Theoretical vibrating

8
ELSEVIER Powder Technology 87 (1996) 203-210 POWDER TE HNOLOGY heoretical and experimental study of the transport of granular materials by inclined vibratory conveyors E.M. Sloot N.P. Kruyt Department of Mechanical Engineering University of Twente PO Box 217 7500 AE Enschede Netherlands Receive d 22 M arch 1995; revised 25 Octo ber 1995 Abstract A theoretical and experimental study was made of the conveying speed with which granular materials are transported by vibratory conveyors. The basic assumption made is that the layer of granular material can be considered as a point mass. The theory incorporates rest, slide, and flight phases of the material. Although the emphasis of this study is on the effect of the inclination (and declination) of the conveyor on the conveying speed, the effects of throw number, friction coefficient and vibration angle on the con veying speed are also shown. A useful method is presented for measuring the coefficient of friction between granular material/rod vibratory conveyor. Experiments were performed in order to verify the point mass theory. The agreement between theory and experiment is fairly good for slide conveyors but for throw conveyors larger deviations are observed. Some possibilities for improvement to the theory are briefly investigated. Keywords: Friction; Granular material; Vibratory convey or 1 Introduction Vibratory conveyors are often used in industry to transport granular materials. They consist of a trough which is (gen- erally) vibrated sinusoidally in time. This vibration induces the movement of the granular material along the conveyor surface. The direction, amplitude and frequency of the oscil- lations are design parameters of the conveyor, see Fig. 1. Some of the main advantages of vibratory conveyors are their simple construction, their suitability to handle hot and abrasive materials and their applicability as dosing equip- ment. Since the trough can be totally enclosed, they are also well suited to the transport of dusty materials. Some disad- vantages of vibratory conveyors are their noisy operation, the induced vibrations on their surroundings and their limited transport distance. Furthermore, the granular material may be dam aged when it is subjected to large accelerations normal to the trough. A distinction can be made between slide and throw con- veyors: for slide conveyors the material remains in contact with the trough surface, while for throw conveyors the mate- rial loses contact during part of the conveying cycle. Som e- times the conveyors are positioned under a small inclination or declination instead of horizontally. It is expected that this trough slope will have a large influence on the conveying speed, especially for slide conveyors. This influence consti- tutes an important subject of this study. 0032-5910/96/ 15.00 © 1996 Elsevier Science S.A. All rights reserved PII S0032-5910(96)03091-9 Many researchers investigated the transport of granular materials by vibratory conveyors. Booth and McCallion [ 1 ] made a theoretical and experimental study of the conveying speed of slide conveyors. Nedderman and Harding [2] extended this analysis and presented some optimization stud- ies for horizontal and inclined sliding. Pajer et al. [3] dealt with practical aspects of slide and throw conveyors. Erdesz and Szalay [ 4 ], Erdesz and N6m eth [ 5 ] made a practical and theoretical study of slide and throw conveyors. Some theo- retical optimization studies were performed by Hota and Kar- maker [6]. The most extensive research was reported by Rademacher and ter Borg [ 7,8 ]. They presented a point mass theory for horizontal vibratory conveyors as well as the results of a large number of experiments that were performed on several types of horizontal conveyors transporting many dif- ferent granular materials. Some purely numerical studies were done by Ng et al. [9] and Lira [ 10]. The experimental 7 S ~/////////I////////////////I//////////////////////> Fig. I. Lay-out of the vibratory convey or.

Transcript of Theoretical vibrating

Page 1: Theoretical vibrating

8/13/2019 Theoretical vibrating

http://slidepdf.com/reader/full/theoretical-vibrating 1/8

E L S E V I E R Powder Technology 87 (1996) 203-210

POWDERTE HNOLOGY

heoretical and experimental study o f the transport of g ranular m aterialsby inclined vibratory conveyors

E.M. Sloot N.P. KruytDepartment o f Mechanical Engineering University of Twente PO Box 217 7500 AE Enschede Netherlands

Receive d 22 M arch 1995; revised 25 Octo ber 1995

A b s t r a c t

A theore t ica l and exper imen ta l s tudy was m ade of the conveying speed w i th which granular mater ia ls a re transpor ted by v ibra toryThe bas ic assum pt ion m ade i s tha t the layer of granular mater ia l can be cons idered as a poin t mass . The theory incorpora tes res tf l ight phase s of the material . Althoug h the em phasis o f this study is on the effect of the inclination (a nd de clination) of the convconveying speed, the effec ts of throw n umber, f r ic t ion coeffic ient and v ibra t ion angle on the con veying speed are a lso shown. A useis presented for measu r ing the coeff ic ient of f ric t ion be tween granular mater ia l/ rod v ibra tory conveyor. Exper iments w ere per formto ver i fy the poin t m ass theory. The agreem ent be tween theory and exper iment i s fa ir ly good for sl ide con veyors but for throw larger deviations are observed. Some possibil i t ies for improvement to the theory are briefly investigated.

Keywords: Friction; Granular material; Vibratory convey or

1 I n t r o d u c t i o n

Vi b r a t o r y c o n v e y o r s a r e o f t e n u s e d i n i n d u s t r y t o t r a n s p o r tg r a n u l a r m a t e r i a l s . T h e y c o n s i s t o f a t r o u g h w h i c h i s ( g e n -e r a l l y ) v i b r a t e d s i n u s o i d a l l y i n t i m e . T h i s v i b r a t i o n in d u c e st h e m o v e m e n t o f t h e g r a n u l a r m a t e r ia l a l o n g t he c o n v e y o rs u r f a c e . T h e d i r e c t io n , a m p l i t u d e a n d f r e q u e n c y o f t h e o sc i l -l a t io n s a r e d e s i g n p a r a m e t e r s o f th e c o n v e y o r, s e e F i g . 1 .

S o m e o f t h e m a i n a d v a n t a g e s o f v i b r a t o ry c o n v e y o r s a r ethe i r s imp le cons t ruc t i on , t he i r su i t ab i l i t y t o hand le ho t anda b r a s i v e m a t e r i a l s a n d t h e i r a p p l i c a b i l i t y a s d o s i n g e q u i p -m e n t . S i n c e t h e t r o u g h c a n b e t o t a ll y e n c l o s e d , t h e y a r e a ls ow e l l s u i t e d t o t h e t ra n s p o r t o f d u s t y m a t e r i a l s . S o m e d i s a d -v a n t a g e s o f v i b r a t o r y c o n v e y o r s a r e t h e ir n o i s y o p e r a t io n , t h ei n d u c e d v i b r a t i o n s o n t h e i r s u r r o u n d i n g s a n d t h e i r l i m i t e dt r a n s p o r t d is t a n c e . F u r t h e r m o r e , t h e g r a n u l a r m a t e r i a l m a y b ed a m a g e d w h e n i t i s s u b j e c t e d t o l a rg e a c c e l e r a t i o n s n o r m a lto t he t r ough .

A d i s t i n c ti o n c a n b e m a d e b e t w e e n s l i d e a n d t h r o w c o n -v e y o r s : f o r s li d e c o n v e y o r s t h e m a t e r i a l r e m a i n s i n c o n t a c tw i t h t h e t r o u g h s u r f a c e , w h i l e f o r t h r o w c o n v e y o r s t h e m a t e -r i al l o s e s c o n t a c t d u r i n g p a r t o f t h e c o n v e y i n g c y c l e . S o m e -t i m e s t h e c o n v e y o r s a r e p o s i t i o n e d u n d e r a s m a l l i n c l i n a t i o no r dec l i na t i on i n s t ead o f ho r i zon t a l l y. I t i s exp ec t e d t ha t t h i st r o u g h s l o p e w i l l h a v e a l a rg e i n f l u e n c e o n t h e c o n v e y i n gs p e e d , e s p e c i a l l y f o r s li d e c o n v e y o r s . T h i s i n f l u e n c e c o n s t i -t u t es a n i m p o r t a n t s u b j e c t o f th i s s t u d y.

0032-5910/96/ 15.00 © 1996 Elsevier Science S.A. All rights reservedP I I S 0 0 3 2 - 5 9 1 0 ( 9 6 ) 0 3 0 9 1 - 9

M a n y r e s e a r c h e r s i n v e s t i g a t e d t he t r a n s p o r t o f g r a n u l a rm a t e r i a l s b y v i b r a t o r y c o n v e y o r s . B o o t h a n d M c C a l l i o n [ 1 ]m a d e a t h e o r e t ic a l a n d e x p e r i m e n t a l s t u d y o f th e c o n v e y i n gs p e e d o f s li d e c o n v e y o r s . N e d d e r m a n a n d H a r d i n g [ 2 ]e x t e n d e d t h i s a n a ly s i s a n d p r e s e n t e d s o m e o p t i m i z a t i o n s t u d -i e s fo r ho r i zon t a l and i nc l i ned s l i d ing . Pa j e r e t a l . [ 3 ] dea l tw i t h p r a c t ic a l a s p e c t s o f sl i de a n d t h r o w c o n v e y o r s . E r d e s za n d S z a l a y [ 4 ] , E r d e s z a n d N 6 m e t h [ 5 ] m a d e a p r a c ti c a l a n dt h e o r e ti c a l s t u d y o f s l id e a n d t h r o w c o n v e y o r s . S o m e t h e o -r e ti c a l o p t i m i z a t i o n s t u d i e s w e r e p e r f o r m e d b y H o t a a n d K a r -m a k e r [ 6 ] . T h e m o s t e x t e n s iv e r e s e ar c h w a s r e p o r t e d b yR a d e m a c h e r a n d t e r B o rg [ 7 , 8 ] . T h e y p r e s e n t e d a p o i n t m a s st h e o r y f o r h o r i z o n t a l v i b r a t o r y c o n v e y o r s a s w e l l a s th e r e s u l tso f a la r g e n u m b e r o f e x p e r im e n t s t h a t w e r e p e r f o r m e d o ns e v e r a l t y p e s o f h o r i z o n t a l c o n v e y o r s t r a n s p o r t i n g m a n y d i f -f e r e n t g r a n u l a r m a t e r i a l s. S o m e p u r e l y n u m e r i c a l s t u d i e sw e r e d o n e b y N g e t a l. [ 9 ] a n d L i r a [ 1 0 ] . T h e e x p e r i m e n t a l

7 S

~ / / / / / / / / / I / / / / / / / / / / / / / / / / I / / / / / / / / / / / / / / / / / / / / / / >Fig. I. Lay-ou t of the vibratory convey or.

Page 2: Theoretical vibrating

8/13/2019 Theoretical vibrating

http://slidepdf.com/reader/full/theoretical-vibrating 2/8

204 E.M. Sloot, N.P. Kruyt / Pow der Technology 87 1996) 20 3-21 0

veri f icat ions in Ref . [9] were res t r ic ted to a s ingle vibrat ionangle . A special type of vibratory conveyor, a corrugatedv ib ra to ry conveyor, i s desc r ibed by Persson and Megnin[111.

The emphas i s o f the p resen t theore t ica l and exper imenta ls tudy is on incl ined and decl ined t ransport , both for s l ide andthrow con veyo rs . In contras t wi th Ng et al . [9] and Lim[ 10] , the the ory in this ar t ic le is largely analyt ical , in o rderto ga in more ins igh t in to the occur r ing phases o f m ot ion o fthe granular m ater ia l.

The basic assump tions in this theory are:( i ) the t rough is dr iven ful ly s inusoidal ly;( i i ) the granular mater ia l is assumed to behav e like a point

mass , i t moves l ike a r igid body with negl igiblerotat ions;

( i i i ) a ful ly plas t ic col l is ion is assumed when the layer ofgranular mater ia l h i ts the t rough surface af ter a f l ightphase;

( iv) the dis t inct ion betwee n the s ta t ic and kinet ic coeff ic ientof f r ic t ion is neglected, in contras t wi th Ref . [2] ;(v) f r ic t ion betw een the granular mater ia l and s ide wal ls of

the t rough is neglected,(vi) a i r drag is neglected.

2 . D e f i n i t i o n s

The x- and y-coordinates are def ined tangent ia l respec-t ive ly normal to the t rough (con vey or su r face ) , see a lso F ig .1 . Th e con vey or is or iented a t an incl inat ion angle a withrespect to the hor izontal ; a < 0 den otes a decl inat ion. Thecoord inate s is in the direct ion of vibrat ion; the angle betweenthe coord inate s and the t rough is the vibrat ion angle ]3. Thetrough is assumed to be dr iven s inusoidal ly in t ime withangular v eloci ty to and am pli tude r :

X tX t t ) = s i n t o t

r cos /3

)( t ( t ) = co s tot Je t (t ) = -s in tot

Y tYt(t) = = sin tot

r sin 13I ;'t (t ) =c os tot Yt( t) = - s in tot (1)

whe re xt and Yt are the tang ent ia l respect ively norm al t roughdisplacements . The dimensionless displacements , veloci t iesand accelera t ions are denoted by sy mb ols in capita ls.

The th row nu m be r / ' i s de f ined as the d imens ion less max-imum acce le ra tion normal to the t rough:

F = Yr. m.x toZrs in /3 (2 )g cos a g cos a

For F < 1 the mater ia l wi ll remain in contac t wi th the trough

surface; for F > 1 the mater ia l wi l l lose contact wi th the troughand a f l ight phase occurs . Thus s l ide con vey ors are charac-

ter ized by F < 1, whi le f l ight conv eyor s are character ized byF > 1 .

The mach ine numb er i s de f ined as the d imens ion less max-imum trough accelerat ion:

K = 'ma~ to2 r (3)g g

In pract ice the machine num ber wil l be res t r ic ted in order notto damag e the granular mater ia l .

Th e veloci ty eff ic iency, which is a dimen sionless measureof the conv eying speed, is def ined as the ra t io of the averagerela t ive speed and the maxim um tangen t ia l t rough veloci ty:

7- Xre lrel-q - - - = - - (4 )

car cos/3 27r

In this express ion Xrel = (Xm--Xt) denotes the re la t ive mate-r i al d i sp lacement dur ing one cy c le o fT = 2 r r / w . T h esub-scr ipt m is used to denote the point mass .

3 . T h e o r y

Dur ing one cyc le o f the mot ion o f the t rough , the po in tmass m ay b e in a res t, s l ide or f l ight phase, dep ending on theactual accelerat ions , veloci t ies and displacem ents of the p ointmass and t rough. In this sect ion these var ious phases ofmo tion are analysed.

Th e equat ions of mo tion of the point mass m are:

T Fw mgsin ct= m)c m

N m g c os o r- m y m (5 )

Here , the upper or low er s ign is used for s l id ing in the posi t iveor negat ive x-direct ion. The maximum fr ic t ion force isFw = p,N, wh ere /z is the coeff ic ient of f r ic t ion between gran-ular mater ia l and t rough.

3 . 1 . S l i d e a n d r e s t p h a s e s

A sl ide phase wil l occur when the tangent ia l accelerat ionof the t rough is larger than that of the poin t mass . Th e s l idephase is cal led posi t ive when the displacement of the pointmass is in the posi t ive tangent ia l d i rect ion re la t ive to thetrough and n egat ive otherwise . A res t phase occurs wh en therela t ive tangent ia l d isplacem ent is zero.

From Eq . (5 ) andym=Yt he dimensionless accelerat ionof the mass is obtained du ring a s l ide phase:

)(m(t) =tan/3[--~( T-/z- tan a)___/z s into t ] ( 6 )

Sl iding may s tart when the accelerat ions of the mass and thetrough are equal . This occu rs when:

1 /x 5:t an a ) t an /3sin tot= 5: ~ 1 5: /x tan/3 (7)

Page 3: Theoretical vibrating

8/13/2019 Theoretical vibrating

http://slidepdf.com/reader/full/theoretical-vibrating 3/8

E.M. Moot, N.P. Kruyt / Powder Technology 87 199 6)2 03 -21 0 205

where Eq. (1) was used. This impl ies that a posi t ive ornegat ive s l ide phase m ay occu r wi thin the in terval [ 61, 62],resp ectiv ely [ 63, 64] :

sin 6 1 2 = [ ~ ( /x + ta n a ) t a n / 3 ]' 1 + /x t an /3

[ 1 ( - t a n a ) t_an/3 ]sin 6 3 4 = C 1 - / x t a n /3 J ( 8 )

A s l ide phase w i l l ac tual ly begin a t 6 i ( i = 1 ,3) o nly i f thep rev ious phase has ended .

The veloci ty of the point mass i s obta ined by in tegra t ingEq . (6 ) i n t ime . The e mp loyed boundary cond i t ion is tha t theveloci t ies of point m ass and t roug h are equal a t the s tar t of aposi t ive or negat ive s l ide phase . This s tar t occurs a tw t =6p/N. The dimensionless veloci ty of the point mass i s thengiven by:

X m , v / N t ) = --T-/.L(cosw t - c o s 6p/N) tan/3

T-~tan /3( / .~ + tana ) t o t - 6 p / N )+ c o s t ~ p / N ( 9 )

Integra t ing Eq. ( 9) f rom 6 wy to ep/N and us ing Eqs . ( 1 and(8 ) , t he d imens ion les s r e l a tive d i sp lacemen t becomes :

XrcL p/N = (1 _+/~ tan /3) [sin 6- -s in •

+ cos 6 ( e - 6) - 1/ 2( • - 6) 2 sin6 ] (10 )

In th is equat ion the subscr ip ts P/N have been omit ted for 6and e . This ex press io n is used to ca lcula te the veloci ty eff i -c iency for posi t ive and negat ive s l ide phases .

The end of a s l ide phase , e , i s def ined as the t ime a t whichmass and t rough are moving wi th the same tangent ia l veloc-i ty. Using Eqs . (1 ) , (8) and (9) i t fo l lows:

c os • - c o s 6sin 6i ( 11 )

e - 6

In th is expres s ion i = 1 indicates a posi t ive s l ide phase andi = 3 a negat ive s l ide phase . The der ivat ion of th is equat ionis a lso show n in Refs . [ 1 ,2 and 8] .

A res t phase wi l l occur i f a s l ide phase has ended beforethe next phase starts.

3 . 2 . F l i g h t p h a s e

A f l igh t phase occur s i f t he no rma l fo rce N b ecomes ze ro .At the s tar t of a f l ight the mass and t rough hav e the same y-coord ina te and y -ve loc ity. F rom Eqs . (1 ) and (5 ) i t fo l lowsthat the f l ight phase s tar ts a t to t = ~ , where:

6F = arcs in ( 1 / F) (12 )

Dur ing the f l i gh t t he no rma l com ponen t o f t he acce le ra t ionac t ing on the po in t mass rema ins -g cos a . The norma ldisplacement can be determined by in tegra t ing wi th the

boundary con d i t ions o f equa l no rma l coord ina te s and ve loc -ities at o)t = 6F:

Ym(t) = - - 7 ~ w t - - f F ) Z + s i n 6 ~ + C O S g ~ o o t - - fF )( 1 3 )

The end o f the f l igh t is de r ived f rom the cond i t ionYm(EF) = Yt(EF), wh ich yields an imp licit eq uation in EF,us ing Eqs . (12) and ( 13) :

sin 8F -- sin eF + COS 6F( eF -- 6F)

-- 1/2 sin 6F( eF -- 6F) 2 = 0 (14 )

The end o f the f l i gh t can be expres sed in the num ber o f pe r iodsper fl ight, n: eF = 6F + 2~ 'n. C om binin g this e xpre ssion w ithEqs. (12) and (14) y ie lds :

E = [ _ \ 2 7 r n - s i n 2 7 r n l f + ( 1 5)

This equat ion w as a lso der ived in Refs . [ 3 ,5 and 8] . In orderto res t r ic t the machine number, n i s of ten kept below 1 inpract ice , or F< 3 .297.

Since a i r drag is neglected, the tangent ia l accelera t ion act -ing on the point mass remains equal to ~m= --g s in a , orXm = - ( 1 /F ) tan a tan/3 . Th e veloci ty of the point mass canbe determ ined by in tegra t ing th is express ion wi th the bound-ary cond i t ion of a kn own tangent ia l veloci ty V~ a t eF. Thisveloci ty i s determined f rom the occurr ing phase before thef l ight phase . The re la t ive d isplacement i s obta ined by in te-gra t ing f rom 6F to @ and by subtract ing the t rough displace-men t f rom that o f the point mass , accord ing to Eq. ( 1 ) . Thisresults in:

Xrel, F - - 2-F tan/3 tan a( eF -- 6F) 2

+ VF(ev -- 6F) --(sin eF -- sin 6F) (16 )

This equ at ion is used to ca lcula te the velo ci ty eff ic iency of af l ight phase acco rding to Eq. (4 ) .

The change o f the ve loc i ty o f t he po in t mass du r ing acol l i s ion wi th the t rough is re la ted to the to ta l l inear impulseat t ime aF by the l inear mom entum equat ion:

N d t = m [ 2 f m E ~ )- ~)m(eF ) ] (17 a)A t

T- t z j N d t = m [ . i m e ~ )- X m ( e F ) ]=mAfcm c ( 1 7 b )A t

Due to the assum pt ion o f a fu l ly p las t ic col l i s ion, the f i rs tterm on the r ight-hand s ide of Eq. (1 7a) equals the troughveloci ty a t EF. Th e s ign in ( 17b ) depen ds on the s ign of there la t ive veloci ty. Combining these two equat ions g ives thechange of veloci ty dur ing a col l i s ion:

A Xm . c = T-/z t a n / 3 [ c o s • v - c o s 6 F + F ( e F - - 6 F) ] ( 1 8 )

Here the value of the norm al veloci ty jus t b efore the col l i s ion(Pro( eF ) ) was obta ined f rom Eq. ( 1 ) and the der ivat ive o f

Eq . (13 ) . I t can be shown tha t t he to ta l change o f ve loc i ty o fthe point mass dur ing a f l ight and a col l i s ion is equal to the

Page 4: Theoretical vibrating

8/13/2019 Theoretical vibrating

http://slidepdf.com/reader/full/theoretical-vibrating 4/8

206 E.M. Sloot , N.P. Kruyt / Powd er Technology 87 1996) 203-21 0

c h a n g e o f v e l o c i t y d u r i n g a p o s i t iv e o r n e g a t i v e s l id e p h a s e[ 8 ] . I f t h e f l i g h t e n d s w i t h a t a n g e n t i a l v e l o c i t y o f t h e p o i n tm a s s t h a t i s n o t e q u a l t o t h a t o f th e t r o u g h , a p o s i t i v e o rn e g a t i v e s l i d e p h a s e o c c u r s , d e p e n d i n g o n t h e s ig n o f th i sd i f f e r e n c e , u n t i l t h e v e l o c i t ie s b e c o m e e q u a l .

3 3 Mod e an d velocity efficiency diagrams

I n o r d e r to c a l c u l a te t h e o c c u r r i n g m o d e s o f m o t i o n a n dt h e v e l o c i ty e f fi c ie n c i es , a c o m p u t e r p r o g r a m w a s d e v e l o p e dt o s o l v e t h e p r e s e n t e d e q u a t i o n s . T h e o c c u r r i n g p h a s e sa r e i n d i c a t e d w i t h P ( p o s i t i v e s l i d e ) , N ( n e g a t i v e s l i d e ) ,F ( f l i g h t ) a n d P ' a n d N ' f o r a p o s i t i v e o r n e g a t i v e s l i d e p h a s edi rec t ly a f te r a co l l i s ion .

T h e m a i n d i f f e r e n c e b e t w e e n t h is p r o g r a m a n d t h a t o f N g[ 9 ] i s t h a t t h e c u r r e n t p r o g r a m c a l c u l a t e s n u m e r i c a l l y o n l yt h e b e g i n n i n g a n d e n d o f e a c h p h a s e b y m e a n s o f th e e q u a -t i o n s d e v e l o p e d h e r e . T h e p r o g r a m c a l c u l a t e s t h e t i m ei n s t a n t s a t w h i c h t h e ( p o t e n t i a l l y o c c u r r i n g ) p h a s e s b e g i n

a n d e n d b y i t e r a t i n g u n t i l a p e r i o d i c s o l u t i o n w i t h p e r i o dT= 27r/w i s o b t a i n e d . A d e t a i l e d d e s c r i p t i o n o f th e p r o g r a mis g ive n in Ref . [ 12] .

I n th e c a s e o f h o r i z o n t a l tr a n s p o r t ( a = 0 ) , t h e o c c u r r i n gm o d e s a n d v e l o c i t y e f f i c ie n c y c a n b e e x p r e s s e d a s f u n c t i o n so f / x t a n /3 a n d / ( s e e R e f . [ 8 ] f o r r e s u l t s ) . I n F i g . 2t h e o c c u r r i n g m o d e s a r e s h o w n f o r a d e cl i n at i o n w i t ht a n a = - 0 . 1 0 a n d / z = 0 . 35 . I n F i g . 3 t h e v e lo c i t y e f f ic i e n c yi s p lo t t e d f o r t h e s a m e d e c l i n a t i o n a n d f r i c t i o n c o e f f ic i e n t . InF i g . 4 t h e v e l o c i t y e f f i c i e n c y i s p l o t t e d f o r a n i n c l i n a t i o n o ft a n a = + 0 . 1 0 a n d / z = 0 . 3 5 , a n d F i g . 5 s h o w s t h e e f f e c t o ft h e i n c li n a t io n o n t h e v e l o c i t y e ff i c ie n c y f o r c o m m o n v a l u e s

o f / x a n d / 3 .

3 4 Throw number fo r maximum velocity efficiency

I n t h i s s e c t i o n t h e t h r o w n u m b e r i s d e r i v e d f o r w h i c h t h ev e l o c i t y e f f i c i e n c y r e a c h e s i t s m a x i m u m . F o r a f u l l c y c l i cf l ig h t t h e f l ig h t n u m b e r n e q u a ls 1 ( [ ' = 3 . 2 9 7 ) . T h e n t h et a n g e n t i a l v e l o c i t y o f t h e p o i n t m a s s w i l l n o t c h a n g e i n ti m ei n th e c a s e o f h o r i z o n t a l t r a n s p o r t : i t f o l l o w s f r o m E q . ( 1 2 )t h a t t h e v e l o c i t y e f f i c i e n c y,Vv= c o s ( 6 F ) = 0 . 9 5 4 ( s e e t h e

~ - 0 . 3 5 ; t a n a - - 0 . 1 0

FPF

3 . 0 0 -

I 2.50-

2 .00-

~ N F R0 . 0 ( . ' ' : . . . . : . . . . ', . . . . ; . . . . ~ . . . . : . . . .

0 . 0 0 0 . 2 5 0 . . 5 0 0. 7 .' 5 1 . 0 0 1 . 2 5 1 . 5 0 1 . 7 5 2 . 0 0

> t a n p

Fig. 2. Mo de diagram of successive phases for declined transport (P =positive slide phase, N = negative slide phase, R =rest phase, F= flightphase, P '= positive slide p hase after a collision, N '= negative slide phaseafter a collision).

p - 0 . 3 5 ; t a n tt - - 0 . 1 0

1,2° t _ - ~ l g

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0 1 .; 25 1 . 5 0 1 . 7 5 2 . 0 0

> t npFig . 3 . Veloci ty eff ic iency for dec l ined t ranspor t as a fu nct ion of v ibra t ionangle/3 and throw num ber F.

t~ 0 . 3 5 ; t a n a - + 0 . 1 0

1.00

I] 0,80

I 0 . 6 0 . 2 . 1 . 2

1. 1.0

0.20-

o ~ • ~0.00 0 . 5 0 1 . 0 0 1 . 5 0 2 . 0 0

> t a n I~

Fig. 4. Velocity efficiency for inclined transport as a function of vibrationangle/3 and throw num ber F.

£

3

2 . 5

2

1 . 5

1

0 . 5

0-0 .1

1 ,

o.6o.4

~

.O.2p

-O.O5 0 0.O5 0.1

: > t a n z

3

2 . 5

2

1

0 . 5

0

J

i / / / I I] 117

) J

: .6) A

-0.1 -0.05 0 0.05 0.1

~ t a r l a

Fig. 5. Iso-curvesof velocityefficiencyas a function of inclination angle aand throw number F. (a) /z = 0.2; (b )/z = 0.3; - - , / 3 = 30°; - - - , /3= 45 °.

h o r i z o n t a l l i n e f o r F = 3 . 2 9 7 i n F i g . 6 ) . I n o r d e r to i n c r e a s et h is e f f i c i e n c y, a s m a l l p o s i t i v e s l i d e p h a s e h a s t o b e p r e s e n tbefo re the f l igh t phase . Th e f l igh t then s ta r t s a t ep = 6~ ande n d s a t % = 6 p + 2 ~ . F o r a m a x i m u m d i m e n s i o n l e s s v e l o c i t yo f 1 a t t h e s t a rt o f th e f l i g h t , /3 m u s t b e e q u a l t o 0 a c c o r d i n gt o E q s . ( 8 ) a n d ( 9 ) w i t h 6 p = 61 ~ 0 . T h e c o r r e s p o n d i n gt h r o w n u m b e r i s d e r i v e d f r o m E q . ( 1 4 ) , u s i n g e F = 6 v + 2 7 r n :

27ten 2 - 1F - ( 1 9 )

2 ~ ' n c o s 2 ~ r n

To g e t h e r w i t h E q . ( 1 5 ) a n im p l i c i t r e l a t io n i n F i s o b t a i n e d ;

i ts s o lu t io n i s F = 2 . 9 7 5 f o r e a c h v a l u e o f a a n d t h e m a x i m u mv e l o c i t y e f f i c ie n c y i s o b t a i n e d f o r t h is t h r o w n u m b e r, s e e a l so

Page 5: Theoretical vibrating

8/13/2019 Theoretical vibrating

http://slidepdf.com/reader/full/theoretical-vibrating 5/8

E.M. Sloot, N.P. Kru yt / Powd er Technology 8 7 1996) 203-2 10 207

. X m in P F m o d e ( I = 2 .9 7 5 )

/ / ~ / ) ( m i n m o d e ( I = 3 . 2 9 7 )

tI ) - c 0 t

5p 8

-1

F i g . 6 . Ta n g e n t i a l v e l o c i ti e s o f t r o u g h a n d p o i n t m a s s a s a f u n c t i o n o f t im el a rg e t h r o w n u m b e r s ) .

Fig. 6 . The d epen den ce on tx and tan/3 seems to be v ery smal l,e spec ia lly fo r ho r i zon ta l t r anspor t [ 8 ] . S ince the max imumveloci ty eff ic iency is obta ined for F -- 2 .975, i t is not usefulto des ign a v ib ra to ry conveyo r wi th a th row num ber l a rge r

than 3.0.

3.5. Limiting case o f small vibration an gles fo r slidephases

In th is sect ion the case o f a smal l v ibra t ion angle i s s tudiedin order to der ive a re la t ion that descr ibes the inf luence ofincl inat ion o n the veloci ty eff ic iency for smal l v ibra t ionangles . Fur thermore , a method is descr ibed to measure thefr ic t ion coeff ic ient betw een g ranular mater ia l and t rough.

Equa t ions for the s tar t and end o f aP N mod e, which impl ies6N = •p and •N = 6p + 27r, are o btain ed f rom Eq. ( 11 ) :

( C - 2~r) s in 63s in (6p + 1 /2C ) -

2 s in ( 1 / 2 C )

27r• p = C + 6 p w it h C = ( 2 0 )

1 ( s in 81 ) / ( s in 83 )

This equa t ion is val id for each value o f /3 .For /3 ~ 0 , two cases are now dis t inguished:( i ) K<oo: for th is rea l is t ic case an e legant method was

deve loped to o bta in the pr im ar i ly k inet ic coeff ic ient of f r ic-t ion of the granular mater ia l . This method is a l ready men-t ioned in Ref . [ 8 ] ; here i t i s descr ibed in deta i l. T he t rough

has to move wi th a cer ta in ampl i tude in purely hor izonta ldi rec t ion ( /3 = 0) . In o rder to be cer ta in that a PN m odedevelop s for hor izonta l t ranspor t , K mu st be larger than 0 .67for a f r ic t ion coeff ic ient that i s smal ler than 0 .35, as can beobse rved in the mode d iag ram in F ig . 7 . By measur ing e i the ropt ica l ly, or by us ing a fe l t pen, the maximum rela t ive d is-p l acemen t be tween t rough and an open b ox o r cy l inde r f i ll edwith granular m ater ia l , the coeff ic ient of f r ic t ion can be ca l -cula ted impl ic i t ly f rom Eq. (10 ) . The resul t is shown inFig. 8.

( i i ) K ~ oc: th is hyp othet ica l case resul ts in a very s impleequat ion that dem onstra tes the inf luence of the incl inat ion of

the t rough on the veloci ty eff ic iency for smal l v ibra t ionangles . In case o f aP N mod e, wh ich wi l l a lway s be the case

r 0 . 1 0

I 0.05

0 I I I I0.05 0.10 0.15 0.20

> t a n pF i g . 7 . M o d e d i a g r a m f o r s m a l l v ib r a t io n a n g l e s a = 0 , t z = 0 . 3 5 ) .

2 K - - * o o

IX e llp ml K=1 0

1 . 5 -

K = 0 . 6 71-

0 I

0 , 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0. 35

F i g . 8 . M a x i m u m r e l a t iv e d is p l a c em e n t f o r a P N m o d e , a s a fu n c t i o n o ff r ic t ion coe ff ic ien t /~ and machine number K.

for inf in i te values of the machine number, i t fo l lows af tersome a lgebra f rom Eqs . (4 ) , (8 ) , (10 ) and (20 ) tha t t hel imi t ing value o f the eff ic iency for each incl inat ion or decl i -nat ion angle i s g iven by :

(C ) . / r r tan a~r /a _ ~ o : - c o s -~ : - s t n ~ ] ( 2 1 )

This exp ress ion is val id for F < I . Note that the s tart of theposi t ive s lide phase is g iven by 6p = 7r -1/2C according toEq. (2 0) for /3 --*0 and because 6p • [81,62] . This equat ionalso shows the ant isymmetry between posi t ive and negat ives lopes in case f l ~ 0 . Eq. (2 1) predic ts that the veloci ty eff i-c iency equals 0 .434 for /3 ~ 0 and /x = 0 .35; th is is consis tentwith the results presen ted in Fig. 3.

4 . E x p e r i m e n t a l

In o rde r to ve r i fy the deve loped po in t m ass theo ry, expe r-imen t s were pe r fo rmed wi th an e l ec t rohydrau l i ca l ly d rivenv ib ra to ry conveyor. The exac t d imens ions o f t h i s 3 m longconv eyor a re g iven in Ref . [8 ] . The inc l ina t ion o f the con-veyor was se t by l i f t ing i t a t one end over var ious heights .The t rough was d r iven s inuso ida lly in t ime by means o f onehor izonta l and two ver t ica l hydraul ic cyl inders wi th e lec-t ronic feed-back. By modifying the hor izonta l and ver t ica lampl i tudes and running f requency, the v ibra t ion angle andth row n umber were se t . The ve loc i ty e ff i c i ency was de te r-mined by measu r ing the t ime that e lapsed dur ing the t raverseof a m arker in the granu lar mater ia l over a f ixed dis tance .

Page 6: Theoretical vibrating

8/13/2019 Theoretical vibrating

http://slidepdf.com/reader/full/theoretical-vibrating 6/8

208 E.M. Sloot, N.P. Kruyt / Powder Technology 87 1996)2 03-210

4 1 Verifications o f the assum ptions

With t he expe r imen ta l s e t -up , t he fo l l owing a s sumpt ionso f t he po in t mass t heo ry were ve r i fi ed :

( a ) by measu r ing t he d i sp l acemen t s i n time o f the t r oughwi th a d ig i t a l da t a acqu i s i ti on sys t em i t was ve r i f ied t ha t thed i sp l acem en t s o f t he t r ough we re s inuso ida l .

( b ) In o rde r t o i nves t i ga t e whe the r a ve r t ic a l g r ad i en t o fthe ve loc i t y was p re sen t , a p l a s t i c s t r aw was pu t i n to t heg ranu la r ma te r i a l . S ince t he s t r aw r ema ined i n i t s ve r t i c a lpos i t i on , i t was conc lude d tha t no such g rad i en t was p re sen t .

( c ) The e f f ec t o f t he wa l l f r i c ti on was i nves t i ga t ed byd i s t r ibu t ing a nu mb er o f s t r aws ove r t he w id th o f t he g r anu la rl aye r. On ly a sm a l l i n f luence o f t he wa l l f r i c ti on was ob se rvedwi th in a f ew mi l l ime t r e s d i s t ance f rom the wa l l s , comparedt o t he w i d t h o f t h e t r o u g h o f 2 0 0 m m .

( d ) F o r th r o w n u m b e r s F < 2 . 5 s t ab l e b e h a v i o u r w a s

o b s e r v e d . M e a s u r e m e n t s f o r l a rg e r th r o w n u m b e r s w e r e m o r ed i f f icu l t t o pe r fo rm due t o t he p r e sence o f s t rong wigg le s onthe su r f ace o f t he g r anu la r ma te r i a l .

4 2 Measurem ents

M e a s u r e m e n t s w e r e p e r f o r m e d w i t h s q u a r e p o l y -( v i n y l ) c h l o r i d e ( P V C ) g r a i n s ( / ~ = 0 . 2 3 ) a n d n e a r ly r o u n dgra in s o f sp inach s eed ( / z= 0 .24 ) , b o th fo r i nc l ina t i ons andd e c l in a t i o n s ( t a n a = + 0 . 0 2 a n d t an t~ = + 0 . 0 5 ) . T h e f r ic -

t i on coe ff i c i en t s we re measu red u s ing t he me thod desc r ibedin t he p r ev ious s ec t i on . S ince no l a rge d i f f e r ences we re foundbe twe en the ve loc i t y e f f i c i enc i e s o f t he se two ma te r i a l s , on lythe r e su lt s o f t he expe r ime n t s w i th PVC g ra in s a r e shownhere for tan c~ = + 0 .05 . In Figs . 9 and 10 the resul t s of theexpe r imen t s and deve loped theo ry a r e compared . The t o t a ls e t o f m e a s u r e m e n t s c a n b e o b t a i n e d f r o m t h e s e c o n d a u t h o r( N P K ) . A s a n e x t r a c h e c k , m e a s u r e m e n t s w e r e a l s o p e r -fo rmed wi th a s i ng l e wooden b lock w i th f r i c t i on e l emen t s( / x = 0 .18 ) i n s l id ing mo de .

P V C g r a i n s i n c l i n e d )t a n ,, - - * 0 . 0 4 6 p . - 0 . 2 3

t . 0 0 . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . P

4 ~ 1 = = = = = = : : = = : = : : : 2 : : = : : : : : : = l ~ , 1 5 1

11 + • v 1 , 9 6I 0 .715 • • • • • C I I ~ 1 5

6 1 . 0 6

o . 15 o o 0 . 6 0

0 . 2 5

o o o0 , 0 0 0 . 2 1 5 0 . 1 5 0 0 . 7 1 5 1 . 0 0 1 2 ,1 5 1 . ~ O 1 . 7 52 0 0

> t a n p

Fig. 10. Com parisonof theoretical and experimentalvelocityefficiency orinclined transport of PVC grains, tan a = + 0.046; the open symb olstandfor the theory and solid symbols or the experiments.

4 3 Com parison of theory and experiments

F a i r ly g o o d a g r e e m e n t b e t w e e n t h e o r y a n d e x p e r i m e n t i sfound fo r sl i de conv eyor s ( F < 1 .0 ) . Nega t ive ve loc i t y e f f i-c i enc i e s we re no t measu red fo r g r anu la r ma te r i a l s i n bu lk ,s ince t he expe r imen ta l s e t -up d id no t a l l ow th i s . A s ing l ewoo den b lock t hough d id show nega t ive e f f i c i enc i e s , a s p r e -d i c t ed by t he t heo ry. Ove ra l l , t he v e loc i t y e f f i c i enc ie s o f t h i ss ing l e mass ag ree s w i th in 20 w i th t he t heo re t i ca l p r ed i c -t i ons fo r F< 1 . Fo r t he g r anu la r ma te r i a l s , f o r l a rge t h rown u m b e r s ( F = 2 . 5) g o o d a g r e e m e n t is o b ta i n e d f o r n e g a t iv es lopes , bu t l a rge r dev i a t i ons a r e ob se rved fo r pos i t i ve s l opes .The i n f luence o f v ib ra t ion ang l e /3 on t he e f f i c i ency fo r t h rownum ber s a round 3 .0 appea r s the s am e a s a t 2 .5 , in ag reem en t

wi th t he t heo ry. He re r e l i ab l e measu remen t s we re ha rde r t ope r fo rm due t o t he p r e sence o f w igg l e s on t he su r f ace o f theg ranu la r ma te r i a l. Fo r F = 1 .5 - 2 t he t heo ry p red i c t s a l a rgein f luence o f t he v ib ra t i on ang l e on t he ve loc i t y e f f i c i ency.Howeve r, t he r e su l t s o f t he expe r imen t s do no t exh ib i t t h i sl a rge i n f luence . A s imi l a r o rde r o f d i s c r epancy was fo und byRad ema che r [ 8 ] and S loo t [ 12 ] fo r ho r i zon t a l tr anspo r t. Nget a l. [9] car r ied out ver i f ica t ions for a s ingle v ibra t io n angleo f 45° : f o r ho r i zon t a l t r anspo r t t he expe r im en t s ag ree bes twi th the theory for th is v ibra t ion angle .

P V C g r a i n s d e c l i n e d )t a n - , = - 0 . 0 5 1 I ~ = 0 . 2 3

t 2 5 [ r

t

11 t.o o vl 1253

• ÷ • Q 1 . 0 3

0 . 7 5 0 , 7 2• •

0 . 2 6 . . . . . . . . . ..0 . 0 0 C t ; 2 5 0 . ~ 0 0 . 7 5 1 . 0 0 1 . 2 5 I . ~ 0 1 . 7 5 2 . 0 0

> t a n 13

Fig . 9 . Co mpar ison of theore t ica l and exper im enta l ve loc i ty e ffic iency ford e c l i n ed t ra n s p o r t o f P V C g r a in s t a n c t = - 0 . 0 5 1 ; t h e o p e n s y m b o l ss t n d

for the theory and solid symbolsfor the experiments.

5 E x t e n s i o n s o f t h e p o i n t m a s s th e o r y

In an a t t emp t t o r e so lve t he obse rved d i s c r epanc i e sb e t w e e n e x p e r i m e n t s a n d t h e o r y f o r t h ro w n u m b e r s a r o u n d1.5 to 2 , the fo l lowing three modif ica t ions were br ief lyinves t iga ted:

( i ) By me asu r ing t he acce l e r a t i ons o f t he t r ough i t wasfound tha t they w ere no t pu re ly s i nuso ida l, a l t hough the d i s-p l acem en t s i gna l s we re s inuso ida l i n bo th d i r ec t ions . I n o rde rto i nves t i ga t e t he s ens i t iv i t y t o no i se i n t he acce l e r a t i ons o fthe p r ed i c ted ve loc i t y e f f i ci ency, a num er i ca l p rog ra m w as

deve loped , s imi l a r t o tha t o f Ng e t a l . [ 9 ] . I n t he s imu la t i onthe t rough w as sub j ec t ed t o an acce l e r a t i on w i th a h igh o rde r

Page 7: Theoretical vibrating

8/13/2019 Theoretical vibrating

http://slidepdf.com/reader/full/theoretical-vibrating 7/8

E.M. Sloot, N.P. Kruyt / Powd er Technology 8 7 1996) 203- 210 2 0 9

Ta b l e 1I n f l u e n c e o f t h e r e s t i t u t i o n c o e f f i c i e n t o n t h e v e l o c i t y e f f i c i e n c y ( t a n / 3

= 0 . 2 5 ; / 1 , = 0 . 2 3 )

t a n a e O f o r F = 1 .5 r / f o r F = 2 . 0

- 0 . 0 5 0 0 . 4 7 7 0 . 5 3 70 , l 0 ,477 0 .827

0 . 2 0 . 4 7 7 0 . 8 5 8

0 0 0 . 2 1 0 0 . 5 1 70 . 1 0 . 2 1 0 0 . 7 9 30 . 2 0 . 2 1 0 0 . 8 3 8

+ 0 .05 0 - 0 .065 0 .4980 .1 - 0 . 0 6 5 0 . 8 1 90 . 2 0 . 2 4 9 0 . 8 1 9

or iginal point mass theory forms a promis ing approach tofur ther research of the t ranspor t of granular mater ia ls byvibra tory conveyors . For fur ther research i t i s a lso recom-mended to include a i r drag in to the theory and to determinethe co eff ic ient of res t i tu t ion exper imen ta l ly•

The p resen ted po in t mass theo ry does no t t ake in to accoun t

the in teract ions between the par t ic les of the granular m ater ia l.By s imulat ing the behaviour of a l l par t ic les s imul taneously,a so-cal led discre te e lemen t method s imulat ion, these in ter-ac t ions can be p rope r ly accoun ted fo r. Hogue and Newland[ 15] g ive resul ts of such an approac h in thei r s tudy o f thes ieving process .

(k) ar t if ic ial noise wi th (d im ension less) am pl i tude a andpha se sh ift th:

. ~ = I 2 = - s i n t o t - a s i n k w t + ~r) ( 2 2 )

Calcula t ing som e eff ic iencies wi th d i fferent values of a andphase shi f ts ~b, the var ia t ion remained wi thin 10 for a < 0 .2and k--~25 (w hich is the order of measure d noise)• Thismeans tha t the l a rge d i f f e rence be tween theory and expe r i -men t s can no t be exp la ined by the dev ia t ion in t rough acce l -era t ion f rom the s inusoidal shape.

( i i ) The rota t ion o f the par t ic les could lead to an increaseof the re la t ive d isplacem ent due to thei r poss ibly turning ove rdur ing a col l i s ion of a par t ic le wi th the t rough. This wou ldlead to a m ax im um inc rease o f t he r e la t ive d i sp lacemen t inthe order of a par t ic le d iameter. Since t rough displacements

o f a round 12 mm pe r pe r iod were used in the expe rimen t s ,th is inf luence can be neglected for PVC grains and spinachs ee d ( d < 3 . 5 m m ) .

( i i i ) Van Kappe l [13 ] inves tiga t ed damping wi th in thelayer of granular mater ia l dur ing the t ranspor t in v ibra toryconvey ors f rom a theo re t ica l and expe r imen ta l po in t o f v i ew.In order to include a m ore soph is t ica ted mo del for the col li -s ion, a par t ly e las t ic col li s ion is assumed h ere . The re la t ionbe tween the no rma l ve loc i ti e s o f t he po in t mass be fo re andaf ter the co l l i s ion is def ined by mean s o f a coeff ic ient ofresti tution e [ 14]:

e - Yre l( ev ) (23 )

Note that a p ure ly p las t ic col l i s ion correspond s to e = 0 . Th emass t e rm in Eq . (17 a ) i s now rep laced by m(1 + e ) ; t heconse quen ce of th is i s tha t in Eq. (1 8) , p , i s replaced by/z ( 1 + e ) . Now the sys t em can be pe r iod ica l ove r a pe r iod o fmo re than 27r or even not per iodical a t al l. Th e veloci tye ff i c iency was de te rmined by ca l cu la t ing an ave rage d i sp lace -me nt ov er a long t im e in terval• The inf luence of a par t ly e las ticcol l i s ion on the ve loci ty eff ic iency is show n in Tab le 1 .

No te the l a rge inc rease o f t he ve loc i ty e ff ic i ency fo r a th rownum ber o f 2 .0 , even for a smal l co eff ic ient of res t itu t ion.

Al though the l a rge dev ia t ions fo r t h row numbers o f a round1.5 are no t fu l ly exp la ined, th is theoret ica l ref inemen t of the

6 Conclus ions

A point mass theory is presented for the res t , s l ide andf l ight phases that occ ur dur ing the t ranspo r t of granular mate-

r ia ls by incl ined vibra tory conv eyors . Plots are g iven, show-ing the inf luence of incl inat ion, throw number, f r ic t ioncoeff ic ient and v ibra t ion angle on the veloci ty eff ic iency.When the vibra t ion angle approaches 0 , the veloci ty eff i -c iency is ca lcula ted analyt ica l ly for s l ide conve yors .

A m ethod is descr ibed in deta i l for determin ing the coef-f ic ient of f r ic t ion betwe en gran ular mater ia l and t rou gh as afunc t ion o f the m easured max im um re l a tive d i sp lacemen t ona hor izonta l t rough.

Exper imen t s were pe r fo rmed w i th PVC gra ins and sp inachseed for incl ined and decl ined t ranspor t . For s l ide convey orsthe ag reemen t in ve loc i ty e ff ic i ency be tween theory and the

exper im ents was sa t is fac tory. For f l ight conve yor s the agree-men t was f a i r ly good fo r th row numbers o f abou t 2 .5 . Fo rth row num bers be tween 1 .5 and 2 .0 the expe r imen t s showeda veloci ty eff ic iency hat was a lmost indep enden t of the v ibra-t ion angle , contrary to what i s predic ted b y the theory.

In order to f ind an explanat ion fo r these devia t ions , som eposs ibi l it ies were inves t igated. This includ es the effe ct of apar t ly e las t ic col l is ion. Fo r sm al l coeff ic ients of res t i tu t ion(0 .1-0 .2) the theory coincides qui te wel l wi th the exper i -menta l data for throw numbers around 2 .0 .

7 L i s t o f symbol s

Cde

w

gkKmNn

r

cons tan t i n Eq . (20 ) ( - )d i ame te r (m)coeff ic ient of res t itu t ion ( - )f r ic t ion fo rce (N)acce le ra t ion due to g rav i ty (m s -2 )order of ar t if ic ia l noise ( - )m a c h i ne n u m b e r ( - )mass (kg )norma l fo rce (N )numb er o f pe r iods pe r f li gh t ( - )

radius , ampl i tude of d isplacem ent in d i rec t ion ofv ib ra t ion ( m)

Page 8: Theoretical vibrating

8/13/2019 Theoretical vibrating

http://slidepdf.com/reader/full/theoretical-vibrating 8/8

210 E.M. SIoot, N.P. Kruyt / Pow der Technology 8 7 1996) 203-2 10

s

t

T

UF

xX

YY

disp lacem ent in v ib ra tiona l d i r ec tion m )t i m e s )p e r i o d s )ave rage tangen t ia l ma te r ia l ve loc ity m s - ~tangent ia l mater ia l veloci ty a t the s tar t of thef l igh t m s -~ )coord ina te tangen t i al to t rough m )d imens ion less coo rd ina te t angen ti a l to trough

- )coord ina te normal to t rough m )d imens ion less coord ina te normal to t rough - )

G r e e k l e t t e r s

Ol

F

E

rl

tx

.0

incl inat ion angle °)v ib ra t ion ang le o )t h ro w n u m b e r - )s t a rt o f a phase - )

e n d o f a p h a s e - )end o f f l igh t phase jus t be fo re /a f t e r co ll i s ion - )ve loc i ty e ff i c i ency - )f r i ct ion coe ff i c i en t o f ma te r i a l on t rough su r face

- )angu la r ve loc i ty s - l)

S u b s c r i p t s

CF

imN

col l i s ionf l ight

index accord ing to Eq . 8 ) i = 1 ,3 )mate r i a l o r po in t massnega t ive s l ide phase

Pp ,

relt

negat ive s l ide phase af ter col l is ionpos i t ive s l ide phaseposi t ive s l ide phase af ter col l is ionre la t ive ma te r i a l - t rough)t r ou g h o r c o n v e y o r

c k n o w l e d g e m e n t s

The au thors wou ld l ike to thank Pro fesso r Dr. I r. F. J .C .R a d e m a c h e r R a d e m a c h e r E n g i n e er in g , B o r n e , N e t h e r-l ands ) , fo r the f ru i t fu l d i scuss ions and p leasan t coopera t ion .

R e f e r e n c e s

[ 1 J.H. Booth and H. McCallion,Proc. Inst. Mech. Eng., 178 19 63 )521.[2] R.M. Nedderman and G.H.L. Harding,Trans. Inst. Chem. Eng., 68

1990) 123.[3] G. Pajer, H. Kuh nt and F. Kurth,FOrdertechnik~Stetig~rderer,VEB

Verlag Technik, Berlin, 3rd edn., 1977, pp. 230-23 5.[4] K. Erdesz and A. Szalay,Pow der Technol. , 55 198 8)87.[5] K. Erdesz and J. N6meth,Powd er Technol. , 55 1988)161.[6] S.P. Hota and R. Karmaker,Bulk Solids Handling, 8 1988 )715.[7] F.J.C. Rademacher,Vibratory Conveyors,Lecture Notes, University

of Twente, Enschede, Netherlands, 1986 in Dutch).[8] F.LC. Radem acher and L. ter Borg,Eng. Res., 60 199 4)261.[9] K.L. Ng, L.A. An g and S.C. Clang,Proc. Inst. Mech. Eng., 20 0 198 6)

123.[ I0] G.H.Lim, Adv. Eng. Software, 181993) 53.[ 11 ] S .P.E. Persson an d M.K. M egn in,Trans. ASAE, 35 199 2)395.[12]E.M. Sloot , M.Sc. Thesis, University of Twente, Enschede,

Netherlands, 1992 in Du tch).[13] J.M. van Kappel,M.Sc. Thesis,Univers i ty of Twente , Enschede,

Netherlands, 1991 in Du tch).[14] R.M. Brach, J.Appl. Mech., 561989) 133.[ 15] C. Hogu e and D. Newland,Pow der Technol. , 78 199 4)51.