Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH /...

26
Theory of turbo machinery / Turbomaskinernas teori Chapter 3

Transcript of Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH /...

Page 1: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

Theory of turbo machinery / Turbomaskinernas teori

Chapter 3

Page 2: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

Let us first understand the facts and then we may seek the causes. (Aristotle)

Page 3: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

High hub-tip ratio (of radii)

• negligible radial velocities

• 2D cascades directly applicable

Low hub-tip ratio

• Blade speed varying

• Blades twisted from hub to tip

Page 4: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

FIG. 3.1. Compressor cascadewind tunnels. (a) Conventional low-speed, continuousrunning cascade tunnel (adapted from Carter et al. 1950).(b) Transonic/supersoniccascade tunnel (adapted from Sieverding 1985).

Page 5: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

How long must the “infinite” direction be to make derivatives negligible?

Page 6: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

FIG. 3.2. Compressor cascade and blade notation.

( )y x• Camber line

• Profile thickness ( )t x

a

x

t y

( )b y a=• Max camber

Page 7: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

FIG. 3.2. Compressor cascade and blade notation.

s• Spacing

• Stagger angle

• Camber angleChange in angle of the camber line

• Blade entry angle

• Blade exit angle

• Inlet flow angle

• Incidence

ξ

θ

1 'α

2 'α

i

Page 8: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades (incompressible)

FIG. 3.3. Forces and velocities in a blade cascade.

• Continuity:

1 1 2 2cos cos xc c cα α= =

• Momentum (x and y):

( )2 1X p p s= −

( )1 2x y yY sc c cρ= −

or

( )21 2tan tanxY scρ α α= −

Forces per unit depth!

Page 9: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Energy losses

( )2 1X p p s= −

• Loss in total pressure from skin friction 0Δp

( )2 20 1 21 2

Δ 12

p p p c cρ ρ

−= + −

( ) ( ) ( )( )2 2 2 21 2 1 2 1

21 2 2

2x xy y y y y yc cc c c c c c c c− = + − + = + −

( )1 2x y yY sc c cρ= −

0 1 2Δ tan tan tan2 m

p X Y X Ys s s s

α α αρ ρ ρ ρ ρ

+− −= + = + Def of αm

Page 10: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Energy losses

• Dimensionless forms are obtained normalizing with axial or absolute velocity :

02

Δ2x

pc

ζρ

=

021

Δ2

pc

ωρ

=

• Pressure rise coefficient and tangential force coefficientare

2 12 22 2px x

p p XCc scρ ρ−

= =

2 2fx

YCscρ

=

tanp f mC C α ζ= −

Page 11: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Lift and drag

FIG. 3.4. Lift and drag forces exerted by a cascade blade (of unit span) upon the fluid.

cosm x mc c α=

sin cossin cos

m m

m m

L X YD Y X

α αα α

= += −

Lift and drag forces are same as Y and X, but in the coordinates of the blades

FIG. 3.5. Axial and tangential forces exertedby unit span of a bladeupon the fluid.

Page 12: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Lift and drag

( )21 2 0

0

tan tan sec Δ sinΔ cos

x m m

m

L sc s pD s p

ρ α α α α

α

= − −

=

Rearranging previous equations:

( )21 2 0

2 2

02 2

tan tan sec Δ sin2 2

Δ cos2 2

x m mL

m m

mD

m m

sc s pLCc l c l

s pDCc l c l

ρ α α α αρ ρ

αρ ρ

− −= =

= =

Dimension less forms are

sec 1 cosα α=

( ) 21 2

2sec tan tan secfmLm

D

CCLD C

α α α αζ ζ

= = − = (3.20)

Page 13: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Lift and drag

Page 14: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Circulation and lift

Page 15: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Efficiency of a compressor cascade

Compressor blade cascade efficiency defined as diffuser efficiency:

( )2 1

2 21 2 2Dp pc c

ηρ

−=

−so that 0Δ 0p = when 1Dη =

( )( )

( ) ( )

2 20 1 2 02 1

22 2 2 21 21 2 1 2

-Δ 2 Δ1tan tan tan2 2D

x m

p c c pp pcc c c c

ρη

ρ α α αρ ρ

+ −−= = = −

−− −

Using equations 3.7, 3.9 and 3.25

21sin 2

DD

L m

CC

ηα

= −

Page 16: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Efficiency of a compressor cascade

,2

4 cos 2 0 45degsin 2

D mDm opt

m L m

CC

αη αα α∂

= = ⇒ =∂

Assuming constant ratio between lift and drag const.D LC C =

may be found by differentiation:21sin 2

DD

L m

CC

ηα

= −An optimum of

,max21 D

DL

CC

η = −

And the corresponding efficiency becomes

Page 17: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Efficiency of a compressor cascade

FIG. 3.6. Efficiency variation with average flow angle (adapted from Howell 1945).

Page 18: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

FIG. 3.7. Streamline flow through cascades (adapted from Carter et al. 1950).

Page 19: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

FIG. 3.8. Contraction of streamlines due to boundary layer thickening(adapted from Carter et al. 1950).

Page 20: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

• Experimental Techniques in separate lecture

• Experiments should help determining

Blade shape (thickness, max camber, position…)

Space chord ratio

Deviation

…..

http://www.pagendarm.de/trapp/programming/java/profiles/NACA4.html

• Generalized experiments

Page 21: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Fluid deviation

FIG. 3.2. Compressor cascade and blade notation.

Incidence is chosen by designer

With limited number of blades:

2 2'α α≠So that the deviation may be defined as

2 2 'δ α α= −

Page 22: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades

FIG. 3.12. Compressor cascade characteristics (Howell 1942). (By courtesy of the Controller of H.M.S.O., Crown copyright reserved).

1 1 'i α α= −

1 2ε α α= −

Incidence:

Deflection:

Page 23: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Generalizing experimental results

2 2 'δ α α= −

Deviation by Howell: Nominal deviation a function of camber and space chord ratio:

( )* nm s lδ θ=

( ) *2

0.50.23 2 500

nm a l a=

= +

with the following constants for compressor cascades

Page 24: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Generalizing experimental results

FIG. 3.18. Variation of nominal deflection with nominal outletangle for several space/chordratios (adapted from Howell 1945).

Example 3.1, Howell: ( )* *2, , Ref s lε α=

Page 25: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Optimum space chord ratio of turbineblades (Zweifel)

FIG. 3.27. Pressure distribution around a turbine cascade blade (after Zweifel 1945).

Page 26: Theory of turbo machinery / Turbomaskinernas teori Chapter 3 · 2009-09-09 · LTH / Kraftverksteknik / JK 2D cascades Lift and drag FIG. 3.4. Lift and drag forces exerted by a cascade

LTH / Kraftverksteknik / JK

2D cascades Optimum space chord ratio of turbineblades (Zweifel)

22idY c bρ=

Maximum tangential load (force per unit span)

b is passage width, fig 3.27

Ratio of real to ideal load for minimum losses is around 0.8

( ) ( )22 1 22 cos tan tan 0.8T

id

Y s bY

Ψ α α α= = + ≈

For specified inlet and outlet angles s b or s l may be determined