Theory of Orbit Perturbations From Madrid Polytechnic

download Theory of Orbit Perturbations From Madrid Polytechnic

of 44

Transcript of Theory of Orbit Perturbations From Madrid Polytechnic

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    1/44

    Basics of Orbital Mechanics II

    Modeling the Space Environment

    Manuel Ruiz Delgado

    European Masters in Aeronautics and Space

    E.T.S.I. Aeronauticos

    Universidad Politecnica de Madrid

    April 2008

    Basics of Orbital Mechanics II p. 1/24

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    2/44

    Basics of Orbital Mechanics II

    Keplerian and Perturbed Motion

    Magnitude of the Perturbations

    Special Perturbations all, numerical

    Enckes Method

    Cowells Method

    General Perturbations some, analytical, approximate

    Osculating OrbitVariation of Parameters

    Lagrange Equations potential

    Gauss Equations potential & not potentialGeneral Perturbations: Analytical approx/Semianalytical

    Numerical Integration

    Basics of Orbital Mechanics II p. 2/24

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    3/44

    Keplerian and Perturbed Motion

    r = G (M + m) r|r|3

    Kepler Problem+

    P1

    m1 P2

    m2

    Perturbation

    r

    k=

    ak

    G (M + m)rk

    |rk|3rp = G (M + m) rp|rp|3

    + ap

    rp

    rk

    m

    M

    Usually, |ap| |ak| rp rk How small?

    Basics of Orbital Mechanics II p. 3/24

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    4/44

    Perturbations (LEO)

    1e008

    1e006

    0.0001

    0.01

    1

    100

    10000

    1e+006

    0 100 200 300 400 500 600 700 800 900

    Acceleratio

    n(m/s2)

    Height (km)

    Accelerations of the Satellite (BC=50)

    Shuttle

    ISS

    KeplerJ2

    C22Sun

    MoonDrag (low)

    Drag (high)Prad

    Basics of Orbital Mechanics II p. 4/24

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    5/44

    Perturbations (GEO)

    1e008

    1e006

    0.0001

    0.01

    1

    100

    10000

    1e+006

    0 5000 10000 15000 20000 25000 30000 35000 40000

    Acceleratio

    n(m/s2)

    Height (km)

    Accelerations of the Satellite (BC=50)

    GEOGPS

    KeplerJ2

    C22Sun

    MoonDrag (low)

    Drag (high)Prad

    Basics of Orbital Mechanics II p. 5/24

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    6/44

    Enckes Method

    keple

    ria

    n

    perturbe

    d

    rk

    r

    r0

    v0

    Epoch

    rp

    M

    Compute only the difference r

    rk = rk|rk|3rp = rp|rp|3

    + ap

    r = rp rk |r| |rp|

    Basics of Orbital Mechanics II p. 6/24

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    7/44

    Enckes Method

    keple

    ria

    n

    perturbe

    d

    rk

    r

    r0

    v0

    Epoch

    rp

    M

    Compute only the difference r

    rk = rk|rk|3rp = rp|rp|3

    + ap

    r = rp rk |r| |rp|r = rp rk =

    rp

    |rp|3+

    rk

    |rk|3+ ap =

    Basics of Orbital Mechanics II p. 6/24

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    8/44

    Enckes Method

    keple

    ria

    n

    perturbe

    d

    rk

    r

    r0

    v0

    Epoch

    rp

    M

    Compute only the difference r

    rk = rk|rk|3rp = rp|rp|3

    + ap

    r = rp rk |r| |rp|r = rp rk =

    rp

    |rp|3+

    rk

    |rk|3+ ap =

    r = |rk|3r + |rk|3

    1 |rk|3|rp|3

    rp + ap

    Basics of Orbital Mechanics II p. 6/24

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    9/44

    Enckes Method

    About f(q), cf. Battin, p. 389 and 449

    keple

    ria

    n

    perturbe

    d

    rk

    r

    r0

    v0

    Epoch

    rp

    M

    Compute only the difference r

    rk = rk|rk|3rp = rp|rp|3

    + ap

    r = rp rk |r| |rp|r = rp rk =

    rp

    |rp|3+

    rk

    |rk|3+ ap =

    r = |rk|3r + |rk|3

    1 |rk|3|rp|3

    rp + ap

    1 |rk

    |3

    |rp|3 = f(q) = q3 + 3q+ q2

    1 + (1 + q)3

    2q =

    r

    (r

    2rp)

    rp rp

    Basics of Orbital Mechanics II p. 6/24

    k h d

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    10/44

    Enckes Method

    About f(q), cf. Battin, p. 389 and 449

    keple

    ria

    n

    perturbe

    d

    rk

    r

    r0

    v0

    Epoch

    rp

    M

    Compute only the difference r

    rk = rk|rk|3rp = rp|rp|3

    + ap

    r = rp rk |r| |rp|r = rp rk =

    rp

    |rp|3+

    rk

    |rk|3+ ap =

    r = |rk|3r + |rk|3

    1 |rk|3|rp|3

    rp + ap

    1 |rk

    |3

    |rp|3 = f(q) = q3 + 3q+ q2

    1 + (1 + q)3

    2q =

    r

    (r

    2rp)

    rp rp

    r =

    |rk|3 r

    |rk|3 f(q) rp + ap

    Basics of Orbital Mechanics II p. 6/24

    E k M h d

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    11/44

    Enckes Method

    About f(q), cf. Battin, p. 389 and 449

    keple

    ri

    an

    Epoch2

    perturbe

    d

    rp

    M

    Compute only the difference r

    rk = rk|rk|3rp = rp|rp|3

    + ap

    r

    =rp rk |r| |rp|

    r = rp rk = rp

    |rp|3+

    rk

    |rk|3+ ap =

    r = |rk|3r + |rk|3

    1 |rk|3|rp|3

    rp + ap

    1 |rk

    |3

    |rp|3 = f(q) = q3 + 3q+ q2

    1 + (1 + q)3

    2q =

    r

    (r

    2rp)

    rp rp

    r =

    |rk|3 r

    |rk|3 f(q) rp + ap

    if r , rectify: r = 0rk1 rk2

    Basics of Orbital Mechanics II p. 6/24

    L f P i i

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    12/44

    Loss of Precision

    REAL*4 = Single-Precision = 6-7 DIGITS

    REAL*8 = Double-Precision = 15-16 DIGITS

    0.100000000000000 E+00

    + 0.123456789012345 E-10

    = 0.100000000000000 E+00

    + 0.000000000012345 E+00= 0.100000000012345 E+00

    0.123456789012345 E+00

    - 0.123456789000000 E+00

    = 0.000000000012345 E+00

    =0.123450000000000 E-10

    Basics of Orbital Mechanics II p. 7/24

    L f P i i

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    13/44

    Loss of Precision

    1 |rk|3|rp|3

    REAL*4 = Single-Precision = 6-7 DIGITS

    REAL*8 = Double-Precision = 15-16 DIGITS

    0.100000000000000 E+00

    + 0.123456789012345 E-10

    = 0.100000000000000 E+00

    + 0.000000000012345 E+00= 0.100000000012345 E+00

    0.123456789012345 E+00

    - 0.123456789000000 E+00

    = 0.000000000012345 E+00

    =0.123450000000000 E-10

    Basics of Orbital Mechanics II p. 7/24

    C ll F l ti

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    14/44

    Cowells Formulation

    Direct numerical integration of the equations

    ODE: r = r

    |r

    |3

    + ap (r, r, t)

    IC: t0, r0, r0 r = r (t, t0, r0, r0)

    x =

    x

    yz

    vxvyvz

    x =

    vx

    vyvzx

    y

    z

    =

    vx

    vyvz

    r3 x + ax

    r3 y + a

    y r3 z+ az

    x = f (x, t)

    Basics of Orbital Mechanics II p. 8/24

    Osculating Orbit Variation of Parameters

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    15/44

    Osculating Orbit - Variation of Parameters

    perturbe

    d

    M

    r0

    v0

    Epoch

    Satellite in r0, v0 at Epoch t0

    Follows perturbed trajectoryrp(t)

    Basics of Orbital Mechanics II p. 9/24

    Osculating Orbit Variation of Parameters

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    16/44

    Osculating Orbit - Variation of Parameters

    keple

    rian

    perturbe

    d

    M

    r0

    v0

    Epoch

    Satellite in r0, v0 at Epoch t0

    Follows perturbed trajectoryrp(t)

    Osculating Orbit at r0, v0:

    The Keplerian orbit followed by the satellite

    if all perturbations become zero from thispoint on.

    Basics of Orbital Mechanics II p. 9/24

    Osculating Orbit Variation of Parameters

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    17/44

    Osculating Orbit - Variation of Parameters

    keple

    rian

    oscul

    atin

    g

    perturbe

    d

    rp(t)

    M

    r0

    v0

    Epoch

    Satellite in r0, v0 at Epoch t0

    Follows perturbed trajectoryrp(t)

    Osculating Orbit at r0, v0:

    The Keplerian orbit followed by the satellite

    if all perturbations become zero from thispoint on.

    Osculating orbit elements can be used as coordinates

    r0,v0 , t0 i, , , a, e, , , t0rp(t),vp(t) , t

    i(t), (t), (t), a(t), e(t), (t) , (t), t

    Basics of Orbital Mechanics II p. 9/24

    Variation of Parameters: Fast/Slow variables

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    18/44

    Variation of Parameters: Fast/Slow variables

    M,

    Fast Variables:

    , M, , t

    r(t) ,v(t)

    Slow Variables:

    i, , , a, e, (M0)

    Basics of Orbital Mechanics II p. 10/24

    Variation of Parameters: Secular/Periodic

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    19/44

    Variation of Parameters: Secular/Periodic

    Secular

    Secular + Long periodic

    Secular + Long periodic + Short periodic

    Short Orbital period

    OrbitalParam

    eter

    t

    Basics of Orbital Mechanics II p. 11/24

    Variation of Parameters - Lagrange

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    20/44

    Variation of Parameters Lagrange

    Variation of Parameters:

    r = r|r|3

    + ap

    r = r (i(t), (t), (t), a(t), e(t), t)

    x = i, , , a, e, Tx = f (x, t)

    Lagrange Planetary Equations: Conservative perturbations

    ap = R R(i, , , a, e, M0) M0 = n x = i, , , a, e, M0Tx = f (x,

    R)

    Basics of Orbital Mechanics II p. 12/24

    Lagrange Planetary Equations

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    21/44

    Lagrange Planetary Equations

    Singularities forlow eccentricity

    or inclination

    di

    dt=

    1

    na2

    1 e2 sin i

    cos i

    R

    R

    ddt = 1na2

    1 e2 sin i Rid

    dt

    =

    1 e2

    na2 e

    R

    e cos i

    na21 e2 sin iR

    ida

    dt=

    2

    na

    R

    M0

    dedt

    = 1 e2na2 e

    RM0

    1 e2na2 e

    R

    dM0

    dt = 1

    e2

    na2 e

    R

    e 2

    na

    R

    a

    Basics of Orbital Mechanics II p. 13/24

    Lagrange Planetary Equations

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    22/44

    Lagrange Planetary Equations

    Singularities forlow eccentricity

    or inclination

    di

    dt=

    1

    na2

    1 e2 sin i

    cos i

    R

    R

    ddt = 1na2

    1 e2 sin i Rid

    dt

    =

    1 e2

    na2

    e

    R

    e cos i

    na21 e2 sin iR

    ida

    dt=

    2

    na

    R

    M0

    dedt

    = 1 e2na2 e

    RM0

    1 e2na2 e

    R

    dM0

    dt = 1

    e2

    na2 e

    R

    e 2

    na

    R

    a M = n 1e2

    na2 e

    R

    e 2

    na

    R

    a aBasics of Orbital Mechanics II p. 13/24

    Lagrange VOP: Kozais Method

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    23/44

    Lagrange VOP: Kozai s Method

    Separate disturbing potential R into constant/periodic, and orders ofmagnitude: R = R1 + R2 + R3 + R4

    R1 =

    3

    2

    J2 R2E

    a3 13 12 sin2 i1 e21/2 R2 = 0R3 =

    3

    2

    J3 R3E

    a4sin i1

    5

    4sin2 i e 1 e

    2

    5/2

    sin

    R4 =3

    2

    J2 R2E

    a3

    ar

    3 13

    12

    sin2 i

    1

    ra

    3 1 e23/2+

    + 12

    sin2 i cos2(+ )Only gravitational perturbations J2 (flattening) and J3 (pear-shape)

    are included.

    Basics of Orbital Mechanics II p. 14/24

    Lagrange VOP: Kozais Method (secular)

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    24/44

    g g ( )

    didt

    = 38n J3 RE

    p3 cos i 4 5sin2 i sin2 i cos da

    dt= 0

    d

    dt= 3

    2n J2

    REp

    2

    cos i 38n J3

    REp

    3

    15 sin2 i 4 e cot i sin

    d

    dt=

    3

    4n J2

    REp

    2 4 5sin2 i + 3

    8n J3

    REp

    3 4 5sin2 i

    sin2 i e2 cos2 ie sin i + 2 sin i 13 15 sin2 i e sinde

    dt= 3

    8n J3

    REp

    3

    sin i 4 5sin2 i 1 e

    2

    cosdM

    dt= n

    1 +

    3

    2J2

    REp

    2 1 3

    2sin2 i

    1 e21/2

    38n J3 RE

    p3 sin i 4 5sin2 i 1 4e2 1 e21/2

    esin

    Basics of Orbital Mechanics II p. 15/24

    Gauss Planetary Equations

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    25/44

    y q

    Conservative and not conservative perturbationsUse the Orbital Frame for ap

    ap = ar ur + a u + az uz

    Peric

    .

    Sat.

    h

    ur

    u

    e

    uN

    i

    i

    x1y1

    z1

    Basics of Orbital Mechanics II p. 16/24

    Gauss Planetary Equations

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    26/44

    y q

    Singularities for loweccentricity or inclination

    didt

    = r cos na2

    1 e2 az

    d

    dt=

    r sin

    na21 e2 sin iaz

    d

    dt=

    1 e2na e

    cos ar + sin 1 +

    r

    pa

    r cos i sin h sin i

    az

    da

    dt=

    2

    n

    1 e2

    e sin ar +p

    ra

    de

    dt =

    1

    e2

    nasin ar + cos + e + cos 1 + e cos a

    dM0dt

    =1

    na2 e[(p cos 2er) ar (p + r) sin a]M =n+ b

    ah e[(p cos

    2re) ar(p+r) sin a]

    Basics of Orbital Mechanics II p. 17/24

    Numerical Methods: Euler

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    27/44

    t

    y

    y0

    y(t1)

    y1

    t0 t1

    h

    y = f(y, t)

    y0 = y(t0)

    y1 = y0 + f[y(t0), t0] h. . .

    yn = yn1 + f[yn1, t0 + (n

    1)h]

    h

    . . .

    Error = O(h2)

    Basics of Orbital Mechanics II p. 18/24

    Numerical Methods: Midpoint

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    28/44

    t

    y

    y0

    y(t1)

    t0 t1

    h

    y = f(y, t)

    y0 = y(t0)

    Basics of Orbital Mechanics II p. 19/24

    Numerical Methods: Midpoint

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    29/44

    y1

    t

    y

    y0

    y(t1)

    t0 t1

    h

    y = f(y, t)

    y0 = y(t0)

    y1 = y0 + f[y(t0), t0]

    h/2

    Basics of Orbital Mechanics II p. 19/24

    Numerical Methods: Midpoint

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    30/44

    y1

    t

    y

    y0

    y(t1)

    t0 t1

    h

    y = f(y, t)

    y0 = y(t0)

    y1 = y0 + f[y(t0), t0]

    h/2

    y1 = f[y1, t0 + h/2]

    Basics of Orbital Mechanics II p. 19/24

    Numerical Methods: Midpoint

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    31/44

    y1

    y2

    t

    y

    y0

    y(t1)

    t0 t1

    h

    y = f(y, t)

    y0 = y(t0)

    y1 = y0 + f[y(t0), t0]

    h/2

    y1 = f[y1, t0 + h/2]

    y2 = y0 + y1 h. . .

    Error = O(h3)

    Basics of Orbital Mechanics II p. 19/24

    Numerical Methods: Runge-Kutta 4

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    32/44

    tn tn+1h

    yn

    y(tn+1)

    y = f(y, t)

    Basics of Orbital Mechanics II p. 20/24

    Numerical Methods: Runge-Kutta 4

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    33/44

    y1

    tn tn+1h

    yn

    y(tn+1)

    y = f(y, t)

    k1 = h f(yn, tn) y1 = yn + k1/2

    Basics of Orbital Mechanics II p. 20/24

    Numerical Methods: Runge-Kutta 4

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    34/44

    y1

    y2

    tn tn+1h

    yn

    y(tn+1)

    y = f(y, t)

    k1 = h f(yn, tn) y1 = yn + k1/2

    k2 = h f(y1, tn + h/2) y2 = yn + k2/2

    Basics of Orbital Mechanics II p. 20/24

    Numerical Methods: Runge-Kutta 4

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    35/44

    y1

    y2

    y3

    tn tn+1h

    yn

    y(tn+1)

    y = f(y, t)

    k1 = h f(yn, tn) y1 = yn + k1/2

    k2 = h f(y1, tn + h/2) y2 = yn + k2/2

    k3 = h f(y2, tn + h/2) y3 = yn + k3

    Basics of Orbital Mechanics II p. 20/24

    Numerical Methods: Runge-Kutta 4

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    36/44

    y1

    y2

    y3

    y4

    tn tn+1h

    yn

    y(tn+1)

    y = f(y, t)

    k1 = h f(yn, tn) y1 = yn + k1/2

    k2 = h f(y1, tn + h/2) y2 = yn + k2/2

    k3 = h f(y2, tn + h/2) y3 = yn + k3

    k4 = h f(y3, tn + h) y4 = yn + k4

    Basics of Orbital Mechanics II p. 20/24

    Numerical Methods: Runge-Kutta 4

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    37/44

    y1

    y2

    y3

    y4

    yn+1

    tn tn+1h

    yn

    y(tn+1)

    y = f(y, t)

    k1 = h f(yn, tn) y1 = yn + k1/2

    k2 = h f(y1, tn + h/2) y2 = yn + k2/2

    k3 = h f(y2, tn + h/2) y3 = yn + k3

    k4 = h f(y3, tn + h) y4 = yn + k4

    yn+1 = yn +k1

    6+ k2

    3+ k3

    3+ k4

    6

    Error = O(h5)

    Basics of Orbital Mechanics II p. 20/24

    Numerical Methods: Burlish-Stoer

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    38/44

    tn tn+1h

    yn

    y = f(y, t), yn, tn

    Basics of Orbital Mechanics II p. 21/24

    Numerical Methods: Burlish-Stoer

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    39/44

    n = 2

    n = 4n = 6

    tn tn+1h

    yn

    y = f(y, t), yn, tnCompute the interval h with n steps hn , n =

    k 2, 4, 6 . . .

    Basics of Orbital Mechanics II p. 21/24

    Numerical Methods: Burlish-Stoer

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    40/44

    n = 2

    n = 4n = 6

    tn tn+1h

    ynh2h6 h40

    y

    y = f(y, t), yn, tnCompute the interval h with n steps hn , n =

    k 2, 4, 6 . . .

    Basics of Orbital Mechanics II p. 21/24

    Numerical Methods: Burlish-Stoer

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    41/44

    n = 2

    n = 4n = 6

    tn tn+1h

    yn

    y(tn+1)

    h2h6 h40

    y

    Error = O

    h2k+1

    y = f(y, t), yn, tnCompute the interval h with n steps hn , n =

    k 2, 4, 6 . . .

    Polynomial extrapolation to n , h 0

    Basics of Orbital Mechanics II p. 21/24

    Adaptive Stepsize Control

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    42/44

    Set a truncation error and stepsize hGive a step with a method of order n

    Repeat the step with order n + 1

    If the difference is > , decrease hIf the difference is < , increase h

    Each section of the curve is integrated with the maximum h

    compatible with This reduces the number of steps, but may require more derivativeevaluations

    Basics of Orbital Mechanics II p. 22/24

    COWELL Program

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    43/44

    Begin y = f(y, t)

    Initializations

    Input dataKB/File

    ODE Integrator Call Int step Call Derivs

    Compute elements

    Compute Kepler

    Save Data

    INTTRAJ.DAT

    OSCELEM.DAT

    KEPTRAJ.DAT

    Plot

    End

    aKep

    agrava3Body

    aDrag

    aPrad...

    Basics of Orbital Mechanics II p. 23/24

    ODE Integrator

  • 8/22/2019 Theory of Orbit Perturbations From Madrid Polytechnic

    44/44

    Fixed Step

    ti = ti1 + t

    Dumb Integr Step Derivs

    t = tf ?

    Yes

    No

    Adaptive Stepsize

    ti = ti1 + t

    Adjust t

    QS Integr Step Derivs

    Error

    t = tf ?

    OK

    Yes

    >