder Testing

• 15 asphalt binder typesUnmodified, polymer modified, lime modified

• Testing Carbonyl Area (FT-IR) Binder Master Curves and LSV

1 mm film asphalt binder pan aging over different times and durations

(50, 60, 85 and 100°C up to 320 days)

Asphalt Mixture Testing (partial factorial)

• 5 Agg. Sources (Abs. from 0.9 to 5.97%)• 3 Gradations (coarse, interm. & fine)• 2 Binders (PG64-22, PG64-28 SBS mod.)• Binder Contents (3.62 to 9.14% TWM)• 3 Air Void levels (4, 7, 11%)

• Testing Dynamic modulus (E*) Uniaxial Thermal Stress & Strain

Test (UTSST)

Asphalt Mixture aging: 4 Levels(0, 3, 6, and 9 months at 60°C)

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 6

Thermal Cracking AnalysisProposed Model

Step 1Pavement Temperature Profile

and History Prediction

Step 2Oxidative Aging Prediction

Step 3Thermal Stress Calculation

Step 4Thermal Cracking Event

Probability

Pavement temperature at depth z (Step 1)

Asphalt binder aging properties• Kinetics (Ea, and AP)• Hardening parameters (HS, m)

Asphalt mixture properties• Air void size• Effective aging zone

Predict Carbonyl (CA) as a function of time and depth

Climatic and meteorological data:• air temperature• solar radiation and• Wind speed

Layer properties:• Pavement layers’ thicknesses• Thermal diffusivity

Surface radiation properties• Albedo, emissivity, absorption coefficients

1-D Heat Diffusion EquationTEMPS Software

Predicted hourly thermal stress • Considering aging effect • temperature dependent CTC

Predicted carbonyl (CA) (Step 2)

Asphalt mixture crack initiation stress (CIS)• Measured using UTSST (i.e., thermal loading)• Age-dependent

Coefficient of thermal contraction• Temperature dependent CTC• Obtained from the thermal strain curve

Compare , to % of CISNumbers of events over design life

Predicted pavement temperature (Step 1)(over time and at depth z)

Predicted carbonyl (CA) (Step 2)(over time and at depth z)

Asphalt mixture Relaxation modulus• Directly from the E* complex modulus• based on continuous relaxation spectrum• Age dependent

Coefficient of thermal contraction (CTC)• Temperature dependent CTC• Obtained from the thermal strain curve• Age dependent

1-D Linear viscoelastic model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 7

Thermal Cracking AnalysisPrediction of Field Aging (Numerical solution using FCVM)

Pavement location: Reno, NVAggregate: Northern Nevada Binder type: PG64-28 (SBS mod.)Binder content: 5.22%Air voids: 7%

Ea= 72.53 kJol/molAPα = 4.08 E+8 ln(CA/day)HS = 2.7 (1/CA)m = 9.24 (poise)Air void diameter = 0.5 mmEff. aging zone = 1.0 mm(film thickness)

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 8

Thermal Cracking AnalysisLab Simulation of Field Aging

NV_PG64-28(SBS)_5.22%AC_7.0%Va long-termlab aging

Field aging (Reno, NV)

3 months at 60°C 5.9 years 6 months at 60°C ~ 10.9 years9 months at 60°C ~16.7 years

0.5 months at 85°C Over 20 yearsModeling of fast-rate aging is needed

X

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 9

Thermal Cracking AnalysisThermal Stress Calculation

• 1D linear viscoelastic constitutive equation with oxidative aging effect.

Relaxation ModulusFunction of time,

temperature, and aging

Thermal strain rateFunction of temperature and

age-dependent CTC

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 10

Thermal Cracking AnalysisAge-Dependent Relaxation Modulus• Relaxation modulus determined from dynamic complex modulus.

– Continuous relaxation spectrum directly obtained by inverse Laplace Fourier Transform of complex E* (2S2P1D, Olard & Di Benedetto, 2003).

Ideal viscoelastic model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 11

Thermal Cracking AnalysisEvolution of 2S2P1D Coefficient with Aging

Consistent trends were found for the evaluated mixtures!

1

10

100

1,000

0.00 0.20 0.40 0.60

E0 (M

Pa)

CA-CA0

1,000

10,000

100,000

0.00 0.20 0.40 0.60

E∞ (M

Pa)

CA-CA0

0.10

1.00

10.00

0.00 0.20 0.40 0.60

δ

CA-CA0

0.30

0.40

0.50

0.00 0.20 0.40 0.60

k

CA-CA0

0.01

0.10

1.00

0.00 0.20 0.40 0.60

h

CA-CA0

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.00 0.20 0.40 0.60

T0

CA-CA0

0.005.00

0.00 0.20 0.40 0.60CTCL

(E

05/

°C)

CA CA0NV19I28_5.22_4%_60°C NV19I28_5.22_7%_60°C NV19I28_5.22_11%_60°C

(

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 12

Thermal Cracking AnalysisEvolution of 2S2P1D Coefficient with Aging

2S2P1D coeff. CA Va (%) Abs. (%) LSVTank

(poise)B.C. (%) Retained # 8 Passing # 200

E0 √ √ √ √ √

E∞ √ √ √ √ √ √ √

δ √ √ √ √ √ √

k √ √ √ √

h √ √ √

T0 √ √ √

Mixture variable

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 13

Thermal Cracking AnalysisEvolution of 2S2P1D Coefficient with Aging

y = 0.569x + 20.553R² = 0.770

0

100

200

300

0 100 200 300

Pred

icted

E0 (

MPa)

Measured E0 (MPa)

E0 (MPa) Line of Eguality

y = 0.822x + 3,334.734R² = 0.849

0

10,000

20,000

30,000

40,000

0 10,000 20,000 30,000 40,000Pr

edict

ed E∞

(MPa

)Measured E∞ (MPa)

E∞ Line of Eguality

y = 0.851x + 0.163R² = 0.884

0.0

1.0

2.0

3.0

4.0

0.0 1.0 2.0 3.0 4.0

Pred

icted

δ

Measured δ

δ Line of Eguality

y = 0.761x + 0.098R² = 0.775

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

Pred

icted

k

Measured kk Line of Eguality

y = 0.525x + 0.074R² = 0.545

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3

Pred

icted

h

Measured hh Line of Eguality

y = 0.553x + 0.002R² = 0.689

0.E+00

5.E-03

1.E-02

2.E-02

2.E-02

0.E+00 5.E-03 1.E-02 2.E-02 2.E-02

Pred

icted

T0

Measured T0

T0 Line of Eguality

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 14

Thermal Cracking AnalysisTemperature and Age-Dependent CTC•

-0.0015

-0.001

-0.0005

0

-50 -40 -30 -20 -10 0 10 20

Ther

mal S

train

(mm/

mm)

Temperature (°C)

CTCl

CTCg

Tg

Unrestrained Specimen

Restrained Specimen

Dummy Specimen

Uniaxial Thermal Stress & Strain Test (UTSST)

∆1

1

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 15

Thermal Cracking AnalysisAge-Dependent Crack Initiation Stress (CIS)

0

2000

4000

6000

8000

10000

-30 -20 -10 0 10 20

Stiffn

ess (

MPa)

Temperature (°C)

Crack Initiation (CI)

Glassy Hardening

Viscous-Glassy Transition

Viscous SofteningFracture

Crack Initiation Temp. (CIT)

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 16

Thermal Cracking AnalysisAge-Dependent Crack Initiation Stress (CIS)

• Validation of CIS with VECD.– Elastic-Viscoelastic Correspondence Principle

I1

′ ′

0

0.5

1

1.5

2

2.5

3

-40 -30 -20 -10 0 10 20

Ther

mal S

tress

(MPa

)

Temperature (°C)

Mesured thermal stress from UTSSTPredicted stress without continuum damageing

Damage Initiation Temperature (DIT)

0

0.5

1

1.5

2

2.5

3

0 1 2 3

Ther

mal S

tress

(MPa

)

Thermal Pseudo-Strain *

Start of nonlinearity due to damage

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 17

Thermal Cracking AnalysisAge-Dependent Crack Initiation Stress (CIS)

• Validation of CIS with VECD.

y = 1.24x + 4.54R² = 0.93

-40

-30

-20

-10

0

10

-40 -30 -20 -10 0 10

Dama

ge In

itiatio

n Tem

pera

ture

(°C)

Crack Initiation Temperature (°C)

Various mixtures with different binder grades, aggregates, and mix designs.

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 18

Thermal Cracking AnalysisAge-Dependent Crack Initiation Stress (CIS)

Similar trends were observed for all evaluated mixtures!

0.1

1.0

10.0

0.00 0.20 0.40 0.60

Crac

k init

iation

stre

ss (M

Pa)

CA-CA0

-40

-30

-20

-10

0

0.00 0.20 0.40 0.60Crac

k init

iation

temp

eratu

re (°

C)

CA-CA0

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 19

Thermal Cracking AnalysisAge-Dependent Crack Initiation Stress (CIS)

CA Va (%) Abs. (%)

LSVTank (poise)

B.C. (%)

Retained # 8

Passing # 200

CIS √ √ √ √ √

CIT √ √ √ √ √ √

Mixture variable

y = 0.98xR² = 0.89

-40

-30

-20

-10

0

10

-40 -30 -20 -10 0 10

Pred

icted

Cra

ck in

i. Tem

p (°C

)

Measured Crack ini. Temp (°C)Crack initiation temperature Line of equality

y = 0.97xR² = 0.72

0

1

2

3

4

5

0 1 2 3 4 5

Pred

icted

Cra

ck in

i stre

ss (M

Pa)

Measured Crack ini stress (MPa)

Crack initiation stress Line of equality

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 20

Thermal Cracking AnalysisThermal Cracking Event Probability• The accumulative events during which thermal stress reaches

a defined percentage of the asphalt mixture Crack Initiation Stress (CIS) over the analysis period!

Possible Cracking events

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 21

MATLAB Graphical User Interface (GUI)Thermal Cracking Analysis Package (TCAP)

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 22

Examples: TCAP Analysis

• Pavement Location– Reno, Nevada

• Asphalt Mixtures: – Polymer-modified PG64-28; 3 air void levels: NV_5.22PG64-28_4%; NV_5.22PG64-28_7%; NV_5.22PG64-28_11%

• Design Period– 20 years

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 23

Examples: TCAP analysisEffect of Oxidative Aging on Thermal Stresses

Difference in predicted thermal stresses between aging and no-aging effect analyses.

4% Air Voids

7% Air Voids

11% Air Voids

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 24

Examples: TCAP analysisThermal Stress vs. Crack Initiation Stress (CIS)

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 25

Examples: TCAP analysis

Effect of Mixtures Air Voids

Cracking likelihoods increase for mixture with higher air voids level….

11 yrs

Acc. CI = Weighted average of number of events at which thermal stresses reach different % of CIS.

∑ % %

∑ % ,

100, 80, 70, 60, 50

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 26

Examples: TCAP analysisEffect of Modification (Two field projects from Reno, NV)

Un-modifiedPG64-22 (Moana, 2006)

SBS polymer-modified PG64-28 (Sparks, 2008)

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 27

TCAP Implementation

Asphalt Mixture(s)(Agg., Binder, Mix Design)

Pavement Structure & Location

Pavement Temperature Prediction

Oxidative Aging Prediction

Materials InputComplex modulus (E*), CTC, CIS

Thermal Cracking Analysis ✔ Pass✖ Fail

• Level 1: Measured kinetics (Mix-aged)• Level 2: Accelerated Aging• Level 3: Database

• Level 1: Measured (Full Testing) • Level 2: Measured (Reduced Testing)• Level 3: Predictive Equations

• Climatic/meteorological data• Material thermal prop.• Surface radiation prop.

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 28

Future Research and Improvements

• Field validation of TCAP model.

• Sensitivity analysis of TCAP model.

• Level 3 material input: – Regression models for materials oxidative aging, viscoelastic,

and crack initiation properties.

• Development of a stand-alone TCAP software.

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 29

TEMPERATURE ESTIMATE MODEL FOR PAVEMENT STRUCTURES (TEMPS)

Pavement Temperature Profile History

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 30

Pavement Temperature Profile Prediction

Improvement of the Heat Transfer model [Han et al., 2011 (TAMU)]

Enhanced boundary conditions. Variable pavement surface radiation properties.

Application of Finite Control Volume method (FCV) with Implicit Scheme [Alavi et al., 2014 (UNR)] Considering discontinuity in pavement layers’ material. Improving the time efficiency of calculation.

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 31

Pavement Temperature Profile PredictionHeat Transfer Model Concept

Heat Transfer Balance Between Pavement Structure & Surrounding Environment

Solar Radiation (Albedo)

Incoming (Absorption) and Outgoing (Emissivity) RadiationHeat Convection

(Wind speed)

Heat Diffusion

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 32

Pavement Temperature Profile PredictionNumerical Computation: Finite Control Volume Method (FCVM)

Energy Balance in Each of Control Elements

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 33

Pavement Temperature Profile PredictionStandalone Software: TEMPS (Alpha Version)Temperature Estimate Model for Pavement Structures (TEMPS)

• Materials• Climatic Data• Surface Characteristics• Pavement Structure• Mesh Generator

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 34

Pavement Temperature Profile PredictionTEMPS – Materials Input

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 35

Pavement Temperature Profile PredictionTEMPS – Climatic Data Input

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 36

Pavement Temperature Profile PredictionTEMPS – Surface Characteristics Input

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 37

Pavement Temperature Profile PredictionTEMPS – Pavement Structure

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 38

Pavement Temperature Profile PredictionTEMPS – Mesh Generator

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 39

Pavement Temperature Profile PredictionTEMPS – Run Analysis

Time Efficiency of Computation: Implicit Scheme

Run time for 1 years analysis period (3.10 GHz proc. and 4.00 GB RAM)

< 10 seconds using 1 hour time step*

* Note: 1 hour time step was chosen without jeopardizing the model accuracy for prediction.

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 40

Pavement Temperature Profile PredictionTEMPS – Output Results

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 41

Pavement Temperature Profile PredictionTEMPS – Output Results

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 42

Pavement Temperature Profile PredictionTEMPS – Output Summary

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 43

Pavement Temperature Profile PredictionTEMPS – Output Summary

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 44

Pavement Temperature Profile PredictionTEMPS – Predicted versus MeasuredGreat Falls, MT at depth of 0.09 m (3.5 inch)

-20-10

01020304050

11/5/2001 12/25/2001 2/13/2002 4/4/2002 5/24/2002 7/13/2002 9/1/2002 10/21/2002 12/10/2002 1/29/2003

Temp

eratu

re (

C)

Predicted TemperatureMeasured Temperature (LTPP)

-20-10

01020304050

11/5/2001 12/25/2001 2/13/2002 4/4/2002 5/24/2002 7/13/2002 9/1/2002 10/21/2002 12/10/2002 1/29/2003

Temp

eratu

re (

C)

Calibrated TemperatureMeasured Temperature (LTPP)

Particle Swarm Optimization (PSO) Algorithm: Single yearly surface characteristics

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 45

Pavement Temperature Profile PredictionTEMPS – Predicted versus MeasuredGreat Falls, MT at depth of 0.09 m (3.5 inch)

-20

-10

0

10

20

30

40

50

-20 -10 0 10 20 30 40 50

Max D

aily C

alibr

ated T

empe

ratur

e (De

gree

s C)

Max Daily Measured Temperature (Degrees C)

-20

-10

0

10

20

30

40

50

-20 -10 0 10 20 30 40 50

Max D

aily P

redic

ted Te

mper

ature

(Deg

rees

C)

Max Daily Measured Temperature (Degrees C)

Particle Swarm Optimization (PSO) Algorithm: Single yearly surface characteristics

Optimization need to be refined to include monthly surface characteristics

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 46

Pavement Temperature Profile PredictionTEMPS – Additional Improvements

• Optimize the surface characteristics for the US (Albedo, Emissivity, Absorption) using Particle Swarm Optimization (PSO) Algorithm– Monthly or seasonal values.

• Create/Include input files for LTPP SMP sections.• Provide a summary of the average 7-day pavement

temperature at various depths.• Provide a summary of pavement cooling/warming rates

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 47