The use of second-order information in structural topology...

18
The use of second-order information in structural topology optimization Susana Rojas Labanda, PhD student Mathias Stolpe, Senior researcher

Transcript of The use of second-order information in structural topology...

The use of second-order information in structural topology

optimization

Susana Rojas Labanda, PhD student

Mathias Stolpe, Senior researcher

What is Topology Optimization?

• Optimize the design of a structuregiven certain constraints, loads andsupports.

• The design domain is discretized.The variables denotes the presenceof material at each element.

• The goal is to decide which elementsshould contain material and whichones not. It is a 0-1 discrete problem.

• Model as an optimization problem

minimizex

f (x)

subject to g(x) 0

h(x) = 0.

Bendsøe, M. P and Sigmund, O. Topology optimization: Theory, methods and applications Springer 2003.

2 DTU Wind Energy 11.3.2015

Minimum compliance problem

• SAND formulation

minimizet,u

fTu

subject to aTt V

K(t)u � f = 00 t 1.

• NESTED formulation

minimizet

uT(t)K(t)u(t)

subject to aTt V

0 t 1.

• f 2 Rd the force vector.

• a 2 Rn the volume vector.

•V > 0 is the upper volumefraction.

• Use the SIMP material interpolation topenalize intermediate densities

t

i

= t

p

i

p > 1

• Use Density filter to avoid checkerboardsand mesh-dependency issues.

˜

t

e

=1

Âi2N

e

h

ei

Âi2N

e

h

ei

t

i

h

ei

= max{0, r

min

� dist(e, i)}

• Linear Elasticity

E(ti

) = E

v

+ (E

1

+ E

v

t

p

i

K(t) = Â E(te

)Ke

3 DTU Wind Energy 11.3.2015

Minimum compliance problem

• SAND formulation

minimizet,u

fTu

subject to aTt V

K(t)u � f = 00 t 1.

• NESTED formulation

minimizet

uT(t)K(t)u(t)

subject to aTt V

0 t 1.

• f 2 Rd the force vector.

• a 2 Rn the volume vector.

•V > 0 is the upper volumefraction.

• Use the SIMP material interpolation topenalize intermediate densities

t

i

= t

p

i

p > 1

• Use Density filter to avoid checkerboardsand mesh-dependency issues.

˜

t

e

=1

Âi2N

e

h

ei

Âi2N

e

h

ei

t

i

h

ei

= max{0, r

min

� dist(e, i)}

• Linear Elasticity

E(ti

) = E

v

+ (E

1

+ E

v

t

p

i

K(t) = Â E(te

)Ke

3 DTU Wind Energy 11.3.2015

Optimization methods

Topologyoptimization

problem

+non-linearproblem

• OC: Optimality criteria method.

• MMA: Sequential convex approximations.

• GCMMA: Global convergence MMA.

• Interior point solvers: IPOPT, FMINCON,...

• Sequential quadratic programming:SNOPT,...

Andreassen, E and Clausen, A and Schevenels, M and Lazarov, B. S and Sigmund, O. Efficient topology optimization in MATLABusing 88 lines of code. Structural and Multidisciplinary Optimization, 43(1): 1–16, 2011.

Svanberg, K. The method of moving asymptotes a new method for structural optimization. International Journal for NumericalMethods in Engineering, 24(2): 359–373. 1987.

Svanberg, K. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAMJournal on Optimization, 12(2): 555-573, 2002.

Gill, P. E and Murray, W and Saunders, M. A. SNOPT: An SQP Algorithm for Large -Scale Constrained Optimization. SIAMJournal on Optimization, 47(4):99–131, 2005.

Wachter, A and Biegler, L. T. On the implementation of an interior point filter line-search algorithm for large-scale nonlinearprogramming. Mathematical Programming, 106(1):25–57, 2006.

4 DTU Wind Energy 11.3.2015

Optimization methods

Topologyoptimization

problem+

non-linearproblem

• OC: Optimality criteria method.

• MMA: Sequential convex approximations.

• GCMMA: Global convergence MMA.

• Interior point solvers: IPOPT, FMINCON,...

• Sequential quadratic programming:SNOPT,...

Andreassen, E and Clausen, A and Schevenels, M and Lazarov, B. S and Sigmund, O. Efficient topology optimization in MATLABusing 88 lines of code. Structural and Multidisciplinary Optimization, 43(1): 1–16, 2011.

Svanberg, K. The method of moving asymptotes a new method for structural optimization. International Journal for NumericalMethods in Engineering, 24(2): 359–373. 1987.

Svanberg, K. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAMJournal on Optimization, 12(2): 555-573, 2002.

Gill, P. E and Murray, W and Saunders, M. A. SNOPT: An SQP Algorithm for Large -Scale Constrained Optimization. SIAMJournal on Optimization, 47(4):99–131, 2005.

Wachter, A and Biegler, L. T. On the implementation of an interior point filter line-search algorithm for large-scale nonlinearprogramming. Mathematical Programming, 106(1):25–57, 2006.

4 DTU Wind Energy 11.3.2015

Sequential Quadratic Programming for topologyoptimization

• SQP for minimum compliance problems in the nested formulation

• Solve a sequence of approximate sub-problems• Convex quadratic approximation of the Lagrangian function.• Linearization of the constraints.

• Implementation of SQP+ = IQP + EQP

Require: Define the starting point x

0

, the initial Lagrangian multipliers l0

and the optimality tolerance w.repeat

Define an approximation of the Hessian of the Lagrange function, B

k

� 0 such as B

k

⇡ r2

L(x

k

, lk

).Solve IQP sub-problem.Determine the working set of the inequality constraints and the boundary conditions.Solve EQP sub-problem (using active constraints).Compute the contraction parameter b 2 (0, 1] such as the linearized contraints of the sub-problem are feasible at the iteratepoint x

k

+ d

iq

k

+ bd

eq

k

.Acceptance/rejection step. Use of line search strategy in conjunction with a merit function.Update the primal and dual iterates.

until convergencereturn

Morales, J.L and Nocedal, J and Wu, Y. A sequential quadratic programming algorithm with an additional equality constrainedphase. Journal of Numerical Analysis,32:553–579, 2010.5 DTU Wind Energy 11.3.2015

Finding an approximate positive definite Hessian

• Sensitivity analysis for the minimum compliance problem

r2

f (t) = 2FT(t)K�1(t)F(t)� Q(t)

ˆHk

= 2FT(tk

)K�1(tk

)F(tk

) ⌫ 0

6 DTU Wind Energy 11.3.2015

convex part
potentially non-convex part

Reformulations of IQP and EQP sub-problems

• Approximate Hessian computationally expensive

• Use dual formulation for the IQP sub-problem

minimized

r f (xk

)Td + 1

2

dT(2FT

k

K�1

k

Fk

)d

subject to Ak

d bk

minimizea,b

1

4

bTKk

b + aTbk

subject to AT

k

a � FT

k

b = �r f (xk

)a � 0.

• Expansion of the EQP system

minimized

(r f (xk

) + Hk

diq

k

)Td + 1

2

dT(2FT

k

K�1

k

Fk

)d

subject to Ai

d = 0 i 2 W .

0

@0 FT

k

AWF

k

�1/2Kk

0AT

W 0 0

1

A

0

@v

k

deq

k

leq

k

1

A = �

0

@r f (x

k

) + Hk

diq

00

1

A

7 DTU Wind Energy 11.3.2015

DENSE!

Reformulations of IQP and EQP sub-problems

• Approximate Hessian computationally expensive

• Use dual formulation for the IQP sub-problem

minimized

r f (xk

)Td + 1

2

dT(2FT

k

K�1

k

Fk

)d

subject to Ak

d bk

minimizea,b

1

4

bTKk

b + aTbk

subject to AT

k

a � FT

k

b = �r f (xk

)a � 0.

• Expansion of the EQP system

minimized

(r f (xk

) + Hk

diq

k

)Td + 1

2

dT(2FT

k

K�1

k

Fk

)d

subject to Ai

d = 0 i 2 W .

0

@0 FT

k

AWF

k

�1/2Kk

0AT

W 0 0

1

A

0

@v

k

deq

k

leq

k

1

A = �

0

@r f (x

k

) + Hk

diq

00

1

A

7 DTU Wind Energy 11.3.2015

SPARSE!
SPARSE!

Benchmarking in topology optimization

• How? Using performance profiles.

• Evaluate the cumulative ratio for a performance metric.• Represent for each solver, the percentage of instances that achieve a

criterion for different ratio values.

rs

(t) = 1

n

size{p 2 P : r

p,s

t},

r

p,s

=iter

p,s

min{iterp,s

: s 2 S} .

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.20

10

20

30

40

50

60

70

80

90

100

τ (iterp,s = τ min{iterp})

%problems

Performance profile

Solver1Solver2

Dolan, E. D and More, J. J. Benchmarking optimization software with performance profiles. MathematicalProgramming,91:201–213, 2002.

8 DTU Wind Energy 11.3.2015

Good Solver
Best Solution
Solution close to the best one
Robustness
Not as good solver

Benchmark set of topology optimization problems

• Total Problems: 225.

• From 400 to 40, 000 number of elements. (up to 81, 002 dof).

• 3 different domains

9 DTU Wind Energy 11.3.2015

Performance profiles

Objective function value

1 1.1 1.2 1.3 1.4 1.5 1.6 1.70

10

20

30

40

50

60

70

80

90

100

τ

%problems

SQP+IPOPT NIPOPT SSNOPTGCMMA

Number of iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

10

20

30

40

50

60

70

80

90

100

τ (log10)%

problems

SQP+IPOPT NIPOPT SSNOPTGCMMA

Performance profiles in a reduce test set of 194 instances.Penalization of problems with KKT error higher than w = 1e � 4.

10 DTU Wind Energy 11.3.2015

Exact Hessian
First-order solver
BFGS approximation

Performance profiles

Objective function value

1 1.1 1.2 1.3 1.4 1.5 1.6 1.70

10

20

30

40

50

60

70

80

90

100

τ

%problems

SQP+IPOPT NIPOPT SSNOPTGCMMA

Number of iterations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

10

20

30

40

50

60

70

80

90

100

τ (log10)%

problems

SQP+IPOPT NIPOPT SSNOPTGCMMA

Performance profiles in a reduce test set of 194 instances.Penalization of problems with KKT error higher than w = 1e � 4.

11 DTU Wind Energy 11.3.2015

Performance profiles

Number of stiffness matrix assemblies

0 0.5 1 1.5 20

10

20

30

40

50

60

70

80

90

100

τ (log10)

%problems

SQP+IPOPT NIPOPT SSNOPTGCMMA

Computational time

0 0.5 1 1.5 2 2.5 30

10

20

30

40

50

60

70

80

90

100

τ (log10)%

problems

SQP+IPOPT NIPOPT SSNOPTGCMMA

Performance profiles in a reduce test set of 194 instances.Penalization of problems with KKT error higher than w = 1e � 4.

12 DTU Wind Energy 11.3.2015

Performance profiles

Number of stiffness matrix assemblies

0 0.5 1 1.5 20

10

20

30

40

50

60

70

80

90

100

τ (log10)

%problems

SQP+IPOPT NIPOPT SSNOPTGCMMA

Computational time

0 0.5 1 1.5 2 2.5 30

10

20

30

40

50

60

70

80

90

100

τ (log10)%

problems

SQP+IPOPT NIPOPT SSNOPTGCMMA

Performance profiles in a reduce test set of 194 instances.Penalization of problems with KKT error higher than w = 1e � 4.

13 DTU Wind Energy 11.3.2015

tau = 15

What can we conclude from the performance profiles?

• GCMMA tends to obtain a design with large KKT error

• IPOPT-S produces the best designs followed by SQP+

• IPOPT-S and SQP+ (exact Hessian) produce better designthan IPOPT-N and SNOPT (BFGS approximations)

• SQP+ converge in the least number of iterations and stiffnessassemblies (= function evaluations)

• SAND formulation requires a lot of computational time andmemory

• Need to improve the computational time spent in SQP+

14 DTU Wind Energy 11.3.2015

THANK YOU !!!

This research is funded by the Villum Foundation through the research project TopologyOptimization – the Next Generation (NextTop).15 DTU Wind Energy 11.3.2015