The$ASTRI/CTAmini.array$of$Small$Size$Telescopes ...Proceeding2013.![5] New$surprises Limiting flux...

1
Limiting flux a factor 2 better than H.E.S.S. above a few TeV for an array composed by 7 telescopes Angular resolution a few (4-5) arcmin Energy resolution of the order of 10-15 % The ASTRI/CTA miniarray of Small Size Telescopes as a precursor of the Cherenkov Telescope Array G. Pareschi 1 , G. Agne1a 2 , E. Antolini 3 , L.A. Antonelli 4 , D. Bas<eri 5 , G. Bellassai 6 , C. Bigongiari 7 , S. Billo1a 6 , B. Biondo 2 , M. Boe1cher 8 , G. Bonanno 6 , G. Bonnoli 1 , P. Bruno 6 , A. Bulgarelli 9 , R. Canestrari 1 , M. Capalbi 2 , G. Capobianco 7 , P. Caraveo 10 , A. Carosi 4 , E. Cascone 11 , O. Catalano 2 , P. Conconi 1 , V. Confor< 9 , G. Cusumano 2 , V. De Caprio 11 , A. De Luca 10 , E. M. de Gouveia Dal Pino 12 , A. Di Paola 4 , F. Di Pierro 7 , D. Fan<nel 13 , M. Fiorini 10 , D. Fugazza 1 , D. Gardiol 7 , C. Gargano 2 , S. Garozzo 6 , F. GianoR 9 , S. Giarrusso 2 , E. Giro 13 , A. Grillo 6 , D. Impiombato 2 , S. Incorvaia 10 , A. La Barbera 2 , N. La Palombara 10 , V. La Parola 2 , G. La Rosa 2 , L. Lessio 13 , G. Leto 6 , S. Lombardi 4 , F. Lucarelli 4 , M.C. Maccarone 2 , G. Malaspina 1 , D. Marano 6 , E. Mar<neR 6 , C. Melioli 12 , R. Millul 1 , T. Mineo 2 , G. Morlino 4 , R. Nemmen 15 , L. Perri 1 , G. Rodeghiero 5 , P. Romano 2 , G. Romeo 6 , F. Russo 2 , B. Sacco 2 , J. Schwarz 1 , A. Segreto 2 , D. Selvestrel 13 , G. Sironi 1 , G. SoRle 2 , A. Stamerra 7 , E. Strazzeri 2 , L. StringheR 10 , G. Tagliaferri 1 , C. Tanci 3 , V. Testa 4 , M.C. Timpanaro 6 , G. Toso 10 , G. Tos< 3 , M. Trifoglio 9 , P. Vallania 7 , S. Vercellone 2 , A. Volpicelli 7 , V. Zitelli 14 for the CTA Consor<um and the ASTRI collabora<on (1) INAF – Osservatorio Astronomico di Brera, Milano/Merate, Italy – (2) INAF Is<tuto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Italy – (3) Università di Perugia, Italy (4) INAF – Osservatorio Astronomico di Roma Italy – (5) Università di Padova, Dip. Fisica e Astronomia, Italy (6) INAF – Osservatorio Astrofisico di Catania, Italy – (7) INAF – Osservatorio Astrofisico di Torino, Italy – (8) Centre for Space Research, NorthWest University, Potchefstroom, 2520 , South Africa – (9) INAF Is<tuto di Astrofisica Spaziale e Fisica Cosmica di Bologna, 40129 Bologna, Italy – (10) INAF Is<tuto di Astrofisica Spaziale e Fisica Cosmica di Milano, Italy – (11) INAF Osservatorio Astrofisico di Capodimonte, Napoli, Italy – (12) Ins<tuto Astronomico e Geofisico (IAGUSP), Universidade de Sao Paulo, Brazil (14) INAF – Osservatorio Astronomico di Bologna, Italy For the ASTRI collabora?on and CTA consor?um h1ps://www.ctaobservatory.org/ h1p://www.brera.inaf.it/astri/ Abstract ASTRI ("Astrofisica con Specchi a Tecnologia Replicante Italiana") is a flagship project of the Italian Ministry of Educa<on, University and Research. Within this framework, INAF is currently developing a widefieldofview (9.6 degrees in diameter) endtoend prototype of the smallsize telescope (SST) of the Cherenkov Telescope Array, CTA, sensi<ve in the energy band from a few TeV up to hundreds TeV. The ASTRI telescope is based on a dualmirror SchwarzschildCouder (ASTRI SST2M) op<cal design, with a compact (F# = 0.5) op<cal configura<on named ASTRI SST2M telescope. This allows us to adopt an innova<ve modular focal plane camera based on silicon photomul<pliers, with a logical pixel size of 6.2mm x 6.2mm. Moreover, planned, and already being developed, an SST miniarray based on 7 iden<cal telescopes represents an evolu<on of the ASTRI SST2M telescope. The University of Sao Paulo (Brazil) and NorthWest University (South Africa) have jointed INAF to collaborate to the miniarray implementa<on. The ASTRI/CTA miniarray will be part of the main CTA Observatory, represen<ng a precursor around which the final array of CTA will grow up at the southern site. ASTRI/CTA miniarray, in addi<on to a technical assessment study (in the perspec<ve of the full CTA implementa<on) it will be possible to perform an early scien<fic program. In par<cular we wish to start inves<ga<ng the poorly known energy range beyond a few and 100 TeV, thus exploring e.g. the cutoff regime of cosmic accelerators. Energy threshold: ~ 1 TeV Telescope properties: Optical design = Schwarzschild-Couder Primary mirror, M1 = 4.3m Ø M1 type = Segmented (18 elements in 3 concentric rings) Secondary mirror, M2 = 1.8m Ø (2.2m Radius of Curvature) M2 type = Monolithic M1-M2 distance = 3m Eective area = 6.5m 2 F/D 1 = 0.5, F = 2.15m Camera properties: Sensors type = SiPMs Number of logical pixels = 1984 Pixel size = 0.17° (plate scale = 37.5mm/°) Field of View = 9.6° The deployment and opera<on of the ASTRI SST–2M miniarray to be installed at the CTA southern site will verify the following array proper<es: the array performance (reliability and cost) at the chosen site; the trigger algorithms; the wide field of view performance to detect very high energy showers with the core located at a distance up to 250 m; the HW/SW configura<ons for the array; the datahandling chain. … and in par<cular… through deep observa<ons of a few selected targets, it will allow us to compare the actual performance with the Monte Carlo expecta<ons, and to perform the first CTA science, by means of a few solid detec@ons during the first year … assuming the following performance [4]… a limi@ng flux a factor 2 be1er than H.E.S.S. above a few TeV for an array composed of 7 telescopes an angular resolu@on of 0.08 o at 10 TeV an energy resolu@on of the order of 15% at 10 teV The ASTRI miniarray opera?ons in the context of CTA The ASTRI Project [1,2] is being developed following two major steps: the first step consists of the design, deployment and opera<on in Italy of an endtoend prototype of a CTA [3] smallsize telescope (in a dualmirror op<cal configura<on (SST2M) and equipped with a modular SiPMbased camera) inaugura?on 24 September 2014; the second step consists of the deployment and the opera<on of a miniarray composed of a few SST–2M telescopes at the final CTA southern site in 2016, which could cons<tute the first seed of the future CTA Project. The ASTRI/CTA miniarray concept INAF Observing Sta<on at Serra La Nave (Mt. Etna, Sicily, 1735 m a.s.l.) Fullyfunc<onal facility Site of the ASTRI SST2MPrototype CTA Southern Site Site of the ASTRI SST2MMiniarray ASTRI/CTA miniarray preliminary scien?fic cases The CTA Southern site will provide an excellent view of most of the Galac<c plane and of the Galac<c Bulge. Several Galac<c sources have been detected so far [5,6] above a few tens of TeV, including shelltype supernova remnants (SNR), pulsar wind nebulae (PWN, such as the Crab Nebula), binary systems, the Galac<c Center, as well as a number of uniden<fied sources apparently emiRng only above 100 GeV with no lowerenergy counterparts. Supernovae Remnants . RX J1713.73946 is a young shelllike SNR which could be considered as an excellent laboratory to inves<gate the cosmic ray accelera<on. The recent detec<on of this SNR by Fermi [7] and the combined study with H.E.S.S., show that the highenergy and very highenergy (VHE) emission could be interpreted in the framework of a leptonic scenario. The ASTRI SST–2M miniarray improved sensi<vity in the 10100 TeV energy range will allow us to inves<gate the possible cutoff at VHE predicted by the leptonic scenario and/or the spectral tail typical of hadronic models. Moreover, by combining the improved sensi<vity with the op<mal angular resolu<on, the ASTRI SST–2M miniarray might allow us to inves<gate the VHE emission in the different regions of this source, studying their spectra. New surprises . The large op<cal field of view of the ASTRI miniarray will allow us to monitor, during a single poin<ng, a few TeV sources simultaneously. Although the actual sensi<vity will substan<ally drop for offaxis sources within the op<cal FoV, a few targets can be monitored simultaneously. Detec<on of hard and intense Galac<c sources could be feasible, e.g. in the case of Vela–X and Vela–Jr. Moreover, it would be the chance to detect intense (a few Crab units) flares from hardspectra serendipitous sources. The quest for Pevatrons . Tycho's SNR is the best candidate as Pevatron [8], but it will not be accessible from the CTA southern site. Interes<ngly, Kepler's SNR, which will be accessible to CTA, is very similar to Tycho’s in many respects. The H.E.S.S. telescope observed Kepler's SNR for 13 hrs and provided upper limits on the energy flux in the range 230 GeV – 12.8 TeV of 8.6x10 13 erg cm 2 s 1 [9]. Indeed, theore<cal models [10,11] predict that the high energy emission from Kepler's SNR should be only a factor 25 below the H.E.S.S. upper limits. Hence, the ASTRI SST–2M miniarray could be able to detect this young SNR by means of a deep observa<on. Blazars . 1ES 0229+200 is an extreme BL Lac object [12,13]. The emission spectrum measured as a result of the injec<on of VHE/UHE photons at the source is strongly suppressed above ~10 TeV for a wide range of EBL models, whereas a cosmicrayinduced cascade displays a significantly harder spectrum above this energy. As discussed in [13] a clear detec<on of VHE emission above a few tens of TeV from such a blazar could provide a striking evidence for nonstandard phenomena, either an anomalous transparency of the Universe at these energies [14,15] or gammaray emission resul<ng from an electromagne<c cascade ini<ated by ultrarela<vis<c protons accelerated in the blazar jet and beamed toward the observer. A list of promising EHBLs is currently under study [16] and will provide a fundamental target list for the future ASTRI SST–2M mini array. The la1er would also demonstrate the possibility that rela<vis<c jets are the accelerators of the s<ll enigma<c UHECR. End-to-end prototype The telescope endtoend concept References : [1]Pareschi et al., ICRC Proc. 2013 [2]Vercellone et al., 2012, AIPC, 1505, 749. [3]Ac<s et al., 2011, Exp. Astr., 32, 193. [4]Di Pierro et al.,ICRC Proceeding 2013. [5]Aharonian, et al., 2005, Science, 307, 1938. [6]Hinton & Hofmann, 2009, ARA&A, 47, 523 [7]Abdo et al., 2011, ApJ, 734, 28. [8]Morlino & Caprioli, 2012, A&A, 538, A81. [9]Aharonian et al., 2008, A&A, 488, 219. [10] Berezhko et al., 2006, A&A, 452, 217. [11]Morlino & Caprioli, 2012, AIPC, 1505, 241. [12]Tavecchio et al., 2011, MNRAS, 414, 3566. [13]Murase et al., 2012, ApJ, 749, 63. [14]Horns & Meyer, 2012, JCAP, 02, 33. [15]De Angelis et al., 2013, MNRAS ,432, Issue 4, p.3245. [16]Tavecchio et al., 2013, Physical Review D, vol. 86, Issue 8, id. 085036. Acknlowedgements CTA: We gratefully acknowledge suppport from the agencies and organiza<ons listed under Funding Agencies at this website: ASTRI is a Flagship Project financed by the Italian Ministry of Educa<on, University, and Research (MIUR). ASTRI/CTA miniarray flux sensi<vity Mirrors Secondary (monolith) Primary (18 segments) h1p://www.ctaobservatory.org

Transcript of The$ASTRI/CTAmini.array$of$Small$Size$Telescopes ...Proceeding2013.![5] New$surprises Limiting flux...

Page 1: The$ASTRI/CTAmini.array$of$Small$Size$Telescopes ...Proceeding2013.![5] New$surprises Limiting flux ! a factor 2 better than H.E.S.S. above a few TeV for an array composed by 7 telescopes

Limiting flux

§  a factor 2 better than H.E.S.S. above a few TeV for an array composed by 7 telescopes

Angular resolution

§  a few (4-5) arcmin Energy resolution

§  of the order of 10-15 %  

The  ASTRI/CTA  mini-­‐array  of  Small  Size  Telescopes  as  a  precursor  of  the  Cherenkov  Telescope  Array      

G.  Pareschi1,  G.  Agne1a  2,    E.  Antolini3,  L.A.  Antonelli4,  D.  Bas<eri5,  G.  Bellassai6,  C.  Bigongiari7,  S.  Billo1a6,  B.  Biondo2,    M.  Boe1cher8,  G.  Bonanno6,    G.  Bonnoli1,    P.  Bruno6,    A.  Bulgarelli9,    R.  Canestrari1,    M.  Capalbi2,  G.  Capobianco7,  P.  Caraveo10,    A.  Carosi4,    E.  Cascone11,    O.  Catalano2,    P.  Conconi1,    V.  Confor<9,    G.  Cusumano2,    V.  De  Caprio11,    A.  De  Luca10,  E.  M.  de  Gouveia  Dal  Pino12,  A.  Di  Paola4,  F.  Di  Pierro7,    D.  Fan<nel13,    M.  Fiorini10,    D.  Fugazza1,    D.  Gardiol7,  C.  Gargano2,  S.  Garozzo6,  F.  GianoR9,    S.  Giarrusso2,    E.  Giro13,    A.  Grillo6,    D.  Impiombato2,    S.  Incorvaia10,    A.  La  Barbera2,  N.  La  Palombara10,  V.  La  Parola2,    G.  La  Rosa2,  L.  Lessio13,  G.  Leto6,    S.  Lombardi4,    F.  Lucarelli4,      M.C.  Maccarone2,    G.  Malaspina1,  D.  Marano6,    E.  Mar<neR6,    C.  Melioli12,  R.  Millul1,    T.  Mineo  2,    G.  Morlino  4,  R.  Nemmen15,  L.  Perri1,  G.  Rodeghiero5,    P.  Romano2,    G.  Romeo6,  F.  Russo2,    B.  Sacco2,  J.  Schwarz1,    A.  Segreto2,    D.  Selvestrel13,    G.  Sironi1,    G.  SoRle2,    A.  Stamerra7  ,  E.  Strazzeri2,    L.  StringheR10,    G.  Tagliaferri1,    C.  Tanci3,  V.  Testa4,    M.C.  Timpanaro6,    G.  Toso10,    G.  Tos<3,    M.  Trifoglio9,    P.  Vallania7,    S.  Vercellone2,    A.  Volpicelli7,  V.  Zitelli14  for  the  CTA  Consor<um  and  the  ASTRI  collabora<on    (1)  INAF  –  Osservatorio  Astronomico  di  Brera,  Milano/Merate,  Italy  –  (2)  INAF  -­‐  Is<tuto  di  Astrofisica  Spaziale  e  Fisica  Cosmica  di  Palermo,    Italy  –    (3)  Università  di  Perugia,  Italy  -­‐  (4)  INAF  –  Osservatorio  Astronomico  di  Roma  Italy  –  (5)  Università  di  Padova,  Dip.  Fisica  e  Astronomia,  Italy  -­‐  (6)  INAF  –  Osservatorio  Astrofisico  di  Catania,  Italy  –  (7)  INAF  –  Osservatorio  Astrofisico  di  Torino,  Italy  –  (8)  Centre  for  Space  Research,  North-­‐West  University,  Potchefstroom,  2520  ,  South  Africa  –  (9)  INAF  -­‐  Is<tuto  di  Astrofisica  Spaziale  e  Fisica  Cosmica  di  Bologna,  40129  Bologna,  Italy  –  (10)  INAF  -­‐  Is<tuto  di  Astrofisica  Spaziale  e  Fisica  Cosmica  di  Milano,  Italy  –  (11)  INAF  Osservatorio  Astrofisico  di  Capodimonte,  Napoli,  Italy  –  (12)  Ins<tuto  Astronomico  e  Geofisico  (IAG-­‐USP),  Universidade  de  Sao  Paulo,  Brazil    -­‐  (14)  INAF  –  Osservatorio  Astronomico  di  Bologna,  Italy    -­‐  For  the  ASTRI  collabora?on  and  CTA  consor?um    h1ps://www.cta-­‐observatory.org/  h1p://www.brera.inaf.it/astri/  

Abstract  ASTRI   ("Astrofisica   con   Specchi   a   Tecnologia   Replicante   Italiana")   is   a   flagship   project   of   the   Italian   Ministry   of  Educa<on,   University   and   Research.   Within   this   framework,   INAF   is   currently   developing   a   wide-­‐field-­‐of-­‐view   (9.6  degrees   in  diameter)  end-­‐to-­‐end  prototype  of   the  small-­‐size   telescope   (SST)  of   the  Cherenkov  Telescope  Array,  CTA,  sensi<ve   in   the   energy   band   from   a   few   TeV   up   to   hundreds   TeV.   The   ASTRI   telescope   is   based   on   a   dual-­‐mirror  Schwarzschild-­‐Couder   (ASTRI   SST-­‐2M)   op<cal   design,   with   a   compact   (F#   =   0.5)   op<cal   configura<on   named   ASTRI  SST-­‐2M  telescope.  This  allows  us  to  adopt  an  innova<ve  modular  focal  plane  camera  based  on  silicon  photo-­‐mul<pliers,  with  a  logical  pixel  size  of  6.2mm  x  6.2mm.    Moreover,  planned,  and  already  being  developed,  an  SST  mini-­‐array  based  on  7  iden<cal  telescopes  represents  an  evolu<on  of  the  ASTRI  SST-­‐2M  telescope.  The  University  of  Sao  Paulo  (Brazil)  and   North-­‐West   University   (South   Africa)   have   jointed   INAF   to   collaborate   to   the   mini-­‐array   implementa<on.   The  ASTRI/CTA  mini-­‐array  will  be  part  of  the  main  CTA  Observatory,  represen<ng  a  precursor  around  which  the  final  array  of   CTA  will   grow  up   at   the   southern   site.   ASTRI/CTA  mini-­‐array,   in   addi<on   to   a   technical   assessment   study   (in   the  perspec<ve  of  the  full  CTA  implementa<on)  it  will  be  possible  to  perform  an  early  scien<fic  program.  In  par<cular  we  wish  to  start   inves<ga<ng  the  poorly  known  energy  range  beyond  a  few  and  100  TeV,  thus  exploring  e.g.  the  cut-­‐off  regime  of  cosmic  accelerators.    

Energy threshold: •  ~ 1 TeV

Telescope properties: •  Optical design = Schwarzschild-Couder •  Primary mirror, M1 = 4.3m Ø •  M1 type = Segmented (18 elements in 3 concentric rings) •  Secondary mirror, M2 = 1.8m Ø (2.2m Radius of Curvature) •  M2 type = Monolithic •  M1-M2 distance = 3m •  Effective area = 6.5m2 •  F/D1 = 0.5, F = 2.15m

Camera properties: •  Sensors type = SiPMs •  Number of logical pixels = 1984 •  Pixel size = 0.17° (plate scale = 37.5mm/°) •  Field of View = 9.6°

The  deployment  and  opera<on  of  the  ASTRI  SST–2M  mini-­‐array  to  be  installed  at  the  CTA  southern  site  will  verify  the  following  array  proper<es:    ü  the  array  performance  (reliability  and  cost)  at  the  chosen  site;  ü  the  trigger  algorithms;  ü  the  wide  field  of  view  performance  to  detect  very  high  energy  showers  with  the  

core  located  at  a  distance  up  to  250  m;  ü  the  HW/SW  configura<ons  for  the  array;  ü  the  data-­‐handling  chain.    

…  and  in  par<cular…    

through  deep  observa<ons  of  a  few  selected  targets,  it  will  allow  us  to  compare  the  actual  performance  with  the  Monte  Carlo  expecta<ons,  and  to  perform  the  first  CTA  science,  by  means  of    a  few  solid  detec@ons  during  the  first  year    

…  assuming  the  following  performance  [4]…    

ü  a  limi@ng  flux  a  factor  2  be1er  than  H.E.S.S.  above  a  few  TeV  for  an  array  composed  of  7  telescopes    

ü  an  angular  resolu@on  of  0.08o  at  10  TeV  

ü  an  energy  resolu@on  of  the  order  of  15%  at  10  teV  

The  ASTRI  mini-­‐array  opera?ons  in  the  context  of  CTA  

The  ASTRI  Project  [1,2]  is  being  developed  following  two  major  steps:      ü  the  first  step  consists  of  the  design,  deployment  and  opera<on  in  Italy  of  an  end-­‐to-­‐end  prototype  

of  a  CTA  [3]  small-­‐size  telescope  (in  a  dual-­‐mirror  op<cal  configura<on  (SST-­‐2M)  and  equipped  with  a  modular  SiPM-­‐based  camera)  è  inaugura?on  24  September  2014;    

 ü  the  second  step  consists  of  the  deployment  and  the  opera<on  of  a  mini-­‐array  composed  of  a  few  

SST–2M  telescopes  at  the  final  CTA  southern  site  in  2016,  which  could  cons<tute  the  first  seed  of  the  future  CTA  Project.  

The  ASTRI/CTA  mini-­‐array  concept  INAF  Observing  Sta<on  at  Serra  La  Nave  (Mt.  Etna,  Sicily,  1735  m  a.s.l.)  Fully-­‐func<onal  facility  Site  of  the  ASTRI  SST-­‐2M  Prototype  

CTA  Southern  Site  Site  of  the  ASTRI  SST-­‐2M  Mini-­‐array  

ASTRI/CTA  mini-­‐array  preliminary  scien?fic  cases  The  CTA  Southern  site  will  provide  an  excellent  view  of  most  of  the  Galac<c  plane  and  of  the  Galac<c  Bulge.  Several  Galac<c  sources  have  been  detected  so  far  [5,6]  above  a  few  tens  of  TeV,  including  shell-­‐type  supernova  remnants  (SNR),  pulsar  wind  nebulae  (PWN,  such  as  the  Crab  Nebula),  binary  systems,  the  Galac<c  Center,  as  well  as  a  number  of  uniden<fied  sources  apparently  emiRng  only  above  100  GeV  with  no  lower-­‐energy  counterparts.  

Supernovae  Remnants.  RX  J1713.7-­‐3946  is  a  young  shell-­‐like  SNR  which  could  be  considered  as  an  excellent  laboratory  to  inves<gate  the  cosmic  ray  accelera<on.  The  recent  detec<on  of  this  SNR  by  Fermi  [7]  and  the  combined  study  with  H.E.S.S.,  show  that  the  high-­‐energy  and  very  high-­‐energy  (VHE)  emission  could  be  interpreted  in  the  framework  of  a  leptonic  scenario.  The  ASTRI  SST–2M  mini-­‐array  improved  sensi<vity  in  the  10-­‐100  TeV  energy  range  will  allow  us  to  inves<gate  the  possible  cut-­‐off  at  VHE  predicted  by  the  leptonic  scenario  and/or  the  spectral  tail  typical  of  hadronic  models.  Moreover,  by  combining  the  improved  sensi<vity  with  the  op<mal  angular  resolu<on,  the  ASTRI  SST–2M  mini-­‐array  might  allow  us  to  inves<gate  the  VHE  emission  in  the  different  regions  of  this  source,  studying  their  spectra.  

New  surprises.  The  large  op<cal  field  of  view  of  the  ASTRI  mini-­‐array  will  allow  us  to  monitor,  during  a  single  poin<ng,  a  few  TeV  sources  simultaneously.  Although  the  actual  sensi<vity  will  substan<ally  drop  for  off-­‐axis  sources  within  the  op<cal  FoV,  a  few  targets  can  be  monitored  simultaneously.  Detec<on  of  hard  and  intense  Galac<c  sources  could  be  feasible,  e.g.  in  the  case  of  Vela–X  and  Vela–Jr.  Moreover,  it  would  be  the  chance  to  detect  intense  (a  few  Crab  units)  flares  from  hard-­‐spectra  serendipitous  sources.  

The  quest  for  Pevatrons.  Tycho's  SNR  is  the  best  candidate  as  Pevatron  [8],  but  it  will  not  be  accessible  from  the  CTA  southern  site.  Interes<ngly,  Kepler's  SNR,  which  will  be  accessible  to  CTA,  is  very  similar  to  Tycho’s  in  many  respects.  The  H.E.S.S.  telescope  observed  Kepler's  SNR  for  13  hrs  and  provided  upper  limits  on  the  energy  flux  in  the  range  230  GeV  –  12.8  TeV  of  8.6x10-­‐13  erg  cm-­‐2  s-­‐1  [9].  Indeed,  theore<cal  models  [10,11]  predict  that  the  high  energy  emission  from  Kepler's  SNR  should  be  only  a  factor  2-­‐5  below  the  H.E.S.S.  upper  limits.  Hence,  the  ASTRI  SST–2M  mini-­‐array  could  be  able  to  detect  this  young  SNR  by  means  of  a  deep  observa<on.  

Blazars.  1ES  0229+200  is  an  extreme  BL  Lac  object  [12,13].  The  emission  spectrum  measured  as  a  result  of  the  injec<on  of  VHE/UHE  photons  at  the  source  is  strongly  suppressed  above  ~10  TeV  for  a  wide  range  of  EBL  models,  whereas  a  cosmic-­‐ray-­‐induced  cascade  displays  a  significantly  harder  spectrum  above  this  energy.  As  discussed  in  [13]  a  clear  detec<on  of  VHE  emission  above  a  few  tens  of  TeV  from  such  a  blazar  could  provide  a  striking  evidence  for  non-­‐standard  phenomena,  either  an  anomalous  transparency  of  the  Universe  at  these  energies  [14,15]  or  gamma-­‐ray  emission  resul<ng  from  an  electromagne<c  cascade  ini<ated  by  ultra-­‐rela<vis<c  protons  accelerated  in  the  blazar  jet  and  beamed  toward  the  observer.    

A  list  of  promising  E-­‐HBLs  is  currently  under  study  [16]  and  will  provide  a  fundamental  target  list  for  the  future  ASTRI  SST–2M  mini-­‐array.  The  la1er  would  also  demonstrate  the  possibility  that  rela<vis<c  jets  are  the  accelerators  of  the  s<ll  enigma<c  UHECR.  

End-to-end

prototype  

The  telescope  end-­‐to-­‐end  concept  

References:  [1]-­‐Pareschi  et  al.,  ICRC    Proc.  2013  [2]-­‐Vercellone  et  al.,  2012,  AIPC,  1505,  749.  [3]-­‐Ac<s  et  al.,  2011,  Exp.  Astr.,  32,  193.  [4]-­‐Di  Pierro  et  al.,ICRC  Proceeding  2013.  [5]-­‐Aharonian,  et  al.,  2005,  Science,  307,  1938.  [6]-­‐Hinton  &  Hofmann,  2009,  ARA&A,  47,  523  [7]-­‐Abdo  et  al.,  2011,  ApJ,  734,  28.  [8]-­‐Morlino  &  Caprioli,  2012,  A&A,  538,  A81.  [9]-­‐Aharonian  et  al.,  2008,  A&A,  488,  219.  [10]-­‐Berezhko  et  al.,  2006,  A&A,  452,  217.  [11]-­‐Morlino  &  Caprioli,  2012,  AIPC,  1505,  241.  [12]-­‐Tavecchio  et  al.,  2011,  MNRAS,  414,  3566.  [13]-­‐Murase  et  al.,  2012,  ApJ,  749,  63.  [14]-­‐Horns  &  Meyer,  2012,  JCAP,  02,  33.  [15]-­‐De  Angelis  et  al.,  2013,  MNRAS  ,432,  Issue  4,  p.3245.  [16]-­‐Tavecchio  et  al.,  2013,  Physical  Review  D,  vol.  86,  Issue  8,  id.  085036.  

 Acknlowedgements  CTA:  We  gratefully  acknowledge  suppport  from  the  agencies  and  organiza<ons  listed  under  Funding  Agencies    at  this  website:    ASTRI  is  a  Flagship  Project  financed  by  the  Italian  Ministry  of  Educa<on,  University,  and  Research  (MIUR).    

ASTRI/CTA  mini-­‐array  flux  sensi<vity  

Mirrors  

Secondary  (monolith)  Primary  (18  segments)  

h1p://www.cta-­‐observatory.org