Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

14
LIGO Laboratory LIGO-G040172-00- Z Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT Mike Smith, Phil Willems- Caltech Cheryl Vorvick, Gerardo Moreno, Daniel Sigg- LHO LSC Meeting, March 15-18 2004, LLO

description

Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT Mike Smith, Phil Willems - Caltech Cheryl Vorvick, Gerardo Moreno, Daniel Sigg- LHO LSC Meeting, March 15-18 2004, LLO. ?. Initial LIGO Thermal Compensation Concept. CO 2 Laser. ZnSe viewport. - PowerPoint PPT Presentation

Transcript of Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

Page 1: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

Thermal Compensation Installation at LHO

Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

Mike Smith, Phil Willems- Caltech

Cheryl Vorvick, Gerardo Moreno, Daniel Sigg- LHO

LSC Meeting, March 15-18 2004, LLO

Page 2: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

Initial LIGO Thermal Compensation Concept

CO2 Laser

?

Over-heat correction aperture

Inhomogeneous correction aperture

Under-heat correction aperture

ZnSe viewport

Over-heat pattern: Inner radius = 4cm Outer radius =11cm

•Imaging target onto the TM limits the effect of diffraction spreading

•Modeling suggests a centering tolerance of 10 mm required to maintain good correction

Page 3: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

Thermal Compensation Implementation

Page 4: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

Thermal Compensator Layout

Page 5: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

Thermal Compensation Projector

Annulus Mask Central Heat Mask No Masks

•Intensity variations across annulus image due to small laser spot size

•Modeling suggests that this should not be an issue

•Projection optics work well

•AOM distortion above 3W causes intensity centroid shift (these images all taken at 1 Watt CO2 laser power exiting AOM)

Page 6: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

Thermal Compensation Controls

Page 7: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

PRM Results – Mode Images at AS Port (both ITMs heated)

no heating 30 mW 60 mW 90 mW

120 mW 150 mW 180 mW (thru unlocked IFO)

RF sidebands-------------------------------------------------------------------------------------------------->|

RF sidebands--------------------------------------------------------------------->| Carrier

Page 8: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

PRM Results –Sideband Buildup

•Max buildup at ~90 mW TC

•TC increased in 30 mW steps

•IFO is sideband locked PRM with wavefront sensing

Page 9: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

PRM Optical Gain during heating

•Maximum gain at ~90 mW central heating

•Same heating optimizes RF sideband buildup

•Same heating makes RF sideband mode resemble carrier mode

Page 10: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

Full Interferometer Results

A. Interferometer locked at 1 Watt

B. 90 mW central heating applied to both ITMs

C. Central heating reduced

D. Maximum power with 45 mW heating

?? No change in AS_DC throughout

Page 11: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

Summary of Results

State SPOB GSB --------------------------------------------------------------------------------

State 2 cold 85 7.0 State 2 hot (90 mW CO2) 152 12.5State 2 max (tRM / (1 - rRM rM rITM))2 14 -------------------------------------------------------------------------------- State 4 cold 160 13State 4 warm (0.8W input) 190 16 State 4 hot (2.3W input, no TCS) 240 20 State 4 hot (0.8W input, 45mW CO2) 320 26.5 State 4 max (tRM / (1 - rRM rM))2 30 --------------------------------------------------------------------------------

Page 12: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

PRM Asymmetric Heating

•Maximum achieved with 120 mW on ITMy only

•SPOB build-up is the same gotten with common heating

•ITMx requires 200 mW to maximize SPOB to lower value; some asymmetry observed in mode structure

Page 13: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

PRM Asymmetric Heating – Optical Gain

Page 14: Thermal Compensation Installation at LHO Dave Ottaway, Ken Mason, Stefan Ballmer- MIT

LIGO Laboratory LIGO-G040172-00-Z

Issues to Resolve

Errors/difficulties in installation reduce the viewport aperture- annulus heating not fully functional yet

Different behavior of ITMx and ITMy Optimum compensation occurs with 90mW central

heating, yet models predict less than half this» Tests show 90% of CO2 laser power is absorbed by ITM

» Misalignment of CO2 laser beam cannot explain discrepancy