The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in...

30
59: 101 – 130 12 Sept 2013 © Senckenberg Gesellschaft für Naturforschung, 2013. 101 ISBN 978-3-910006-37-9 | ISSN 1617-8467 The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany) – syntectonic sedimentation and inverted zircon age populations revealed by LA‑ICP‑MS U/Pb data Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse Zirkon‑Alterspopulationen offengelegt durch LA‑ICP‑MS U/Pb‑Daten Mandy Hofmann 1 , Ulf Linnemann 1 and Thomas Voigt 2 1 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Königsbrücker Landstraße 159, 01109 Dresden, Germany; [email protected]2 Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften, Burgweg 11, 07749 Jena, Germany Revision accepted 19 June 2013. Published online at www.senckenberg.de/geologica-saxonica on 10 September 2013. Abstract Mesozoic sediments in Saxony are represented by few limited occurrences of Lower Triassic and Middle to Upper Jurassic deposits but mainly by Upper Cretaceous predominantly clastic units filling the Elbe Zone (Pietzsch 1963, Voigt & Tröger in Niebuhr et al. 2007, Tröger in Pälchen & Walter 2008). The latter ones are confined by the Lausitz Block (part of the West-Sudetic Island) in the NE and the Erzgebirge (part of the Mid-European island) in the SW. The Upper Cretaceous sedimentation in the area of the Elbsandsteingebirge starts with the Upper Cenomanian marine transgression. Sediments of the Elbsandsteingebirge were deposited in marine environment in a narrow strait connecting northern cold Boreal water of N – NW Europe with the Tethyan warm-water areas in the S. The West-Sudetic Island (Lausitz- Krkonosze High) was the most possible source area for the Upper Cretaceous sediments of the Elbe Zone (Voigt 1994, Wilmsen 2011). Composition of sandstones and conglomerates indicate erosion and redeposition of older sediments which covered initially the basement of the Lausitz. We analysed six samples representing a 400 m thick sandstone succession (Schmilka, Postelwitz and Schrammstein formations) of Early Turonian to Early Coniacian age from the area around Schmilka (Elbsandsteingebirge) regarding their U/Pb-ages of detrital zircon grains. A significant change in the age spectra occurs from the Upper Turonian to the Lower Coniacian. We found a sudden input of Meso- and Palaeoproterozoic ages in the uppermost part of the Schmilka section that represent typical Baltica ages. As the whole region of north- ern Germany was covered by marine Cretaceous sediments, a direct input from Baltica (Scandinavia?) is impossible. Facies distribution and recent investigations suggest that during Middle Jurassic a major part of sandstones derived from uplifted parts of Paleoproterozoic and Mesoproterozoic units of Baltica. Therefore, we interpret the presented Coniacian age spectra as a signal of redeposited Middle Jurassic sandstones. Erosion of Jurassic sediments started not earlier than Early Coniacian (higher Schrammstein Formation, Sandstone e). The limited amount of ca. 540 Ma ages and predominance of variscan ages in all samples confirm covering of the Cadomian basement units of the Lausitz Block by Mesozoic sediments, originally derived from the Bohemian massif during the first depositional cycle. The basement rocks of the Lausitz Block were not available for erosion until at least Middle to Late Coniacian time. Further, our data confirm the inversion of the Lausitz Block relative to the Elbe Zone during Late Cretaceous time as already proposed by Voigt (1994).

Transcript of The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in...

Page 1: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

59: 101 – 130

12 Sept 2013

© Senckenberg Gesellschaft für Naturforschung, 2013.

101ISBN 978-3-910006-37-9 | ISSN 1617-8467

The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany) – syntectonic sedimentation and inverted zircon age populations revealed by LA‑ICP‑MS U/Pb data

Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse Zirkon‑Alterspopulationen offengelegt durch LA‑ICP‑MS U/Pb‑Daten

Mandy Hofmann 1, Ulf Linnemann 1 and Thomas Voigt 2

1 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Königsbrücker Landstraße 159, 01109 Dresden, Germany; [email protected] — 2 Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften, Burgweg 11, 07749 Jena, Germany

Revision accepted 19 June 2013. Published online at www.senckenberg.de/geologica-saxonica on 10 September 2013.

AbstractMesozoic sediments in Saxony are represented by few limited occurrences of Lower Triassic and Middle to Upper Jurassic deposits but mainly by Upper Cretaceous predominantly clastic units filling the Elbe Zone (Pietzsch 1963, Voigt & Tröger in Niebuhr et al. 2007, Tröger in Pälchen & Walter 2008). The latter ones are confined by the Lausitz Block (part of the West-Sudetic Island) in the NE and the Erzgebirge (part of the Mid-European island) in the SW. The Upper Cretaceous sedimentation in the area of the Elbsandsteingebirge starts with the Upper Cenomanian marine transgression. Sediments of the Elbsandsteingebirge were deposited in marine environment in a narrow strait connecting northern cold Boreal water of N – NW Europe with the Tethyan warm-water areas in the S. The West-Sudetic Island (Lausitz-Krkonosze High) was the most possible source area for the Upper Cretaceous sediments of the Elbe Zone (Voigt 1994, Wilmsen 2011). Composition of sandstones and conglomerates indicate erosion and redeposition of older sediments which covered initially the basement of the Lausitz. We analysed six samples representing a 400 m thick sandstone succession (Schmilka, Postelwitz and Schrammstein formations) of Early Turonian to Early Coniacian age from the area around Schmilka (Elbsandsteingebirge) regarding their U/Pb-ages of detrital zircon grains. A significant change in the age spectra occurs from the Upper Turonian to the Lower Coniacian. We found a sudden input of Meso- and Palaeoproterozoic ages in the uppermost part of the Schmilka section that represent typical Baltica ages. As the whole region of north-ern Germany was covered by marine Cretaceous sediments, a direct input from Baltica (Scandinavia?) is impossible. Facies distribution and recent investigations suggest that during Middle Jurassic a major part of sandstones derived from uplifted parts of Paleoproterozoic and Mesoproterozoic units of Baltica. Therefore, we interpret the presented Coniacian age spectra as a signal of redeposited Middle Jurassic sandstones. Erosion of Jurassic sediments started not earlier than Early Coniacian (higher Schrammstein Formation, Sandstone e). The limited amount of ca. 540 Ma ages and predominance of variscan ages in all samples confirm covering of the Cadomian basement units of the Lausitz Block by Mesozoic sediments, originally derived from the Bohemian massif during the first depositional cycle. The basement rocks of the Lausitz Block were not available for erosion until at least Middle to Late Coniacian time. Further, our data confirm the inversion of the Lausitz Block relative to the Elbe Zone during Late Cretaceous time as already proposed by Voigt (1994).

Page 2: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

102

1. Introduction and geological setting

Apart from some scattered occurrences of Lower Triassic in some shallow synclines and Zechstein to Upper Ju-rassic at the margins of the Lausitz Block, Upper Cre-taceous sediments represent the major part of Mesozoic deposits in Saxony. They are mainly restricted to the Elbe Zone and represent the subsidence axis of the extended Bohemian Cretaceous basin which covers the Bohemian Massif in the Czech Republik. In the Elbsandsteinge-birge sediments range from the Middle Cenomanian to the Lower Coniacian and were summarized as Elbtal Group. Thickness and facies distribution indicate syntec-tonic deposition in the front of an uplifting source area (Pietzsch 1963, Voigt 1994, Tröger in Pälchen & Walter 2008).

1.1. Mesozoic sedimentation in Saxony

Jurassic and Triassic sediments are only known from very few localities, but these scattered remnants support the assumption that there had been a Triassic as well as a Jurassic cover on the pre-Mesozoic basement of Saxony (e.g. Tröger in Pälchen & Walter 2008). Triassic sedi-ments show the same characteristics as the very uniform basin-fill of the Triassic Germanic Basin. The lower Tri-assic time is characterized by continental red beds (Bunt-sandstein). Sediments are only known from drill holes

in northeastern Saxony (Spremberg-Weißwasser, Lausitz Block) and from some occurrences in western (Zeitz-Schmölln Syncline) and northern (Mügeln and Düben-Mühlberg Syncline) Saxony (Pietzsch 1963, Friebe in Pälchen & Walter 2008). Additionally, Lower Triassic sandstones of limited thickness are exposed in the central part of the Elbezone around Meißen. Jurassic sediments in Saxony are even rarer than the Triassic ones and only known from some occurrences along the Lausitz Thrust (Tröger in Pälchen & Walter 2008), where they underlie Upper Cretaceous deposits and got incorporated into the partly overturned sediments along the thrust (Fig. 1). Sedimentation started in the Middle to Late Jurassic, as at this time the marine transgression reached the area of today’s Saxony. A general fining trend is observed in the sedimentary record, forming a succession that grades from sand- into silt- and limestones (according to Cotta 1838 in Pietzsch 1963: 360). Earlier investigations pro-posed a narrow sea strait in the Elbezone but pelagic limestones and marls point to an extended shallow basin at least during Late Jurassic. The Late Jurassic to Early Cretaceous time is char-acterized by widespread and extensive erosion. This lead to general subsidence and is assumed to explain the transgression of Cenomanian deposits on the meta-morphic basement of the Erzgebirge and the Elbe Zone (Tröger in Pälchen & Walter 2008). A first transgression happened during the Early Cenomanian (Meißen Forma-

KurzfassungMesozoische Sedimente sind in Sachsen durch wenige vereinzelte Vorkommen der unteren Trias und des mittleren bis oberen Jura in der Umrandung des Lausitzer Massivs vertreten. Den Hauptanteil bilden aber die oberkretazischen vorwiegend klastischen Einheiten, welche in der Elbtal-Gruppe zusammengefasst sind und das Elbtal ausfüllen (Pietzsch 1963, Voigt & Tröger in Niebuhr et al. 2007, Tröger in Päl-chen & Walter 2008). Diese werden im NE durch den Lausitz-Block (als Teil der Westsudetische Insel) und im SW durch das Erzgebirge (als Teil der Mitteleuropäischen Insel) begrenzt. Die oberkretazische Sedimentation im Elbsandsteingebirge beginnt mit der obercenoma-nen Transgression. Die hier diskutierten Sandsteine wurden in einem engen Meeresarm abgelagert, welcher das kältere boreale Nordmeer mit der südlichen wärmeren Tethys verband (Wilmsen et al. 2011). Die Westsudetische Insel (Lausitz-Riesengebirge Block) stellt das Hauptliefergebiet für die oberkretazischen Sedimente der Elbezone dar (Voigt 1994, Wilmsen 2011). Die Zusammensetzung der Sandsteine und Konglomerate legt nahe, dass der Lausitz-Block als ein Teil der Westsudetischen Insel mit Sedimenten bedeckt war, welche während der Oberkreide erodiert wurden. Wir analysierten sechs Sandsteinproben aus dem Gebiet um Schmilka (Elbsandsteingebirge) hinsichtlich ihrer U/Pb-Alter detritischer Zirkone. Die etwa 400 m mächtige Abfolge (Schmilka-, Postelwitz- und Schrammstein-Formation) repräsentiert das Untere Turon bis Untere Coniac. Es gibt eine auffällige Veränderung der Alterssprektren vom späten Turon bis ins frühe Coniac. Wir fanden einen plötzli-chen Eintrag meso- und paläoproterozoischer Alter im obersten Niveau der Schmilka-Sandsteinabfolge. Diese Alter sind typisch für eine Baltika-Herkunft. Da aber ganz Norddeutschland während der Oberkreide von Meer bedeckt war, ist eine direkte Lieferung von Baltica (Skandinavien) ausgeschlossen. Die Faziesverteilung und neueste Provenienzstudien indizieren, dass während des Mittleren Jura ein großer Teil der Sandsteine aus gehobenen Einheiten Baltikas herzuleiten ist. Deshalb interpretieren wir das Altersspektrum als Wiederaufarbeitung jurassischer Sandsteine. Die Erosion dieser Jura-Sedimente auf dem Lausitz-Block begann erst im Unterconiac (höhere Schrammstein-Formation, Sandstein e). Die geringen Mengen an 540 Ma alten Zirkonen in allen Proben und die Vorherrschaft von variszischen Altern, die für das Böhmische Massiv typisch sind, bestätigen, dass das cadomische Grundgebirge des Lausitz-Blocks von Sedimenten bedeckt war, die im ersten Ablagerungszyklus vom Böhmischen Massiv geliefert wurden. Die Grundgebirgseinheiten standen nicht vor dem unteren Coniac (vermutlich erst später) an der Oberfläche an. Die Untersuchungen bestätigen die Inversion des Lausitzer Massivs in der späten Oberkreide (Voigt 1994).

Page 3: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

103

GEOLOGICA SAXONICA — 59: 2013

tion), but did not reach the area of the Elbsandsteinge-birge. After a fluvial phase a new transgression during the Late Cenomanian strongly influenced the whole area including all sediments of the Elbe Zone (Voigt & Tröger in Niebuhr et al. 2007). Therefore, sediment accumula-tion and subsidence in the Elbezone started not before Cenomanian. The Upper Cretaceous sediments in the surroundings of the Lausitz Block are mainly restricted to the north-ern margin of the Lausitz and the Elbe Zone but covered also the eastern Erzgebirge (Tröger in Pälchen & Walter 2008). The Meißen Formation (marine) contains the old-est sediments of the Elbtal Group. The fluvial deposits of the Niederschöna Formation represent the chronologi-cal next unit, which is followed again by marine sedi-ments due to the Middle to Late Cenomanian transgres-sion. During this second transgression the sandstones of the Elbsandsteingebirge where deposited (Oberhäslich, Schmilka, Postelwitz, and Schrammstein formations). Sedimentation continued at least until the Santonian in the Bohemian Cretaceous, but these youngest deposits were not preserved in Saxony. Sedimentation occurred in a narrow sea strait con-necting the cold Boreal of N–NW Europe with the warm Tethyan areas in the S. This strait was confined by the Mid-European Island comprising the Bohemian Mas-sif in the SW and the West-Sudetic Island including the Lausitz Block in the NE (Tröger 1964, Wilmsen et al. 2011). Therefore, the Erzgebirge (Bohemian Massif, part of the Mid-European Island) and the Lausitz Block (part of the West-Sudetic Island) are likely source areas for the Cretaceous sediments in Saxony. Due to tectonic activity and the development of the Lausitz Thrust, the area be-tween these two islands evolved as an asymmetric basin (marginal trough) deepening towards the Lausitz Block (Voigt 1994). Thickness maps of the Upper Cenomanian sediments show first evidence of differential subsidence due to the tectonic activity. From Turonian time onwards, the sedimentation was clearly syn-tectonically controlled by the relative uplift of the Lausitz Block and enhanced subsidence in an axis running parallel to the recent Lausitz thrust (Voigt 1994). From the NW to the SE, the Saxon Cretaceous sedi-ments become more and more siliciclastic, changing from hemipelagic limestones and marly dominated units around Meißen and Dresden (NW) to massive sandstones in the Elbsandsteingebirge (SE). The Schmilka-Großer Winterberg section (Elbsand-steingebirge, for location see Fig. 2) represents the thick-est undisturbed succession, ranging from the Lower Tu-ronian Schmilka-Formation to the Upper-Turonian/Low-er Coniacian Schrammstein-Formation. The total thick-ness of the Upper Cretaceous in Saxony is in the order of 550 to 650 m (Tröger in Pälchen & Walter 2008) in the Elbsandsteingebirge and possibly 1000 m in the Zittauer Gebirge, where the Lower Coniacian is represented by thick sandstones of the Waltersdorf Formation. Further towards the SE, the sandstones pass over into the Upper Cretaceous of the Bohemian Basin (Czech Republic).

1.2. Schmilka section

The Schmilka – Großer Winterberg section is mainly char-acterised by thick marine sandstone packages compris ing a complete 400 m thick succession of the Lower to Mid-dle Turonian Schmilka Formation, the Middle to Upper Turonian Postelwitz-Formation and the Upper Turonian to Lower Coniacian Schrammstein For ma tion. The labia­tus Sandstone marks the base of the section (Schmilka Formation). The overlying Postelwitz- and Schramm-stein formations can be further subdivided in distinct units which have member status: Sandstones a, b and c according to Lamprecht 1928, 1931 and 1934 are sum-marized as Postelwitz Formation (Prescher 1981), d and e as Schrammstein Formation (Voigt & Tröger 2007) at the top of the Großer Winterberg (Fig. 2 and 3).

2. Samples and methods

2.1. Samples

The completely exposed Schmilka – Großer Winterberg section forms the type locality of the lithostratigraphic subdivision of the Cretaceous in the Elbsandsteinge-birge. Sampling covered the whole succession within a vertical distance of about 30 to 70 meters between the sample points. These samples represent all Upper Creta-ceous sandstone units from the Schmilka-, Postelwitz-, and the Schrammstein formations (see Fig. 3). The sedi-ments are represented by fine- to coarse grained quartz sandstones with a relatively low content of feldspar in the Schmilka Formation and the Sandstones b and d, respectively; and a higher amount of feldspar in the Sand stone a and e. Heavy mineral spectra are mainly dominated by tourmaline, zircon, and rutile. In total six sandstone samples were analysed regarding their zircon U/Pb ages. The sample localities for the sandstones used for zircon dating are marked in figures 2 and 3. Sample coordinates are given in table 1.

2.2. Methods

Zircon concentrates were separated from 1–3 kg sample material at the Senckenberg Naturhistorische Samm lun-gen Dresden. After crushing the rocks in a jaw crusher, the material was sieved and washed. The heavy mineral separation was realized by using heavy liquid LST (sodi-um heteropolytungstates in water) and a Frantz magnetic separator. Final selection of the zircon grains for U/Pb

Page 4: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

104

dating was achieved by hand-picking under a binocular microscope. Zircon grains of all grain sizes and morpho-logical types were selected, mounted in resin blocks and polished to half their thickness. The zircon grains where examined regarding their cathodoluminescence signal using an EVO 50 Zeiss Scanning Electron Microscope (Sen ckenberg Naturhistorische Sammlungen Dresden) prior to U/Pb analyses. This helps to distinguish differ-ent growth and maybe metamorphic zones within the single grains. For U/Pb analyses the laser spots where placed in zones with monophase growth patterns that show no metamorphic overprint. Zircons were analyzed for U, Th, and Pb isotopes by LA-SF ICP-MS techniques at the Senckenberg Naturhistorische Sammlungen Dres-den (Museum für Mineralogie und Geologie, GeoPlasma Lab), using a Thermo-Scientific Element 2 XR sector field ICP-MS coupled to a New Wave UP-193 Excimer Laser System. A teardrop-shaped, low volume laser cell constructed by Ben Jähne (Dresden, Germany) and Axel Gerdes (Frankfurt am Main, Germany) was used to en-able sequential sampling of heterogeneous grains (e.g. growth zones) during time resolved data acquisition. Each analysis consisted of 15 s background acquisition followed by 20 s data acquisition, using a laser spot-size of 20 to 25 µm, respectively. The signal was tuned for maximum sensitivity for 206Pb and 238U. A common-Pb correction based on the interference- and background-

corrected 204Pb signal and a model Pb composition (Sta-cey & Kramers 1975) was carried out if necessary. The necessity of the correction is judged on whether the cor-rected 207Pb/206Pb lies outside of the internal errors of the measured ratios. Discordant analyses were always inter-preted with care and discarded. The interference of 204Hg on mass 204 (Pb) was calculated by using a 204Hg/202Hg ratio of 0.2299 and measured 202Hg. Raw data were cor-rected for background signal, common Pb, laser induced elemental fractionation, instrumental mass discrimina-tion, and time-dependant elemental fractionation of Pb/Th and Pb/U using an Excel® spreadsheet program de-veloped by Axel Gerdes (Frankfurt am Main, Germany). Reported uncertainties were propagated by quadratic addition of the external repro ducibility obtained from the standard zircon GJ-1 (~0.6% and 0.5 – 1% for the 207Pb/206Pb and 206Pb/238U, respectively) during individual analytical sessions and the within-run precision of each analysis. Isoplot diagrams (1 σ error) were produced us-ing AgeDisplay (Sircombe 2004). The 207Pb/206Pb age

Fig. 2. Geological map of the study area (slightly modified from Lobst, 1993) showing the Upper Cretaceous sandstones that represent the Schmilka (labiatus Sandstone), the Pos-telwitz (Sandstones a – c) and the Schrammstein forma-tions (Sandstones d and e). Sample points are indicated.

Abb. 2. Die geologische Karte des Untersuchungsgebietes (leicht verändert nach Lobst 1993) zeigt die oberkretazischen Sandsteine der Schmilka- (labiatus-Sandstein), der Postel-witz- (Sandsteine a – c) und der Schrammstein-Formation (Sandsteine d und e). Die Probenahmepunkte sind ein ge-tragen.

Fig. 1. The cross-section of the Saxonian Cretaceous Basin shows the thrusting of the Lausitz Block on the Mesozoic depo-sits (based on Lobst 1993). The sediments are overthrust-ed. Important are the Jurassic deposits that are preserved along the fault. They are in general absent below the Cre-taceous deposits elsewhere in Saxony. Their occurrence and facies indicate a widespread Jurassic cover and the in-version of a Jurassic-Early Cretaceous graben which was established in the area of the recent Lausitz Block.

Abb. 1. Schnitt durch das sächsische Kreidebecken, der deutlich die Aufschiebung des Lausitz-Blocks auf die mesozoi-schen Sedimente des Elbtals zeigt. Die Sedimentschichten wurden dabei überkippt. Wichtig ist das Vorkommen ju-rassischer Sedimente im Liegenden der kreidezeitlichen Ablagerungen. Sie sind nur im Störungsvolumen erhalten geblieben und fehlen im Untergrund des Sächsischen Kreidebeckens. Ihre Existenz und ihre Ausbildung las-sen auf eine ehemals weite Verbreitung jurassischer Sedi-mente und die Inversion eines Grabens schließen, der ur-sprünglich auf dem Lausitzer Massiv angelegt und in der Oberkreide invertiert wurde.

Page 5: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

105

GEOLOGICA SAXONICA — 59: 2013

was taken for interpretation for all zircons >1.0 Ga, and the 206Pb/238U ages for younger grains. For further details on analytical protocol and data processing see Gerdes & Zeh (2006) and Frei & Gerdes (2009).

3. Results

The U/Pb zircon ages show very similar results for the first five samples (Sk 6-2, Sk 1s, Sk 5, Sk 4-1, 3-1) repre-senting the sandstone units labiatus Sandstone (Schmil-ka Formation), Sandstone a, b, c (Postelwitz Formation), and Sandstone d (Schrammstein Formation) (Fig. 3). The youngest concordant measurement for each sample is given in the AgeDisplay diagrams in Figure 3. For all samples, the age spectra start at ca. 300 to 330 Ma and go on more or less continuously until ca. 800 Ma. The youngest single zircon grain was found in sample Sk 5, giving an age of 258 ± 6 Ma (2 σ error). There are abun-dant (for samples Sk 6-2, Sk 1s, Sk 5, Sk 4-1, Sk 3-1) or many (sample Sk 2-2) Meso- and Palaeoproterozoic zir-con ages up to ca. 2000 to 2100 Ma. Archean ages were only found in the base of the section in sample Sk 6-2 (labiatus Sandstone, Schmilka Formation), represented by one zircon grain with an age of 2969 ± 76 Ma (2 σ error). There is only one more grain older than 2100 Ma found in sample Sk 4-1 (Sandstone c, Postelwitz Forma-tion) giving an age of 2441 ± 34 Ma (2 σ error, Fig. 3). The most important result is the striking difference in abundance and distribution of age spectra of the Meso- and Palaeoproterozoic zircon in sample Sk 2-2 (Sand-stone e, Schrammstein Formation) compared to all other samples. The increasing number of Proterozoic ages in the upper part of the section is associated with a decrease in Palaeozoic ages (Figs. 3 and 4).

4. Interpretation and discussion

The recent geology of the Lausitz Block is dominated by early Cambrian granodiorites which intruded Late Neo-proterozoic greywackes. The age spectra of these units are well known and represent the following ages: The sedimentation age of the greywackes is assumed to be ca. 570 Ma, given by youngest detrital zircon grains and ash layers. In addition to this, the greywackes contain few detrital zircon grains of Archean ages (up to 3.5 Ga) and abundant zircons of Palaeo- and Neoproterozoic/Cadomi-an ages. Important is the lack of detrital Mesoproterozoic zircon grains in these sediments. The intruding granodi-orites are summarized as Lausitz Granodio rite Suite and

show zircon ages of ca. 540 Ma. Only the Rumburg Gra-nite with ca. 490 Ma is younger. On top of these Cadomi-an units lie Lower Ordovician shallow marine sediments represented by the Dubrau Formation (Tremadoc, ca. 480 Ma; Linnemann 2008, Linnemann et al. 2011). The ages are different from observed ages of the Cretaceous sandstones in the Schmilka-Großer Winter-berg section. We did not find a prominent peak of ca. 540 Ma old zircon grains, as expected due to the direct neighbourhood to the 540 Ma old granodiorites of the Lausitz Block. Ages of this time were found in all sam-ples, but not with increased amounts relatively to other age groups. Nevertheless, this age group occurs both in the Variscan deformed basement of the Bohemian Massif as well as in the units of the Lausitz Block. Therefore, we conclude that these sandstones were derived from sedi-mentary units which covered the inverted Lausitz Block during the Cretaceous and were originally derived from the Bohemian Massif. We interpret the Neoproterozoic to Paleozoic ages of all samples as the influx of reworked units of the Avalo-nian/Armorican and Variscan basement units (Hofmann et al. 2009). The youngest concordant U/Pb zircon age of 258 ± 6 Ma (sample Sk 1s, sandstone a, Fig. 3) shows that there had been magmatic activity in the uppermost Permian, maybe representing the first break-up activities of Pangea and opening of Permian basins. —Zircons of Triassic, Jurassic and Cretaceous sandstones in Germany indicate a distinct change in source area of the Jurassic sediments compared to Triassic and Cretaceous sediments. Middle Jurassic sandstones (Dogger) show a distinct age peak in the Meso- and Paleoproterozoic ages (Hofmann et al. 2009). These ages are representative for a Baltica provenance (Hofmann et al. 2009) and correlate to the regional uplift of the North Sea Dome during the Middle Jurassic which resulted in the widespread erosion and resedimentation of Early Jurassic and Triassic sand-stones of the Northsea Basin which were originally shed from the Baltic shield. There is no potential source area providing big amounts of zircon ages between 900 and 1900 Ma in Cen-tral Europe. Therefore it is likely, that the high amount of Proterozoic ages in the uppermost sample (Sk 2-2, Sand-stone e, see Fig. 4) derived from eroded and reworked Ju-rassic siliciclastic sediments covering the Lausitz Block at that time. The samples Sk 6-2 to Sk 3-1 were taken below Sk 2-2 (Fig. 3) and do not show this massive in-put of Proterozoic ages. They prove that Middle Jurassic deposits where not at the surface at that time. Probably, they had still been covered by younger sediments (Upper Jurassic to Lower Cretaceous). The erosion of units with the Meso-/Proterozoic age spectra started in the Conia-cian. Therefore the basement units of the Lausitz Block were not at the surface and not available to erosion dur-ing Turonian – Coniacian time (Fig. 5).—Apatite cooling ages of the Lausitz Block (Lange et al. 2008) and of the Karkonosze Mts. (Danišik et al. 2010)

Page 6: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

106

Page 7: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

107

GEOLOGICA SAXONICA — 59: 2013

prove an enormous Late Cretaceous uplift of the Lausitz Block ca. 50 to 85 Ma ago (Lange et al. 2008). Uplift and fast cooling happened in two stages also in the Karko-nosze Mts. at ca. 82 – 90 Ma and at 77 – 91 Ma (Danišik et al. 2010). This uplift resulted in the removal of about 3 – 4 km of overburden (estimated denudation rate of ca. 100 m/1 Ma for the Lausitz Block, Lange et al. 2008). On the base of pebble composition close to the Lausitz Thrust and these cooling ages, Voigt (2009) concluded that eroded units were initially represented by a thick sedimentary pile of Triassic to Early Cretaceous sedi-ments which were redeposited in an upside-down suc-cession (first youngest, last oldest). As the uppermost Cretaceous sandstones show no evidence of a granodi-oritic source and most cooling ages indicate a Santonian to Campanian uplift, a much thicker primary thickness of Cretaceous sediments can be assumed. Triassic sandstones were assumed as source for the higher parts of the Late Cretaceous succession in the Elbsandsteingebirge (Voigt 1994). But the predominance of Baltica ages (Meso-Palaeoproterozoic) in the high-

est preserved units indicates that they did not provide a significant amount of sands to the basin fill until the early Coniacian. We propose a later redeposition of Tri-assic sands. This is in agreement with cooling ages of the Lausitz Block (Lange et al. 2008) and the Karkonosze Mts. (Danišik et al. 2010) and the comparison with bet-ter preserved basins, proving a Santonian to Campanian peak of inversion tectonics. Unfortunately, there are no younger Upper Creta-ceous sediments than Lower Coniacian left in the study area. Because of that, we can only assume that the Tri-assic and Permian sediments, lying below the Jurassic deposits, got eroded later too, and, maybe, even a part of the granodiorite of the Lausitz Block itself, in the up-permost Cretaceous. These “evidences” where probably eroded during the big Late Cretaceous to Early Palaeo-gene weathering. Additionally, we assume regional uplift of the Lausitz and the Bohemian Massif after inversion, because most of the Cretaceous deposits of the Bohemian Cretaceous Basin had been removed before the Miocene.

Fig. 3. Section of the Elbsandsteingebirge around Schmilka (Großer Winterberg region) based on Lamprecht (1928), Tröger (in Pälchen & Walter 2008) and own field observations. One sample of each sandstone unit was analysed. Sample points are indicated. Age-Display diagrams of all samples showing concordant U/Pb zircon ages (x-axis) versus probability and frequency (y-axis) after Sircombe (2004) are based on 1 σ errors. All measurements with a degree of concordance between 90 and 110 % were regarded as concordant and used for the diagrams. 206Pb/238U-ratios were used for age calculation of all ages below 1000 Ma. For older grains 207Pb/206Pb-ratios were used for age calculation. Youngest concordant single zircon age of each sample is given with 2 σ error.

Abb. 3. Geologischer Schnitt durch das Elbsandsteingebirge bei Schmilka (Region Großer Winterberg) basierend auf Lamprecht (1928), Tröger (in Pälchen & Walter 2008) und eigenen Geländeaufnahmen. Pro Sandsteineinheit wurde eine Probe analysiert. Die Probenahmeniveaus sind durch weißen Sternchen markiert. Das AgeDisplay Diagramm jeder Probe zeigt die U/Pb-Zirkonalter (x-Achse) aufgetragen gegen die Wahrscheinlichkeit und Häufigkeit (y-Achse), basierend auf einem 1-σ-Fehler (Sircombe 2004). Alle Messungen mit einer Konkordanz zwischen 90 und 110% wurden als konkordant angesehen und zur Erstellung dieser Diagramme genutzt. Zur Altersberechnung für Alter unter 1000 Ma wurden die 206Pb/238U-Verhältnisse verwendet. Für höhere Alter wurde das 207Pb/206Pb-Verhältnis herangezogen. Das jüngste konkordante Einzelzirkonalter für jede Probe ist angegeben (2-σ-Feh ler).

Fig. 4. Diagrams showing change in age classes (Archean, Proterozoic and Palaeozoic) for all analysed sandstones. Note the sudden increase of Proteorzoic ages in the uppermost sample (Sk 2-2, Sandstone e, Schrammstein Formation) in comparison to the five samples below.

Abb. 4. Darstellung der Veränderung der Altersklassen für alle analysierten Sandsteine. Auffällig ist die plötzliche Zunahme proterozoi-scher Alter in der obersten Probe (Sk 2-2) im Vergleich zu den fünf darunterliegenden Proben.

Page 8: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

108

5. Summary

The main results of this study can be summarized in sev-en points:

The Lausitz Block was a part of the West-Sudetic Island and covered with Triassic, Jurassic and probably Lower Creataceous sediments. It was the most probable source area for the Upper Cretaceous sandstones of the Elbtal Group.—The determined zircon ages from the Palaeozoic to Late Neoproterozoic are interpreted as signals of reworked lo-cal material, such as the Variscan and Cadomian base-ment units and their Palaeozoic cover sequences.—The zircon U/Pb-age spectra show a sudden input of Meso- and Palaeoproterozoic ages in the uppermost part of the Schmilka section (sample Sk 2-2, Sandstone e, Fig. 3), that can only be interpreted as reworking of si-liciclastic Jurassic material (Middle Jurassic).—Erosion of these Jurassic sediments started not earlier than in the Coniacian (Fig. 5).—Most zircon grains represented in this study experienced at least their second cycle of recycling during the Late Cretaceous sedimentation.—The minor amounts of ca. 540 Ma ages in all samples confirm the Mesozoic cover of the Cadomian basement units of the Lausitz Block. The latter ones were not avail-

Fig. 5. Model of inversion and syntectonic redeposition of the Mesozoic cover of the Lausitz Block (based on Voigt 2009 and the recent study) showing sedimentation and tectonic activity along the Lausitz Thrust during the Mesozoic. Uplift of the Lausitz Block started in the low-er Upper Cretaceous (Middle Cenomanian). From that time on, the Mesozoic cover of the Lausitz Block was the main source area for the sediments of the Saxonian Cretaceous Basin. Erosion of Middle Jurassic siliciclas-tic sediments started in the Coniacian. Older (Triassic) sediments and early Cambrian granodiorites did prob-ably not contribute to the formation of Upper Cretaceous deposits in Saxony.

Abb. 5. Model zur Sedimentation und tektonischen Aktivität ent-lang der Lausitzer Überschiebung während des Mesozoi-kums (basierend auf Voigt 2009 und den Ergebnissen dieser Studie). Die Hebung des Lausitz-Blocks begann in der unteren Oberkreide (mittleres Cenoman). Die auflagernden mesozoischen Sedimente des invertierten Lau sitz-Blocks waren die Hauptquelle für die Sandsteine des Elbsandsteingebirges. Die Abtragung mitteljurassi-scher siliziklastischer Sedimente begann im Coniac. Äl-tere (triassische) Sedimente und der heute in der Lausitz dominierende Granodiorit trugen vermutlich nicht zur Sedimentbildung der sächsischen Oberkreide bei.

Page 9: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

109

GEOLOGICA SAXONICA — 59: 2013

able for erosion until at least Middle to Late Coniacian times (most probably even later).—The presented section does not show a real inversion with Cadomian ages (mainly ca. 540 and ca. 570 Ma) of the Lausitz Block on top. According to cooling ages and compared with better preserved basins this inversion took place during the Santonian to Campanian, which is too young for the Schmilka – Großer Winterberg section.

6. Acknowledgement

We would particularly like to thank Dr. Jan-Michael Lange (Sen-ckenberg Naturhistorische Sammlungen Dresden) for various cor-rections, advises, and references that helped to improve this paper.

7. References

Danišik, M.; Migoń, P.; Kuhlemann, J.; Evans, N.J.; Dunkl, I., Frisch, W. (2010): Thermochronological constraints on the long-term erosional history of the Karkonosze Mts., Central Eu-rope. – Geomorphology, 117: 78 – 89, Amsterdam.

Frei, D.; Gerdes, A. (2009): Precise and accurate in situ U-Pb dat-ing of zircon with high sample throughput by automated La-SF-ICP-MS. Chemical Geology, 261: 261 – 270, Amsterdam.

Gerdes, A.; Zeh, A. (2006): Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analysis of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Plane tary Science Letters, 249: 47 – 61, Amsterdam.

Hofmann, M.; Voigt, T.; Linnemann U. (2009): The sands of Pan - gea – U-Pb-LA-ICP-MS geochronology of detrital zircon grains: a case study of the Mesozoic of Central Europe. Schrif-ten reihe der Deutschen Gesellschaft für Geowissenschaften, 63: 140, Hannover.

Lamprecht, F. (1928): Schichtenfolge und Oberflächenformen im Winterberggebiete des Elbsandsteingebirges. – Mitteilungen des Vereins für Erdkunde Dresden, N.F., 1927: 1 – 48, Dresden.

Lamprecht, F. (1931): Die Schichten des sächsisch-böhmischen Turons rechts der Elbe. – Sonderabdruck Neues Jahrbuch für Mineralogie etc., Beil.-Bd. 67, Abt. B: 113 – 138.

Lamprecht, F. (1934): Die Schichtlagerung des Turons im säch-sisch-böhmischen Elbsandsteingebirge. – Berichte der mathe-matisch-physikalischen Klasse der Sächsischen Akademie der Wissenschaften zu Leipzig, 86: 155 – 186, Leipzig.

Lange, J.-M.; Tonk, C.; Wagner, G.A. (2008): Apatitspaltspurdaten zur postvariszischen thermotektonischen Entwicklung des sächsischen Grundgebirges – erste Ergebnisse. – Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 159: 123 – 132, Stuttgart.

Linnemann, U. (2008): Die Struktureinheiten des Saxothuringi-kums. – In: Linnemann, U. (Ed.): Das Saxothuringikum – Ab-riss der präkambrischen und paläozoischen Geologie von Sach-

sen und Thüringen. – 23 – 32, Dresden (Staatliche Natur his to-rische Sammlungen Dresden).

Linnemann, U.; Franz, C.; Hofmann, M.; Winkler, R.; Ullrich, B. (2011): The Dubrau Formation (Lower Ordovician, Lausitz Block) – Sedimentary facies, fossil assemblae, and U-Pb ages of detrital zircons from a peri-Gondwanan cold-water sec-tion with West African affinity. – Freiberger Forschungshefte, C 540: 119 – 139, Freiberg.

Lobst, R. (1993): Geologische Karte der Nationalparkregion Säch-sische Schweiz 1 : 50.000, Geologische Regionalkarte 1. – 1. Aufl., Sächsisches Landesamt für Umwelt und Geologie, Frei-berg.

Niebuhr, B.; Hiss, M.; Kaplan, U.; Tröger, K.-A.; Voigt, S.; Voigt, T.; Wiese, F.; Wilmsen, M. (Eds., 2007): Lithostratigraphie der norddeutschen Oberkreide. Schriftenreihe der Deutschen Ge-sellschaft für Geowissenschaften, 55: 49 – 66, Hannover.

Pälchen, W.; Walter, H. (Eds., 2008): Geologie von Sachsen. – 308 – 358, Stuttgart (Schweizerbart).

Pietzsch, K. (1963): Geologie von Sachsen. – 1 – 870, Berlin (VEB Deutscher Verlag der Wissenschaften).

Prescher, H. (1981): Probleme der Korrelation des Cenomas und Turons in der Sächsischen und Böhmischen Kreide. – Zeit-schrift für Geologische Wissenschaften, 9: 367 – 373, Berlin.

Sircombe, K.N. (2004): AgeDisplay: an Excel workbook to evalu-ate and display univariate geochronological data using binned frequency histograms and probability density distributions. Computers and Geosciences, 30: 21 – 31, Amsterdam.

Stacey, J.S.; Kramers, J.D. (1975): Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Plane-tary Science Letters, 26: 207 – 221, Amsterdam.

Tröger, K.-A. (1964): Die Ausbildung der Kreide (Cenoman bis Coniac) in der Umrandung des Lausitzer Massivs. – Geologie, 6: 717 – 773.

Voigt, T. (1994): Faziesentwicklung und Ablagerungssequenzen am Rand eines Epikontinentalmeeres – Die Entwicklungsge-schichte der Sächsischen Schweiz. – 1 – 130 (unpublished doc-toral thesis, Technische Universität Bergakademie Freiberg).

Walter, R. (2003): Erdgeschichte – Die Entstehung der Kontinente und Ozeane. – 1 – 325, Berlin, New York (de Gruyter).

Wilmsen, M.; Vodrázka, R.; Niebuhr, B. (2011): The Upper Ce no-manian and Lower Turonian of Lockwitz (Dresden area, Sa-xony, Germany): lithofacies, stratigraphy and fauna of a trans-gressive succession. – Freiberger Forschungshefte, C 540: 27 – 45, Freiberg.

Page 10: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

110

Tabl

e 1.

LA

-SF-

ICP-

MS

U, P

b, a

nd T

h da

ta o

f sin

gle

zirc

on g

rain

s fro

m th

e U

pper

Cre

tace

ous s

ands

tone

s of t

he S

chm

ilka

sect

ion

(Elb

sand

stei

ngeb

irge)

.

N

ame

of th

e sa

mpl

e as

wel

l as G

PS c

oord

inat

es, g

eolo

gica

l for

mat

ion,

stra

tigra

phic

age

, am

ount

of m

easu

red

zirc

on g

rain

s and

am

ount

of c

onco

rdan

t (w

ithin

90

to 1

10%

of c

onco

rdan

ce) a

naly

ses

are

give

n fo

r eac

h sa

mpl

e as

firs

t lin

e on

top

of th

e da

ta. —

Ital

ic/g

rey:

dis

cord

ant a

naly

ses (

not i

n th

e ra

nge

of 9

0–11

0 %

of d

egre

e of

con

cord

ance

)

Tabe

lle 1

. LA

-SF-

ICP-

MS

U, P

b un

d Th

Dat

en v

on e

inze

lnen

Zirk

onen

der

obe

rkre

tazi

sche

n Sa

ndst

eine

des

Sch

milk

a Pr

ofils

(Elb

sand

stei

ngeb

irge)

.

D

er P

robe

nnam

e, d

ie G

PS K

oord

inat

en, g

eolo

gisc

he F

orm

atio

n, st

ratig

raph

isch

es A

lter,

Anz

ahl d

er g

emes

sene

n Zi

rkon

e un

d A

nzah

l der

kon

kord

ante

n (in

nerh

alb

eine

r Kon

kord

anz

von

90 b

is 1

10%

) A

naly

sen

sind

für j

ede

Prob

e in

der

ers

ten

Zeile

übe

r den

jew

eilig

en D

aten

ang

egeb

en. —

Kur

siv/

grau

: dis

kord

ante

Ana

lyse

n (a

ußer

halb

des

90–

110%

Ber

eich

s der

Kon

kord

anz)

Sk 1

s (Sa

ndst

one

a, P

oste

lwitz

For

mat

ion,

Mid

dle

Turo

nian

) — 5

0° 54

′ 06.

7″ N

; 14°

13′ 0

7.5″

E,

mea

sure

d si

ngle

zirc

on g

rain

s: 1

11, c

onco

rdan

t with

in 9

0 – 11

0% o

f con

cord

ance

: 108

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a216

879

233

151.

1662

980.

0556

31.

90.

4117

2.6

0.05

368

1.8

0.74

349

735

08

358

4098

a318

147

253

140.

3229

040.

0572

72.

00.

4250

2.5

0.05

382

1.5

0.79

359

736

08

364

3499

a417

190

190

110.

6785

40.

0559

33.

70.

4169

4.3

0.05

406

2.0

0.88

351

1335

413

374

4694

a516

084

105

131.

3047

710.

1026

42.

10.

8571

2.8

0.06

056

1.8

0.75

630

1262

913

624

3910

1

a612

584

569

0.68

5008

0.13

822

2.1

1.28

273.

70.

0673

13.

00.

5783

517

838

2184

763

98

a846

6657

30.

1456

110.

0620

32.

20.

4660

3.5

0.05

449

2.8

0.62

388

838

812

391

6299

a960

717

514

440.

7051

90.

0816

32.

00.

6513

3.4

0.05

786

2.8

0.57

506

1050

914

525

6296

a10

1522

821

712

0.46

9701

0.05

594

2.0

0.41

382.

80.

0536

51.

90.

7335

17

352

835

642

98

a11

1228

417

710

0.49

1365

40.

0545

52.

10.

4009

2.9

0.05

330

2.1

0.71

342

734

29

342

4710

0

a13

1343

114

811

0.36

8938

0.07

895

1.9

0.62

032.

90.

0569

82.

20.

6649

09

490

1149

148

100

a14

4901

242

232

0.38

984

0.07

479

1.9

0.58

623.

10.

0568

42.

40.

6346

59

468

1248

553

96

a16

1798

225

615

0.54

3357

50.

0566

02.

30.

4199

3.3

0.05

381

2.4

0.71

355

835

610

363

5398

a17

1467

415

711

1.29

654

0.05

581

2.2

0.41

207.

10.

0535

46.

70.

3135

08

350

2135

215

210

0

a18

3398

241

923

0.34

824

0.05

352

2.1

0.39

344.

40.

0533

23.

80.

4933

67

337

1334

287

98

a19

7396

511

137

0.68

2767

50.

3033

42.

14.

8434

2.4

0.11

580

1.2

0.87

1708

3117

9220

1892

2190

a20

4568

094

250.

6053

210

0.24

383

2.0

2.89

722.

50.

0861

81.

40.

8314

0726

1381

1913

4227

105

a21

1168

717

111

1.33

2286

0.05

663

1.9

0.42

582.

80.

0545

32.

10.

6735

57

360

939

347

90

a22

2975

732

128

0.69

2456

0.08

421

1.8

0.68

822.

40.

0592

71.

60.

7452

19

532

1057

736

90

a24

6629

764

914

10.

4310

603

0.06

143

10.0

0.45

8910

.10.

0541

81.

20.

9938

438

384

3337

926

101

a25

2664

735

140.

9114

780.

3425

12.

45.

7494

3.2

0.12

174

2.2

0.74

1899

4019

3928

1982

3996

a27

1044

665

80.

6445

280.

1113

32.

30.

9449

4.5

0.06

156

3.8

0.52

680

1567

522

659

8210

3

a28

2372

142

0.77

881

0.12

442

2.2

1.10

224.

60.

0642

54.

10.

4775

615

754

2575

087

101

a29

2121

129

517

0.42

2719

0.05

516

1.9

0.40

603.

20.

0533

92.

50.

6134

67

346

934

657

100

a30

5874

866

1.15

3146

0.05

608

2.0

0.41

413.

90.

0535

53.

30.

5335

27

352

1235

274

100

a31

6787

635

0.15

2103

0.08

919

3.0

0.71

734.

30.

0583

23.

10.

7055

116

549

1854

267

102

a32

6009

905

0.45

3150

0.05

849

2.3

0.43

693.

40.

0541

62.

50.

6736

68

368

1037

856

97

a33

2760

828

126

0.47

4987

0.09

107

2.4

0.74

772.

80.

0595

41.

60.

8456

213

567

1258

734

96

a35

1132

217

110

0.49

1244

80.

0572

21.

90.

4238

2.7

0.05

372

2.0

0.68

359

635

98

359

4510

0

Page 11: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

111

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— S

k 1s

(San

dsto

ne a

, Pos

telw

itz F

orm

atio

n, M

iddl

e Tu

roni

an) c

ontin

ued.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a36

3519

660

190.

7957

070.

2993

83.

64.

4249

3.8

0.10

720

1.4

0.93

1688

5317

1732

1752

2596

a37

4784

725

1.56

8917

0.05

690

2.0

0.42

143.

30.

0537

12.

70.

5935

77

357

1035

961

99

a38

4429

593

0.20

1504

0.05

719

2.3

0.42

353.

90.

0537

03.

20.

5935

98

359

1235

971

100

a40

2142

510

411

0.61

2868

0.10

137

2.1

1.05

753.

20.

0756

62.

40.

6662

213

733

1710

8649

57

a41

5689

123

1.06

1496

0.20

192

2.5

2.18

283.

70.

0784

02.

80.

6711

8627

1176

2611

5755

102

a42

1042

811

17

0.83

1975

60.

0560

12.

00.

4143

3.2

0.05

365

2.5

0.64

351

735

210

356

5599

a43

1767

119

612

0.67

6807

0.05

679

2.9

0.42

033.

30.

0536

81.

60.

8835

610

356

1035

835

100

a44

1243

110

30.

9017

250.

2980

13.

14.

0515

4.1

0.09

860

2.6

0.77

1681

4616

4534

1598

4910

5

a47

7230

644

0.63

5398

0.06

051

3.0

0.45

184.

00.

0541

62.

60.

7537

911

379

1337

859

100

a49

2009

413

010

0.81

1058

80.

0710

31.

90.

5458

2.4

0.05

573

1.4

0.79

442

844

29

442

3210

0

a50

1792

913

08

0.26

8607

0.06

401

2.1

0.48

262.

80.

0546

81.

80.

7540

08

400

939

941

100

a51

7259

933

312

0.33

170

0.02

968

4.3

0.23

226.

00.

0567

24.

10.

7218

98

212

1148

191

39

a52

1469

569

40.

1370

80.

0611

43.

10.

4583

10.2

0.05

436

9.7

0.31

383

1238

333

386

218

99

a53

5414

430

115

0.43

237

0.04

859

2.2

0.35

284.

60.

0526

64.

00.

4730

67

307

1231

492

97

a54

7236

541

180.

8761

127

0.39

102

1.9

6.41

012.

20.

1189

01.

10.

8721

2834

2034

1919

4019

110

a55

2064

275

70.

6957

630.

0856

81.

90.

6807

3.4

0.05

762

2.9

0.55

530

1052

714

515

6310

3

a57

9612

564

1.10

1768

40.

0619

91.

90.

4642

3.2

0.05

431

2.6

0.60

388

738

710

384

5810

1

a58

1032

6042

170.

8689

330.

3569

52.

05.

7456

2.3

0.11

674

1.0

0.90

1968

3519

3820

1907

1710

3

a59

2027

171

50.

0813

674

0.08

069

1.9

0.63

734.

00.

0572

93.

50.

4850

09

501

1650

376

100

a60

6703

353

1.93

1633

0.06

569

2.2

0.50

113.

10.

0553

22.

10.

7341

09

412

1042

546

96

a62

7027

342

1.18

1284

90.

0633

92.

10.

4772

3.9

0.05

460

3.3

0.53

396

839

613

396

7510

0

a63

6578

173

0.32

956

0.17

119

2.4

1.66

193.

50.

0704

12.

60.

6810

1923

994

2294

052

108

a65

2989

572

50.

2274

20.

0769

05.

20.

5996

6.2

0.05

655

3.3

0.84

478

2447

724

474

7310

1

a66

1056

444

30.

2519

576

0.06

107

2.4

0.45

553.

00.

0541

01.

80.

7938

29

381

1037

541

102

b242

9876

50.

7089

60.

0569

82.

60.

4209

4.0

0.05

358

3.1

0.65

357

935

712

353

6910

1

b348

296

184

300.

0614

076

0.17

134

2.3

1.68

922.

60.

0715

01.

20.

8910

1922

1004

1797

225

105

b443

002

140

300.

4052

115

0.20

917

2.2

2.35

042.

60.

0814

91.

30.

8612

2425

1228

1912

3326

99

b543

619

416

350.

3726

530.

0823

32.

40.

6494

3.3

0.05

721

2.2

0.75

510

1250

813

500

4710

2

b640

464

185

340.

6756

397

0.17

259

2.3

1.67

293.

00.

0703

01.

90.

7710

2622

998

1993

739

110

b712

801

204

120.

2223

560

0.06

004

2.4

0.44

373.

20.

0536

02.

00.

7737

69

373

1035

445

106

b819

599

352

190.

2311

825

0.05

632

2.4

0.41

614.

40.

0535

83.

70.

5435

38

353

1335

383

100

b975

7977

80.

7031

270.

1028

52.

70.

8590

6.1

0.06

057

5.5

0.44

631

1663

029

624

118

101

b10

9623

728

0.07

1007

50.

1257

13.

11.

1015

3.9

0.06

355

2.3

0.80

763

2375

421

727

5010

5

b13

1639

216

011

0.35

460

0.06

480

2.9

0.48

9310

.30.

0547

69.

90.

2840

511

404

3540

322

210

1

b15

2724

331

727

0.20

1528

70.

0900

12.

20.

7122

2.9

0.05

738

1.8

0.78

556

1254

612

506

4011

0

b16

5807

755

0.23

1489

0.06

465

3.3

0.49

164.

90.

0551

43.

60.

6740

413

406

1741

881

97

Page 12: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

112

Tabl

e 1

— S

k 1s

(San

dsto

ne a

, Pos

telw

itz F

orm

atio

n, M

iddl

e Tu

roni

an) c

ontin

ued.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

b17

2944

921

728

0.61

4525

60.

1238

62.

31.

0891

3.3

0.06

378

2.4

0.69

753

1674

818

734

5110

3

b18

2420

619

628

1.89

1452

0.11

911

3.3

1.02

944.

70.

0626

83.

30.

7072

523

719

2469

771

104

b19

1639

526

517

0.73

2760

0.05

958

2.4

0.44

634.

50.

0543

23.

90.

5337

39

375

1438

587

97

b20

6500

111

948

1.99

1424

70.

3076

92.

24.

2697

2.5

0.10

064

1.2

0.88

1729

3416

8821

1636

2210

6

b21

2641

944

726

0.56

2465

0.05

598

2.2

0.41

503.

80.

0537

63.

10.

5735

17

352

1136

170

97

b22

1165

2821

072

0.89

1161

50.

3095

62.

44.

3047

2.6

0.10

085

1.1

0.91

1739

3616

9422

1640

2010

6

b24

6943

130

80.

6320

440.

0576

32.

50.

4298

4.0

0.05

409

3.1

0.63

361

936

312

375

7096

b25

1077

395

102.

1248

30.

0719

72.

60.

5497

7.8

0.05

539

7.4

0.33

448

1144

528

428

164

105

b26

5102

946

756

0.46

5303

0.12

115

3.0

1.04

813.

20.

0627

51.

00.

9573

721

728

1770

022

105

b27

1157

923

914

0.92

2140

70.

0547

72.

30.

4044

3.2

0.05

356

2.1

0.74

344

834

59

352

4898

b28

6435

567

0.81

1986

0.11

419

2.6

0.97

573.

60.

0619

72.

50.

7269

717

691

1867

353

104

b29

2486

513

1.19

1200

0.05

695

2.7

0.42

325.

60.

0538

94.

90.

4935

710

358

1736

611

097

b30

6127

114

80.

7387

140.

0615

22.

90.

4619

6.1

0.05

446

5.4

0.48

385

1138

620

390

120

99

b31

4711

445

0.48

7773

0.10

299

2.6

0.84

614.

00.

0595

82.

90.

6763

216

622

1958

864

107

b32

1781

317

615

0.26

961

0.08

882

2.3

0.71

134.

00.

0580

83.

30.

5654

912

545

1753

373

103

b33

1723

124

518

1.08

441

0.06

700

2.6

0.51

105.

50.

0553

24.

90.

4641

810

419

1942

510

998

b36

7259

132

80.

3324

310.

0621

82.

30.

4657

3.1

0.05

432

2.1

0.74

389

938

810

384

4710

1

b37

1267

211

213

0.91

7781

0.10

531

2.5

0.88

563.

90.

0609

93.

00.

6364

515

644

1963

965

101

b38

3188

645

529

0.41

2472

0.06

254

2.2

0.46

683.

50.

0541

32.

70.

6339

18

389

1137

762

104

b39

1101

618

911

0.48

3667

0.05

735

2.2

0.42

284.

10.

0534

73.

40.

5436

08

358

1234

977

103

b40

1096

311

712

1.98

3305

0.08

570

2.2

0.67

903.

20.

0574

62.

40.

6853

011

526

1350

952

104

b41

1312

694

121.

2021

081

0.10

984

2.3

0.92

662.

90.

0611

81.

80.

7967

215

666

1464

638

104

b42

1097

710

59

0.89

2015

0.08

266

2.4

0.65

773.

20.

0577

12.

20.

7451

212

513

1351

948

99

b43

6769

374

0.94

4072

0.08

798

2.7

0.69

863.

90.

0575

92.

70.

7154

414

538

1651

460

106

b44

2143

528

316

0.62

1180

40.

0557

42.

20.

4099

2.5

0.05

333

1.3

0.87

350

834

98

343

2910

2

b46

2398

219

817

0.40

2289

0.08

589

2.6

0.68

613.

80.

0579

32.

80.

6953

113

530

1652

760

101

b47

1783

120

812

0.35

3275

00.

0598

52.

40.

4436

3.3

0.05

376

2.2

0.74

375

937

310

361

5010

4

b48

4666

804

0.81

8955

0.04

080

2.1

0.28

883.

20.

0513

32.

40.

6625

85

258

725

655

101

b49

1766

915

49

0.45

1828

0.05

644

2.6

0.41

914.

90.

0538

64.

20.

5335

49

355

1536

594

97

b50

6469

725

2.14

1201

30.

0544

92.

30.

3986

3.3

0.05

305

2.3

0.71

342

834

110

331

5210

3

b51

2030

518

410

0.47

1164

0.05

172

2.1

0.37

914.

20.

0531

73.

60.

5032

57

326

1233

682

97

b52

3604

635

419

0.23

6685

30.

0562

82.

20.

4129

2.8

0.05

322

1.7

0.80

353

835

18

338

3810

4

b53

7963

744

0.55

3474

0.05

829

2.4

0.43

553.

30.

0541

82.

30.

7236

58

367

1037

951

96

b54

5956

283

0.84

1720

0.10

014

2.3

0.85

063.

40.

0616

02.

50.

6861

514

625

1666

053

93

b55

1243

691

60.

0211

400.

0715

82.

60.

5502

6.7

0.05

574

6.2

0.39

446

1144

524

442

137

101

b57

3698

030

416

0.17

6815

20.

0571

42.

30.

4200

2.8

0.05

331

1.7

0.81

358

835

69

342

3710

5

Page 13: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

113

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— S

k 1s

(San

dsto

ne a

, Pos

telw

itz F

orm

atio

n, M

iddl

e Tu

roni

an) c

ontin

ued.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

b58

2105

312

98

0.21

3762

50.

0633

32.

50.

4835

2.7

0.05

536

1.2

0.90

396

940

09

427

2793

b59

1331

712

26

0.20

820

0.05

407

3.3

0.39

676.

20.

0532

25.

20.

5433

911

339

1833

811

810

0

b60

7469

534

0.68

618

0.06

310

2.2

0.47

885.

60.

0550

35.

20.

3939

48

397

1941

311

695

b61

6178

641

130.

7310

712

0.28

984

2.4

4.37

762.

60.

1095

41.

00.

9216

4134

1708

2217

9219

92

b62

1172

239

40.

8218

694

0.10

681

2.5

0.90

454.

00.

0614

23.

20.

6165

415

654

2065

469

100

b63

3115

414

512

1.04

1013

0.07

185

3.4

0.55

744.

40.

0562

62.

80.

7744

715

450

1646

361

97

b64

9014

624

1.33

1670

80.

0556

42.

30.

4074

3.0

0.05

311

1.9

0.77

349

834

79

334

4310

5

b65

6400

422

0.57

1178

10.

0561

02.

80.

4144

3.5

0.05

358

2.2

0.78

352

935

211

354

5099

b66

2055

172

70.

7330

690.

0842

92.

80.

6704

3.9

0.05

768

2.7

0.73

522

1452

116

518

5910

1

Tabl

e 1

— a

Sk 2

-2 (S

ands

tone

e, S

chra

mm

stei

n Fo

rmat

ion,

Low

er C

onia

cium

) — 5

0° 54

′ 32.

9″ N

; 14°

14′ 3

3.4″

E,

mea

sure

d si

ngle

zirc

on g

rain

s: 1

20, c

onco

rdan

t with

in 9

0 – 11

0% o

f con

cord

ance

: 59

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a143

313

10.

9283

60.

0479

73.

70.

3476

12.7

0.05

256

12.2

0.29

302

1130

334

310

278

98

a223

9351

40.

9541

300.

0609

13.

50.

4900

6.3

0.05

834

5.2

0.55

381

1340

521

543

115

70

a340

8086

50.

2467

990.

0514

83.

60.

4275

8.9

0.06

022

8.1

0.40

324

1136

127

612

176

53

a493

6715

111

0.12

1640

20.

0777

03.

50.

6174

5.4

0.05

763

4.1

0.65

482

1648

821

516

9094

a544

3292

60.

3315

790.

0581

13.

90.

5310

4.8

0.06

627

2.8

0.81

364

1443

217

815

5945

a647

6636

50.

8959

40.

0996

93.

61.

4989

36.5

0.10

905

36.4

0.10

613

2193

025

117

8466

334

a736

839

9629

0.27

5542

0.28

593

4.6

3.86

115.

30.

0979

42.

50.

8816

2167

1606

4315

8547

102

a817

909

9718

0.20

1697

00.

1841

83.

31.

9192

4.1

0.07

558

2.5

0.80

1090

3310

8828

1084

5010

1

a986

4118

99

0.28

1320

10.

0466

04.

00.

4291

7.0

0.06

679

5.7

0.58

294

1236

322

831

119

35

a10

8190

137

120.

4816

330.

0813

85.

00.

6743

6.8

0.06

010

4.7

0.73

504

2452

328

607

101

83

a11

4527

807

0.25

2345

0.08

671

3.2

0.70

855.

90.

0592

64.

90.

5453

616

544

2557

710

793

a12

4164

108

60.

3067

470.

0557

73.

90.

4204

5.7

0.05

467

4.2

0.68

350

1335

617

399

9388

a13

1202

419

515

0.20

3365

0.07

849

4.3

0.63

005.

20.

0582

13.

00.

8248

720

496

2153

865

91

a14

3863

168

270.

3112

568

0.37

045

2.4

6.47

203.

60.

1267

12.

70.

6720

3243

2042

3220

5347

99

a15

6564

829

0.72

1240

0.09

153

5.5

0.78

986.

60.

0625

93.

60.

8356

530

591

3069

477

81

a16

2370

604

0.16

1948

0.06

337

3.7

0.51

258.

10.

0586

57.

20.

4539

614

420

2855

415

871

Page 14: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

114

Tabl

e 1

— a

Sk 2

-2 (S

ands

tone

e, S

chra

mm

stei

n Fo

rmat

ion,

Low

er C

onia

cium

) con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a17

6071

166

90.

3081

060.

0520

83.

40.

3921

4.7

0.05

460

3.3

0.72

327

1133

614

396

7383

a18

7186

729

471

0.39

7203

0.22

311

2.6

2.58

493.

00.

0840

31.

40.

8812

9831

1296

2212

9328

100

a19

2887

865

0.18

5095

0.05

981

4.2

0.47

296.

70.

0573

45.

30.

6237

415

393

2250

511

674

a20

5208

125

70.

0322

630.

0604

04.

30.

5001

7.2

0.06

005

5.8

0.60

378

1641

225

605

125

62

a21

3535

715

0.14

1429

0.06

370

4.2

0.65

567.

70.

0746

56.

50.

5439

816

512

3210

5913

138

a22

2186

366

220.

5122

024

0.29

645

2.8

4.12

974.

40.

1010

33.

30.

6516

7442

1660

3616

4362

102

a23

7292

197

0.70

6922

0.31

463

2.2

4.61

914.

60.

1064

84.

00.

4917

6335

1753

3917

4073

101

a24

3283

610

533

0.39

9829

0.28

868

4.3

3.99

294.

80.

1003

22.

10.

9016

3563

1633

4016

3039

100

a25

895

62

1.52

1194

0.18

496

4.6

1.93

569.

50.

0759

08.

20.

4910

9447

1093

6510

9216

510

0

a26

6318

122

100.

1637

330.

0801

35.

80.

6601

6.7

0.05

975

3.4

0.86

497

2851

527

594

7484

a27

1117

317

015

0.35

935

0.08

335

5.9

0.80

126.

20.

0697

21.

90.

9551

629

597

2892

039

56

a28

7306

123

668

0.11

3751

0.28

737

2.7

4.01

904.

00.

1014

32.

90.

6816

2839

1638

3316

5054

99

a29

2739

591

300.

3087

620.

3146

75.

24.

6682

7.7

0.10

760

5.7

0.67

1764

8017

6266

1759

103

100

a30

1311

410

620

0.28

2367

0.17

897

3.9

1.76

695.

30.

0716

03.

60.

7310

6138

1033

3597

574

109

a31

3073

837

0.49

5478

0.07

740

4.3

0.60

447.

00.

0566

35.

50.

6248

120

480

2747

712

110

1

a32

1939

149

524

0.08

714

0.04

964

3.1

0.45

425.

50.

0663

64.

50.

5731

210

380

1881

894

38

a33

2199

734

0.39

4049

0.05

811

4.7

0.44

127.

00.

0550

75.

20.

6736

417

371

2241

511

788

a34

4040

617

0.43

6548

0.11

124

5.4

0.95

857.

40.

0624

95.

00.

7368

035

683

3769

110

798

a35

5490

101

100.

2213

570.

0949

26.

40.

8679

7.6

0.06

632

4.0

0.85

585

3663

436

817

8472

a36

2508

596

0.13

4267

0.09

705

5.2

0.79

646.

90.

0595

24.

60.

7559

729

595

3158

699

102

a37

1098

318

818

0.23

3416

0.09

645

4.3

0.86

366.

50.

0649

44.

90.

6659

424

632

3177

210

377

a38

907

252

0.50

1673

0.06

201

6.4

0.46

709.

70.

0546

27.

40.

6538

824

389

3239

716

698

a39

2996

946

945

0.47

876

0.08

159

3.7

0.79

726.

00.

0708

64.

70.

6150

618

595

2795

397

53

a40

4061

108

70.

1819

390.

0615

94.

30.

5044

7.5

0.05

940

6.1

0.57

385

1641

526

582

133

66

a41

1848

633

0.78

3433

0.03

895

6.7

0.29

3710

.40.

0546

97.

90.

6524

616

261

2440

017

762

a42

3863

486

0.91

2502

0.09

353

8.7

0.73

819.

50.

0572

33.

80.

9257

648

561

4250

184

115

a43

6685

169

100.

2655

360.

0567

34.

20.

4269

5.3

0.05

457

3.2

0.80

356

1536

116

395

7190

a44

2158

550

160.

2821

041

0.30

019

6.8

4.31

989.

30.

1043

76.

30.

7316

9210

116

9779

1703

116

99

a45

1579

822

719

0.17

319

0.08

467

4.4

0.70

167.

50.

0601

06.

00.

6052

422

540

3260

713

086

a46

5805

366

0.42

8194

0.16

529

4.9

1.63

446.

10.

0717

13.

60.

8098

645

984

3997

874

101

a47

7494

166

100.

2813

752

0.05

724

5.0

0.43

489.

10.

0551

07.

50.

5635

918

367

2841

616

886

a48

3555

785

0.42

2860

0.05

646

5.6

0.41

777.

20.

0536

54.

50.

7835

419

354

2235

610

299

a49

2162

421

0.12

3873

0.03

118

12.4

0.24

2314

.50.

0563

67.

50.

8519

824

220

2946

716

642

a50

2891

263

0.32

1916

0.10

918

4.7

0.93

498.

00.

0621

06.

50.

5866

830

670

4067

813

999

a51

531

50

0.19

297

0.08

981

4.2

0.86

2316

.80.

0696

316

.20.

2555

423

631

8291

833

360

a52

1088

555

70.

2926

10.

1004

82.

51.

4690

15.6

0.10

603

15.4

0.16

617

1591

899

1732

282

36

Page 15: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

115

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— a

Sk 2

-2 (S

ands

tone

e, S

chra

mm

stei

n Fo

rmat

ion,

Low

er C

onia

cium

) con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a53

8684

977

0.29

327

0.06

427

6.5

0.79

898.

30.

0901

55.

20.

7840

225

596

3814

2910

028

a54

529

61

0.89

646

0.06

410

5.3

0.72

0925

.80.

0815

725

.30.

2040

020

551

116

1235

496

32

a55

1816

517

019

0.01

6544

0.12

360

4.5

1.06

796.

20.

0626

64.

30.

7275

132

738

3369

792

108

a56

4798

395

0.39

2261

0.11

303

8.8

0.89

4411

.30.

0573

97.

10.

7869

058

649

5650

615

713

6

a57

3163

463

0.57

4682

0.06

539

8.1

0.61

6112

.50.

0683

39.

50.

6540

832

487

5087

919

846

a58

1501

824

100.

4858

520.

3796

26.

55.

5256

7.9

0.10

557

4.4

0.83

2075

117

1905

7017

2480

120

a59

5009

793

0.29

2102

0.04

072

6.6

0.34

309.

60.

0610

97.

00.

6925

717

299

2564

215

040

a60

5319

554

0.11

9365

0.07

956

4.6

0.63

256.

60.

0576

64.

70.

7049

422

498

2651

710

496

b112

9760

30.

1723

610.

0451

16.

50.

3448

9.5

0.05

543

6.9

0.68

284

1830

125

430

154

66

b218

8811

55

0.51

3600

0.04

188

3.0

0.30

585.

90.

0529

45.

10.

5126

58

271

1432

611

581

b314

475

362

310.

2515

470.

0847

85.

40.

7369

6.8

0.06

303

4.2

0.79

525

2756

130

709

9074

b451

9625

914

0.03

9728

0.05

934

3.2

0.44

344.

50.

0542

03.

20.

7137

211

373

1437

971

98

b515

760

463

300.

4141

10.

0561

73.

50.

7900

4.6

0.10

201

3.0

0.77

352

1259

121

1661

5521

b615

6336

50.

6721

000.

1124

13.

00.

9686

6.1

0.06

249

5.3

0.50

687

2068

831

691

113

99

b752

0059

100.

3270

820.

1649

45.

71.

6887

6.9

0.07

426

3.9

0.82

984

5210

0445

1048

7894

b817

9575

50.

2028

980.

0615

73.

80.

5311

5.5

0.06

256

4.1

0.68

385

1443

320

693

8756

b924

7513

97

0.34

4602

0.05

042

3.3

0.37

675.

70.

0541

94.

60.

5831

710

325

1637

910

484

b10

3668

548

0.25

5063

0.15

076

5.0

1.52

006.

90.

0731

34.

80.

7290

542

938

4310

1798

89

b11

4163

193

120.

1714

140.

0640

64.

70.

5552

6.8

0.06

286

5.0

0.68

400

1844

825

703

106

57

b12

6518

9518

0.23

9242

0.18

151

4.7

1.80

006.

20.

0719

24.

10.

7510

7547

1045

4198

483

109

b13

963

684

0.34

2050

0.04

957

7.7

0.32

7011

.60.

0478

48.

70.

6631

224

287

2992

205

340

b14

6635

408

190.

1311

330.

0477

07.

20.

4200

11.5

0.06

386

8.9

0.63

300

2135

635

737

189

41

b15

4223

264

150.

2326

420.

0560

16.

10.

4142

7.4

0.05

363

4.1

0.83

351

2135

222

356

9499

b16

5195

5814

0.50

6355

0.21

218

5.4

2.39

517.

40.

0818

75.

10.

7312

4061

1241

5512

4210

010

0

b17

2370

117

80.

1140

380.

0696

03.

70.

5696

6.4

0.05

935

5.2

0.59

434

1645

824

580

112

75

b18

525

282

0.09

934

0.07

375

6.2

0.58

5316

.10.

0575

614

.90.

3945

928

468

6251

332

789

b19

6683

7220

0.31

1517

0.27

866

5.3

3.33

306.

60.

0867

54.

00.

8015

8575

1489

5313

5577

117

b20

1657

885

0.23

2542

0.05

664

5.2

0.52

109.

70.

0667

28.

20.

5335

518

426

3482

917

143

b21

2424

787

0.17

1714

0.08

745

5.5

0.73

518.

20.

0609

76.

10.

6754

029

560

3663

813

085

b22

3395

143

130.

2757

200.

0926

76.

90.

7579

8.6

0.05

931

5.1

0.81

571

3857

338

578

110

99

b23

5163

259

230.

1385

320.

0941

86.

80.

7827

8.2

0.06

027

4.7

0.82

580

3858

737

613

101

95

b24

978

84

1.98

1053

0.28

796

7.8

3.78

3510

.90.

0952

97.

60.

7216

3111

415

8991

1534

143

106

b25

1380

783

340.

1064

450.

4129

96.

26.

9155

7.3

0.12

145

3.9

0.84

2229

118

2101

6719

7870

113

b26

1997

170

100.

2837

560.

0574

04.

90.

4280

7.1

0.05

407

5.2

0.69

360

1736

222

374

116

96

b27

1957

749

0.60

3009

0.09

977

7.9

0.89

479.

70.

0650

45.

70.

8161

346

649

4877

612

079

b28

4682

196

270.

5677

730.

1235

14.

41.

0375

5.6

0.06

092

3.4

0.78

751

3172

329

636

7411

8

Page 16: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

116

Tabl

e 1

— a

Sk 2

-2 (S

ands

tone

e, S

chra

mm

stei

n Fo

rmat

ion,

Low

er C

onia

cium

) con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

b29

5280

234

220.

3537

020.

0852

57.

00.

7362

8.6

0.06

263

5.0

0.82

527

3656

038

696

106

76

b30

1472

216

0.47

609

0.23

840

4.4

2.77

268.

50.

0843

57.

30.

5113

7855

1348

6613

0114

210

6

c178

4659

110.

3611

096

0.17

496

1.9

1.73

153.

30.

0717

82.

70.

5810

3918

1020

2298

055

106

c212

985

242

210.

2722

668

0.08

342

2.1

0.66

593.

00.

0578

92.

10.

6951

710

518

1252

647

98

c325

6775

40.

4148

590.

0557

32.

00.

4081

4.5

0.05

311

4.0

0.45

350

734

813

334

9110

5

c482

0260

120.

6411

443

0.17

908

1.8

1.79

173.

00.

0725

62.

40.

5910

6217

1042

2010

0249

106

c563

0416

711

0.33

2848

0.06

049

2.2

0.49

553.

50.

0594

12.

70.

6237

98

409

1258

259

65

c610

407

2811

0.98

1028

60.

3081

31.

84.

3545

2.8

0.10

250

2.1

0.66

1731

2817

0423

1670

3910

4

c741

9545

60.

1764

690.

1380

12.

01.

2494

4.2

0.06

566

3.7

0.48

833

1682

324

796

7710

5

c811

734

498

0.32

3389

0.12

536

2.3

2.39

093.

70.

1383

22.

90.

6376

117

1240

2722

0650

35

c969

2743

100.

3594

660.

2129

51.

22.

1743

3.2

0.07

405

2.9

0.39

1245

1411

7322

1043

5911

9

c10

1346

141

421

0.10

2036

00.

0531

32.

10.

3923

2.9

0.05

356

2.1

0.72

334

733

68

352

4795

c11

3159

446

1.18

3802

0.10

573

1.4

0.89

164.

10.

0611

63.

90.

3564

89

647

2064

583

100

c12

5005

218

458

0.64

4893

0.26

990

3.3

3.64

895.

20.

0980

54.

00.

6315

4045

1560

4215

8776

97

c13

5810

926

269

0.29

2325

0.25

266

2.4

3.14

772.

80.

0903

61.

60.

8414

5231

1444

2214

3330

101

c14

3469

335

0.65

5237

0.14

224

3.2

1.30

865.

80.

0667

34.

80.

5685

726

850

3482

910

110

3

c15

6513

257

0.29

7454

0.25

798

1.8

3.15

183.

80.

0886

13.

30.

4814

7924

1445

3013

9663

106

c16

1669

61

0.29

1753

0.21

268

3.1

2.84

157.

50.

0969

06.

80.

4212

4335

1367

5815

6512

879

c17

8752

3810

0.50

1019

40.

2378

92.

02.

8482

3.5

0.08

683

2.9

0.58

1376

2513

6827

1357

5610

1

c18

3392

010

432

0.88

4541

0.23

115

3.4

3.29

293.

80.

1033

21.

70.

9013

4141

1479

3016

8531

80

c19

1529

351

181.

0916

828

0.26

949

1.2

3.41

842.

40.

0920

02.

10.

4915

3816

1509

1914

6740

105

c20

7514

112

120.

2949

760.

1027

92.

30.

8505

4.1

0.06

001

3.4

0.57

631

1462

519

604

7310

4

c21

8563

799

0.85

201

0.08

177

2.5

1.59

4111

.40.

1413

911

.20.

2250

712

968

7422

4419

323

c22

4156

811

738

0.32

4100

00.

3040

11.

74.

2930

2.2

0.10

242

1.3

0.80

1711

2616

9218

1668

2410

3

c23

1191

734

120.

6412

142

0.29

925

2.3

4.10

153.

40.

0994

12.

50.

6716

8834

1655

2816

1346

105

c24

5074

638

0.71

8441

0.10

901

2.0

0.91

923.

00.

0611

52.

20.

6866

713

662

1564

547

103

c25

3092

896

0.49

5767

0.05

948

2.4

0.44

774.

10.

0545

93.

30.

5937

29

376

1339

575

94

c26

4221

956

0.34

880

0.05

528

2.3

0.52

746.

70.

0692

06.

30.

3434

78

430

2490

512

938

c27

3240

883

300.

4974

730.

3145

22.

14.

5725

3.1

0.10

544

2.2

0.70

1763

3317

4426

1722

4010

2

c28

1060

342

110.

3612

026

0.24

292

2.7

2.98

983.

90.

0892

72.

80.

6814

0234

1405

3014

1054

99

c29

8954

8312

0.30

1342

50.

1440

01.

21.

3397

2.7

0.06

748

2.5

0.43

867

986

316

852

5110

2

c30

698

71

0.66

1026

0.11

833

3.1

1.13

317.

00.

0694

56.

20.

4472

121

769

3891

212

979

Page 17: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

117

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— S

k 3-

1 (S

ands

tone

d, S

chra

mm

stei

n Fo

rmat

ion,

Low

er C

onia

cium

) — 5

0° 54

′ 31″

N; 1

4° 14

′ 16.

5″ E

, m

easu

red

sing

le z

ircon

gra

ins:

115

, con

cord

ant w

ithin

90 –

110%

of c

onco

rdan

ce: 4

6

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a120

1512

26

0.51

3807

0.04

895

3.9

0.35

356.

80.

0523

85.

60.

5730

812

307

1830

212

710

2

a225

8315

50.

7126

740.

2983

63.

84.

0512

6.4

0.09

848

5.2

0.59

1683

5616

4553

1596

9610

5

a364

4825

118

0.41

1119

30.

0722

82.

20.

5786

3.4

0.05

805

2.6

0.66

450

1046

413

532

5685

a421

0797

70.

5938

370.

0686

62.

50.

5239

4.7

0.05

534

4.0

0.52

428

1042

817

426

9010

1

a544

223

10.

5679

70.

0543

14.

50.

4182

9.1

0.05

585

8.0

0.49

341

1535

528

446

177

76

a630

0313

57

0.26

964

0.05

108

3.4

0.48

397.

50.

0687

06.

70.

4532

111

401

2589

013

836

a814

8749

50.

5624

790.

0903

83.

00.

7433

5.5

0.05

964

4.6

0.54

558

1656

424

591

101

94

a911

0063

30.

4321

110.

0513

53.

30.

3718

6.5

0.05

251

5.6

0.51

323

1032

118

308

127

105

a11

8250

404

210.

4519

970.

0500

02.

10.

4371

6.5

0.06

340

6.1

0.33

315

736

820

722

130

44

a12

2421

106

70.

3213

380.

0697

03.

20.

5737

6.8

0.05

970

5.9

0.48

434

1446

025

593

129

73

a13

1065

634

0.58

2069

0.05

499

1.8

0.39

305.

40.

0518

35.

10.

3334

56

337

1527

811

612

4

a14

1304

814

0.55

2304

0.05

286

2.2

0.37

885.

40.

0519

75.

00.

4033

27

326

1528

411

411

7

a15

986

553

0.69

1825

0.04

159

3.7

0.31

188.

60.

0543

77.

70.

4426

310

276

2138

617

368

a16

3532

9412

1.26

5906

0.10

798

2.8

0.91

945.

30.

0617

54.

50.

5366

118

662

2666

696

99

a17

1686

101

60.

9914

760.

0535

03.

60.

4034

6.4

0.05

469

5.4

0.56

336

1234

419

400

120

84

a18

2638

154

80.

3129

660.

0555

82.

00.

4122

4.7

0.05

379

4.3

0.43

349

735

014

362

9696

a19

1492

694

0.44

748

0.05

589

4.2

0.52

3010

.70.

0678

69.

80.

3935

114

427

3886

420

341

a20

1545

283

420.

9111

914

0.46

434

6.4

7.20

129.

70.

1124

87.

20.

6724

5913

321

3790

1840

130

134

a21

2117

654

0.30

301

0.06

065

4.3

0.72

3813

.30.

0865

612

.50.

3338

016

553

5813

5124

228

a22

5727

202

120.

2728

20.

0529

02.

20.

7365

3.3

0.10

097

2.5

0.66

332

756

014

1642

4620

a23

3398

128

100.

4134

400.

0765

24.

50.

6045

6.2

0.05

730

4.3

0.72

475

2048

024

503

9594

a24

1387

825

0.57

2497

0.05

383

2.1

0.42

106.

90.

0567

26.

60.

3033

87

357

2148

114

570

a25

803

533

1.68

1536

0.04

969

2.9

0.36

066.

70.

0526

36.

00.

4331

39

313

1831

313

710

0

a26

1581

805

0.42

2399

0.05

723

3.0

0.52

9410

.40.

0670

89.

90.

2935

911

431

3784

020

643

a27

2754

798

1.20

1270

0.08

993

3.3

0.88

725.

10.

0715

53.

90.

6555

518

645

2597

379

57

a28

1256

744

0.68

2262

0.05

660

2.3

0.41

715.

10.

0534

54.

50.

4535

58

354

1534

810

310

2

a29

1911

806

0.31

849

0.07

540

2.6

0.59

2010

.90.

0569

410

.50.

2446

912

472

4248

923

396

a30

807

263

0.48

1337

0.09

441

2.6

0.78

368.

30.

0601

97.

90.

3158

215

588

3861

117

195

a31

4145

263

140.

4834

320.

0536

31.

80.

4214

6.6

0.05

698

6.4

0.27

337

635

720

491

140

69

a32

2385

130

90.

3541

920.

0727

63.

00.

5808

6.8

0.05

789

6.1

0.44

453

1346

526

526

135

86

a33

4694

242

180.

1377

170.

0778

94.

10.

6223

6.8

0.05

795

5.4

0.60

484

1949

127

528

119

92

a34

3735

183

120.

2620

650.

0687

12.

70.

5292

3.7

0.05

586

2.5

0.73

428

1143

113

447

5696

a35

2901

196

110.

3512

670.

0563

62.

90.

4149

7.3

0.05

339

6.7

0.39

353

1035

222

345

153

102

a36

625

392

1.19

1070

0.05

396

2.8

0.43

808.

20.

0588

77.

70.

3433

99

369

2656

216

860

a37

876

523

0.52

1559

0.04

949

4.6

0.37

988.

30.

0556

67.

00.

5531

114

327

2443

915

571

a38

1969

117

81.

8036

570.

0517

83.

20.

3873

5.7

0.05

424

4.7

0.56

325

1033

216

381

106

85

Page 18: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

118

Tabl

e 1

— S

k 3-

1 (S

ands

tone

d, S

chra

mm

stei

n Fo

rmat

ion,

Low

er C

onia

cium

) con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a39

1154

158

030

0.13

2985

0.05

460

3.1

0.45

136.

10.

0599

65.

30.

5134

310

378

2060

211

457

a40

9499

4816

0.48

9466

0.32

960

3.4

4.59

274.

50.

1010

62.

90.

7618

3655

1748

3816

4454

112

a41

4161

144

110.

1175

150.

0798

92.

30.

6147

4.7

0.05

580

4.1

0.49

495

1148

618

444

9111

2

a42

4839

161

120.

1988

040.

0776

23.

80.

5933

5.8

0.05

543

4.4

0.65

482

1847

322

430

9911

2

a44

477

181

0.01

810

0.06

046

2.8

0.49

5312

.90.

0594

112

.60.

2237

810

409

4458

227

365

a45

4786

141

80.

2153

10.

0536

53.

00.

5899

6.6

0.07

973

5.9

0.45

337

1047

125

1190

117

28

a46

4893

8810

0.65

8145

0.10

381

2.5

0.86

723.

40.

0605

92.

30.

7363

715

634

1662

550

102

a47

800

122

0.98

1280

0.11

349

3.0

0.98

217.

40.

0627

66.

80.

4069

320

695

3870

014

599

a48

2130

714

0.57

1391

0.05

812

2.3

0.46

744.

90.

0583

34.

30.

4736

48

389

1654

295

67

a49

1504

493

0.77

2106

0.06

152

3.4

0.47

709.

30.

0562

38.

70.

3738

513

396

3146

219

283

a50

1247

422

0.13

2491

0.05

851

3.1

0.40

896.

00.

0506

85.

20.

5136

711

348

1822

712

016

2

a51

2034

533

0.11

1343

0.05

991

2.5

0.54

3010

.80.

0657

410

.50.

2337

59

440

3979

822

047

a52

2749

824

0.07

5146

0.05

546

2.4

0.41

114.

80.

0537

64.

20.

5034

88

350

1436

194

96

a53

1484

443

0.50

1607

0.05

727

3.3

0.42

335.

30.

0536

14.

10.

6235

911

358

1635

493

101

a54

2368

814

0.14

4844

0.05

008

3.8

0.34

8415

.20.

0504

514

.70.

2531

512

304

4121

634

114

6

a55

1312

332

0.09

2373

0.06

048

3.4

0.46

545.

30.

0558

24.

00.

6537

913

388

1744

589

85

a56

3604

103

60.

3665

840.

0547

14.

20.

4150

9.8

0.05

502

8.8

0.43

343

1435

230

413

197

83

a57

4353

544

0.13

969

0.07

840

7.8

0.75

9123

.10.

0702

321

.70.

3448

737

573

107

935

446

52

a58

3112

124

0.42

2121

0.32

269

3.8

3.89

806.

30.

0876

14.

90.

6118

0361

1613

5213

7495

131

a59

3304

425

0.46

5310

0.11

005

3.1

0.95

535.

30.

0629

64.

30.

5967

320

681

2770

792

95

a60

8211

4110

1.28

4538

0.19

705

4.3

2.11

016.

10.

0776

74.

30.

7111

5946

1152

4311

3885

102

b120

861

6125

1.54

5958

0.31

611

2.8

4.73

993.

20.

1087

51.

50.

8917

7144

1774

2717

7927

100

b236

544

193

500.

3924

410

0.25

191

3.3

3.04

203.

80.

0875

81.

90.

8714

4843

1418

3013

7336

105

b325

2810

31.

5327

390.

2512

82.

83.

2363

5.8

0.09

341

5.1

0.48

1445

3614

6646

1496

9697

b457

1316

510

0.32

1153

0.06

051

2.3

0.56

823.

30.

0681

12.

30.

7037

99

457

1287

248

43

b563

4824

413

0.09

5183

0.05

505

4.4

0.40

636.

80.

0535

35.

20.

6434

515

346

2035

111

798

b728

2610

25

0.03

5299

0.05

870

3.4

0.43

645.

50.

0539

34.

30.

6236

812

368

1736

898

100

b861

5517

513

0.50

1120

00.

0712

42.

20.

5443

3.1

0.05

541

2.2

0.70

444

944

111

429

5010

3

b922

4879

50.

4819

000.

0593

02.

80.

5111

7.8

0.06

250

7.3

0.35

371

1041

927

691

155

54

b10

2655

625

0.50

4578

0.07

843

2.2

0.63

533.

80.

0587

43.

10.

5948

711

499

1555

867

87

b11

8389

4512

1.07

9247

0.22

890

2.9

2.89

063.

80.

0915

92.

50.

7613

2935

1379

2914

5948

91

b12

1289

483

0.16

2424

0.05

618

2.7

0.41

755.

70.

0539

15.

10.

4735

29

354

1736

711

496

b13

7672

298

150.

2922

100.

0514

83.

10.

4202

5.1

0.05

920

4.1

0.60

324

1035

616

574

8956

b14

5570

150

120.

1394

010.

0822

02.

30.

6863

4.6

0.06

055

3.9

0.51

509

1153

119

623

8582

b15

2533

107

60.

6826

170.

0565

12.

60.

4284

7.2

0.05

498

6.7

0.36

354

936

222

411

150

86

b16

5909

117

110.

3098

650.

0981

42.

90.

8175

3.8

0.06

042

2.5

0.76

603

1760

718

619

5398

Page 19: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

119

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— S

k 3-

1 (S

ands

tone

d, S

chra

mm

stei

n Fo

rmat

ion,

Low

er C

onia

cium

) con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

b17

3577

150

80.

3034

360.

0511

23.

00.

4000

4.8

0.05

675

3.7

0.63

321

934

214

482

8267

b18

2948

624

0.60

370

0.06

029

3.4

0.73

8211

.90.

0888

111

.30.

2937

713

561

5214

0021

727

b19

1433

120

222

0.07

9308

0.11

370

4.4

1.11

265.

40.

0709

73.

00.

8269

429

759

2995

762

73

b20

2337

997

1.16

1628

0.05

661

3.3

0.42

065.

80.

0538

84.

80.

5735

511

356

1836

610

897

b21

3280

147

80.

3256

670.

0525

82.

40.

3838

4.1

0.05

293

3.4

0.58

330

833

012

326

7610

1

b22

2828

611

339

0.08

1143

40.

3594

02.

24.

9767

3.6

0.10

043

2.8

0.61

1979

3718

1530

1632

5212

1

b23

4247

123

90.

1510

580.

0717

22.

40.

5877

7.0

0.05

943

6.6

0.34

447

1046

927

583

143

77

b24

2385

103

50.

0329

520.

0551

62.

70.

4058

4.6

0.05

335

3.7

0.60

346

934

614

344

8310

1

b26

1091

493

0.99

608

0.05

340

3.7

0.39

1410

.10.

0531

79.

40.

3733

512

335

2933

621

310

0

b27

1108

463

0.56

1294

0.05

322

2.9

0.38

935.

90.

0530

65.

10.

4933

49

334

1733

111

610

1

b28

3058

133

80.

8555

170.

0529

22.

40.

4082

4.3

0.05

594

3.6

0.55

332

834

813

450

8074

b29

4743

838

0.44

308

0.08

423

3.2

1.20

815.

50.

1040

24.

50.

5952

116

804

3116

9782

31

b30

881

402

0.79

496

0.05

740

2.9

0.42

715.

50.

0539

74.

60.

5436

010

361

1737

010

397

b31

3843

177

100.

3772

150.

0556

12.

20.

4126

3.9

0.05

381

3.2

0.56

349

735

112

363

7396

b32

2250

565

0.26

3807

0.09

124

2.6

0.75

025.

40.

0596

34.

70.

4956

314

568

2459

010

195

b33

6116

291

160.

3563

590.

0538

82.

70.

4048

3.7

0.05

448

2.6

0.72

338

934

511

391

5887

b34

4809

112

110.

2780

990.

1028

72.

00.

8498

3.2

0.05

991

2.5

0.62

631

1262

515

600

5410

5

b35

5112

254

130.

1335

540.

0539

65.

50.

4105

6.8

0.05

517

4.0

0.80

339

1834

920

419

9081

b36

1225

461

210.

8911

758

0.31

263

2.4

4.52

513.

30.

1049

82.

20.

7317

5437

1736

2817

1441

102

b37

1653

575

260.

5113

237

0.33

403

2.3

4.75

733.

10.

1033

02.

10.

7318

5837

1777

2716

8439

110

b38

4557

201

110.

1952

870.

0555

63.

10.

4095

4.4

0.05

346

3.2

0.69

349

1034

913

349

7110

0

b39

7762

4518

0.44

8403

0.39

391

2.3

5.07

114.

50.

0933

73.

80.

5221

4142

1831

3914

9572

143

b40

2097

824

0.34

1809

0.05

573

3.1

0.41

095.

40.

0534

74.

40.

5835

011

350

1634

999

100

b41

4323

127

90.

3076

890.

0745

93.

30.

5838

3.9

0.05

676

2.2

0.83

464

1546

715

482

4996

b42

6522

113

100.

4631

50.

0798

42.

21.

1290

6.7

0.10

256

6.3

0.33

495

1176

737

1671

117

30

b43

3213

120

70.

4459

720.

0600

21.

60.

4495

3.9

0.05

432

3.5

0.41

376

637

712

384

7998

b44

2849

965

0.35

1713

0.05

605

2.4

0.47

808.

20.

0618

67.

80.

2935

28

397

2766

916

853

b45

5597

117

90.

1421

530.

0787

73.

60.

6918

5.2

0.06

370

3.7

0.70

489

1753

422

732

7967

b46

2279

754

0.45

1143

0.05

145

2.7

0.38

785.

00.

0546

64.

20.

5332

38

333

1439

995

81

b47

1725

743

0.59

3165

0.04

071

3.1

0.30

876.

70.

0550

06.

00.

4625

78

273

1641

213

462

b48

1444

930

50.

9011

510.

1240

55.

22.

3142

6.5

0.13

530

3.9

0.80

754

3712

1747

2168

6835

b49

3993

113

60.

3846

560.

0513

32.

50.

4124

5.1

0.05

827

4.5

0.48

323

835

115

540

9960

b50

4384

686

0.82

1019

0.07

910

2.6

0.83

824.

50.

0768

63.

70.

5749

112

618

2111

1875

44

b51

5332

816

0.51

478

0.06

785

2.8

0.81

654.

80.

0872

73.

90.

5842

312

606

2213

6776

31

b52

1190

312

0.66

1949

0.05

486

3.1

0.40

595.

00.

0536

64.

00.

6134

410

346

1535

790

96

b54

1481

252

0.44

2704

0.08

385

2.8

0.64

065.

60.

0554

14.

80.

5051

914

503

2242

910

712

1

Page 20: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

120

Tabl

e 1

— S

k 4-

1 (S

ands

tone

c, P

oste

lwitz

For

mat

ion,

Upp

er T

uron

ian)

— 5

0° 54

′ 31.

5″ N

; 14°

14′ 1

7.1″

E,

mea

sure

d si

ngle

zirc

on g

rain

s: 1

16, c

onco

rdan

t with

in 9

0 – 11

0% o

f con

cord

ance

: 67

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a168

833

21.

2710

930.

0497

93.

60.

3684

8.2

0.05

366

7.4

0.43

313

1131

823

357

167

88

a228

5713

77

0.11

4716

0.05

583

2.8

0.41

324.

70.

0536

73.

80.

6035

010

351

1435

785

98

a314

4269

40.

2727

220.

0546

63.

10.

4005

5.5

0.05

314

4.5

0.57

343

1034

216

335

102

103

a515

1373

40.

2028

320.

0577

82.

90.

4264

5.2

0.05

352

4.3

0.55

362

1036

116

351

9810

3

a681

529

20.

6612

970.

0763

53.

60.

5809

7.3

0.05

518

6.4

0.49

474

1646

528

420

143

113

a787

3441

150.

8285

750.

3067

03.

24.

3116

4.3

0.10

196

2.8

0.75

1724

4916

9636

1660

5210

4

a833

2617

510

0.34

6208

0.05

696

2.7

0.42

214.

50.

0537

43.

60.

5935

79

358

1436

082

99

a923

3311

17

0.21

3952

0.06

264

2.4

0.51

155.

30.

0592

24.

70.

4539

29

419

1857

510

268

a10

3048

159

90.

2257

280.

0564

03.

00.

4149

5.0

0.05

336

3.9

0.61

354

1035

215

344

8910

3

a11

1074

524

1.02

1865

0.06

349

2.5

0.50

469.

10.

0576

58.

70.

2839

710

415

3151

619

277

a12

5787

191

170.

1298

860.

0955

62.

70.

7787

4.1

0.05

910

3.1

0.65

588

1558

518

571

6710

3

a13

1238

664

0.87

1936

0.05

801

2.2

0.41

996.

00.

0524

95.

60.

3736

48

356

1830

712

611

8

a14

1066

564

1.15

2048

0.05

780

3.5

0.41

887.

80.

0525

66.

90.

4536

212

355

2431

015

811

7

a15

5799

154

140.

2553

430.

0911

63.

10.

7535

4.2

0.05

995

2.8

0.75

562

1757

018

602

6093

a16

1502

744

0.07

2785

0.05

664

3.4

0.42

225.

80.

0540

64.

60.

5935

512

358

1837

410

595

a17

3372

211

546

0.57

1066

60.

3580

54.

06.

4355

4.7

0.13

036

2.4

0.86

1973

6920

3742

2103

4394

a18

1778

975

0.43

1607

0.05

489

3.7

0.40

316.

30.

0532

65.

10.

5934

412

344

1834

011

510

1

a19

1022

056

527

0.13

1299

0.04

963

3.2

0.42

627.

30.

0622

86.

50.

4431

210

360

2268

413

946

a20

3503

499

0.50

5068

0.17

143

3.2

1.63

774.

60.

0692

83.

30.

7010

2031

985

2990

767

112

Tabl

e 1

— S

k 3-

1 (S

ands

tone

d, S

chra

mm

stei

n Fo

rmat

ion,

Low

er C

onia

cium

) con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

b55

2170

533

0.03

3937

0.05

731

2.6

0.43

874.

80.

0555

14.

00.

5435

99

369

1543

390

83

b56

2082

533

0.20

1731

0.05

516

3.2

0.42

446.

50.

0558

15.

60.

4934

611

359

2044

512

678

b57

2834

434

0.31

4859

0.08

230

3.6

0.66

996.

00.

0590

34.

80.

6051

018

521

2556

810

490

b58

2687

684

0.58

5203

0.05

938

2.0

0.42

854.

60.

0523

44.

20.

4337

27

362

1430

095

124

b59

4755

696

0.52

2158

0.08

388

2.9

0.69

956.

00.

0604

85.

20.

4951

915

539

2562

111

384

b60

1461

312

1.06

2514

0.05

262

3.8

0.41

687.

90.

0574

56.

90.

4833

112

354

2450

915

265

Page 21: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

121

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— S

k 4-

1 (S

ands

tone

c, P

oste

lwitz

For

mat

ion,

Upp

er T

uron

ian)

con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a21

743

402

0.12

1371

0.05

816

3.3

0.43

607.

70.

0543

87.

00.

4336

412

367

2438

715

794

a22

3455

196

110.

1333

870.

0578

52.

70.

4194

4.0

0.05

258

2.9

0.68

363

1035

612

311

6611

7

a23

1159

684

0.97

2202

0.05

115

3.6

0.37

166.

20.

0526

95.

10.

5832

211

321

1731

511

610

2

a24

7880

332

220.

1213

357

0.06

846

2.9

0.55

733.

80.

0590

42.

40.

7742

712

450

1456

952

75

a25

1288

724

0.42

2380

0.05

517

3.2

0.40

966.

60.

0538

55.

70.

4934

611

349

2036

512

995

a26

1796

996

0.33

3335

0.05

618

3.2

0.41

745.

50.

0538

94.

40.

5835

211

354

1736

610

096

a27

3421

201

100.

1164

850.

0541

22.

70.

3950

4.7

0.05

293

3.8

0.57

340

933

814

326

8710

4

a28

6056

360

200.

1868

520.

0569

54.

10.

4169

5.8

0.05

309

4.0

0.72

357

1435

417

333

9110

7

a29

9792

388

280.

0557

590.

0786

64.

30.

6203

5.5

0.05

719

3.4

0.78

488

2049

022

499

7698

a30

5254

194

160.

2564

330.

0822

22.

80.

6599

3.9

0.05

822

2.8

0.72

509

1451

516

538

6095

a31

1765

100

60.

8633

460.

0547

43.

70.

3989

5.1

0.05

286

3.5

0.73

344

1234

115

323

7910

6

a32

1446

524

0.75

2366

0.07

357

2.8

0.62

245.

80.

0613

65.

10.

4845

812

491

2365

210

970

a33

1208

210

924

0.31

3508

0.20

542

2.5

3.17

703.

60.

1121

72.

60.

7012

0428

1452

2818

3547

66

a34

3460

221

110.

2611

680.

0518

14.

30.

4205

6.1

0.05

886

4.3

0.71

326

1435

619

562

9458

a35

1924

118

60.

2834

980.

0512

33.

40.

3889

5.5

0.05

506

4.3

0.63

322

1133

416

415

9678

a36

9918

629

260.

3564

90.

0374

04.

20.

4193

5.2

0.08

132

3.0

0.82

237

1035

616

1229

5919

a37

1395

116

50.

6413

100.

0410

03.

60.

2990

6.3

0.05

290

5.2

0.56

259

926

615

324

118

80

a38

1538

865

0.74

2885

0.05

295

2.5

0.38

934.

70.

0533

23.

90.

5433

38

334

1334

289

97

a39

2613

134

70.

3749

140.

0553

63.

10.

4076

4.4

0.05

339

3.2

0.69

347

1034

713

346

7210

1

a40

3192

154

80.

1359

030.

0579

63.

30.

4296

5.5

0.05

376

4.4

0.60

363

1236

317

361

9910

1

a41

1315

474

210.

6010

754

0.24

065

3.8

3.85

105.

30.

1160

63.

70.

7113

9047

1603

4418

9667

73

a42

1891

865

0.55

2189

0.05

199

2.5

0.38

064.

30.

0531

03.

50.

5832

78

328

1233

379

98

a43

1141

513

0.88

2066

0.05

375

3.9

0.39

486.

40.

0532

75.

10.

6133

713

338

1934

011

599

a44

4797

195

110.

2173

910.

0569

52.

90.

4215

4.3

0.05

368

3.2

0.68

357

1035

713

358

7110

0

a45

1660

613

0.47

1373

0.05

476

3.4

0.41

985.

70.

0556

14.

50.

6134

412

356

1743

710

079

a46

1925

734

0.45

3538

0.05

593

3.0

0.42

065.

40.

0545

44.

50.

5635

110

356

1639

310

089

a47

1921

564

0.21

3334

0.07

127

2.4

0.57

155.

50.

0581

55.

00.

4444

410

459

2153

610

983

a48

604

201

0.14

1124

0.05

863

3.6

0.43

698.

90.

0540

48.

20.

4036

713

368

2837

318

499

a49

1132

392

0.93

2115

0.05

192

2.9

0.38

305.

70.

0535

14.

90.

5032

69

329

1635

111

193

a50

2279

593

0.40

648

0.04

954

7.7

0.50

2517

.20.

0735

715

.40.

4531

223

413

6010

3031

230

a51

1431

137

130.

6812

723

0.30

711

3.0

4.77

793.

80.

1128

32.

30.

7917

2645

1781

3218

4642

94

a52

2132

126

151.

3313

446

0.46

194

3.9

10.1

058

4.4

0.15

867

2.0

0.89

2448

8124

4542

2441

3510

0

a53

669

192

2.00

1258

0.05

736

3.4

0.42

278.

10.

0534

57.

30.

4236

012

358

2534

816

610

3

a54

1959

303

0.31

3244

0.08

951

3.1

0.74

795.

90.

0606

05.

00.

5255

316

567

2662

510

888

a55

9184

303

100.

1862

70.

0328

83.

50.

3486

5.2

0.07

691

3.9

0.67

209

730

414

1119

7819

a56

7651

146

1.19

3031

0.34

657

3.0

5.67

394.

20.

1187

42.

90.

7219

1850

1927

3719

3752

99

Page 22: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

122

Tabl

e 1

— S

k 4-

1 (S

ands

tone

c, P

oste

lwitz

For

mat

ion,

Upp

er T

uron

ian)

con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a58

2217

563

0.35

4162

0.05

501

3.5

0.40

485.

40.

0533

74.

00.

6634

512

345

1634

591

100

a59

2278

393

1.04

4123

0.06

989

3.1

0.53

314.

80.

0553

23.

60.

6643

613

434

1742

580

102

a60

2424

583

0.44

4531

0.05

571

3.5

0.41

135.

50.

0535

44.

20.

6435

012

350

1635

294

99

b134

1291

70.

8461

260.

0681

72.

90.

5258

4.6

0.05

594

3.6

0.63

425

1242

916

450

7994

b230

1211

87

0.77

4204

0.05

499

2.6

0.40

635.

50.

0535

94.

90.

4734

59

346

1635

411

097

b330

2012

16

0.21

3617

0.05

373

2.4

0.40

004.

50.

0539

93.

80.

5333

78

342

1337

086

91

b536

6589

80.

4763

670.

0870

82.

50.

6943

4.6

0.05

782

3.9

0.54

538

1353

519

523

8510

3

b614

5453

30.

0227

180.

0556

82.

90.

4126

5.4

0.05

375

4.6

0.53

349

1035

116

360

103

97

b789

4524

616

0.11

6596

0.06

797

2.4

0.54

964.

10.

0586

53.

30.

5942

410

445

1555

472

77

b862

5725

514

0.22

1173

30.

0577

42.

80.

4291

4.3

0.05

389

3.2

0.66

362

1036

313

367

7399

b921

470

8728

0.70

2035

50.

2870

24.

94.

1337

6.1

0.10

445

3.6

0.80

1627

7116

6152

1705

6795

b10

4988

188

110.

2286

120.

0590

42.

00.

4718

4.4

0.05

796

3.9

0.45

370

739

214

528

8670

b11

8612

360

220.

3428

820.

0613

52.

10.

4853

3.7

0.05

738

3.0

0.57

384

840

212

506

6676

b12

2864

118

839

0.61

3224

40.

1902

72.

92.

3432

3.3

0.08

932

1.6

0.87

1123

3012

2524

1411

3180

b13

3035

137

70.

2141

890.

0503

72.

40.

3718

4.3

0.05

354

3.6

0.56

317

732

112

352

8190

b14

3290

144

80.

4062

360.

0520

92.

60.

3804

4.0

0.05

297

3.0

0.66

327

832

711

327

6810

0

b15

3179

129

70.

3523

880.

0534

22.

50.

4360

4.5

0.05

920

3.7

0.56

335

836

714

574

8058

b16

2388

975

0.19

4454

0.05

642

2.9

0.41

965.

40.

0539

44.

50.

5435

410

356

1636

910

296

b17

379

171

0.32

689

0.05

538

3.4

0.42

299.

20.

0553

88.

50.

3734

712

358

2842

819

081

b18

762

322

0.36

1421

0.05

869

2.8

0.43

526.

20.

0537

85.

60.

4536

810

367

1936

212

510

2

b19

897

362

0.15

1695

0.05

636

2.8

0.41

297.

30.

0531

36.

80.

3835

310

351

2233

415

410

6

b20

5271

147

120.

5292

160.

0800

62.

80.

6357

4.2

0.05

759

3.2

0.67

496

1350

017

514

6997

b21

1563

694

0.92

2646

0.05

105

2.4

0.41

626.

00.

0591

45.

50.

4032

18

353

1857

211

956

b22

4232

125

110.

4774

480.

0873

52.

40.

6894

4.0

0.05

724

3.2

0.59

540

1253

217

501

7110

8

b23

7385

7418

0.40

1030

00.

2442

12.

62.

4201

4.8

0.07

187

4.0

0.55

1409

3412

4935

982

8214

3

b24

2239

495

0.63

3734

0.10

328

2.8

0.85

914.

90.

0603

34.

10.

5763

417

630

2361

588

103

b25

3684

918

0.34

2815

0.09

201

2.8

0.77

644.

50.

0612

03.

60.

6256

715

583

2064

677

88

b26

7933

175

200.

6513

008

0.10

489

2.3

0.89

083.

70.

0615

92.

90.

6264

314

647

1866

063

97

b27

2018

945

0.61

3681

0.05

443

3.3

0.41

615.

60.

0554

54.

40.

6034

211

353

1743

099

79

b28

5335

262

130.

1630

280.

0505

82.

50.

4154

4.2

0.05

957

3.3

0.60

318

835

312

588

7254

b29

3739

177

90.

1269

320.

0564

82.

60.

4233

4.6

0.05

435

3.8

0.55

354

935

814

386

8692

b30

1301

614

0.49

2307

0.05

748

2.7

0.44

695.

90.

0564

05.

20.

4636

010

375

1946

811

677

b31

1459

704

1.08

2767

0.05

406

3.2

0.39

617.

10.

0531

46.

40.

4533

910

339

2133

514

510

1

b32

1955

102

60.

7615

170.

0534

62.

40.

3961

4.3

0.05

374

3.6

0.56

336

833

912

360

8193

b33

5595

310

150.

1246

310.

0521

84.

40.

3962

6.1

0.05

506

4.2

0.72

328

1433

918

415

9579

b35

2221

958

240.

4814

283

0.37

726

3.9

8.07

325.

50.

1552

14.

00.

7020

6369

2239

5124

0467

86

Page 23: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

123

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— S

k 4-

1 (S

ands

tone

c, P

oste

lwitz

For

mat

ion,

Upp

er T

uron

ian)

con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

b36

2706

142

80.

2250

860.

0568

12.

90.

4205

4.6

0.05

369

3.6

0.62

356

1035

614

358

8210

0

b37

848

413

0.68

1664

0.05

966

2.3

0.42

186.

30.

0512

85.

80.

3737

48

357

1925

313

414

8

b38

3458

178

100.

4765

840.

0529

52.

80.

3846

4.4

0.05

268

3.4

0.64

333

933

012

315

7610

6

b39

2051

926

0.66

3887

0.05

732

2.8

0.41

664.

50.

0527

23.

60.

6135

910

354

1431

781

113

b40

6204

265

140.

1148

660.

0557

42.

30.

4165

3.6

0.05

420

2.8

0.65

350

835

411

380

6292

b41

2715

837

0.41

3048

0.07

814

2.4

0.59

024.

00.

0547

83.

10.

6148

511

471

1540

370

120

b42

1139

413

1.28

1008

0.05

790

2.8

0.47

439.

70.

0594

19.

30.

2936

310

394

3258

220

362

b43

3847

118

70.

1270

010.

0651

42.

10.

4997

4.5

0.05

563

4.0

0.46

407

841

115

438

9093

b44

1921

624

0.27

3469

0.06

250

2.3

0.47

444.

80.

0550

54.

30.

4739

19

394

1641

495

94

b45

1764

654

0.65

3305

0.05

337

3.8

0.39

026.

70.

0530

35.

50.

5733

512

335

1933

012

410

2

b46

4324

777

0.29

7044

0.09

656

3.2

0.82

646.

10.

0620

75.

20.

5259

418

612

2867

711

288

b47

2354

734

0.69

4007

0.05

312

2.2

0.40

544.

10.

0553

63.

40.

5433

47

346

1242

776

78

b48

6503

141

110.

5111

066

0.07

585

3.7

0.61

724.

60.

0590

22.

80.

8047

117

488

1856

860

83

b49

1316

382

0.52

2483

0.05

479

2.9

0.40

405.

40.

0534

84.

50.

5434

410

345

1634

910

298

b50

797

231

0.80

1520

0.05

501

4.5

0.40

287.

40.

0531

05.

90.

6134

515

344

2233

313

310

4

b51

1001

615

416

0.23

2891

0.10

534

2.9

0.79

838.

40.

0549

77.

90.

3464

618

596

3941

117

715

7

b52

1216

232

111.

1912

047

0.27

575

3.9

3.84

864.

60.

1012

22.

30.

8715

7055

1603

3716

4742

95

b53

5282

927

0.04

6306

0.07

991

2.2

0.66

224.

00.

0601

03.

30.

5649

611

516

1660

772

82

b54

2325

32

1.58

1832

0.36

791

6.4

6.46

339.

30.

1274

16.

80.

6820

2011

120

4185

2063

120

98

b55

2406

634

0.39

4370

0.05

787

2.2

0.42

854.

10.

0537

03.

50.

5436

38

362

1335

978

101

b56

3380

764

0.51

1522

0.05

542

2.2

0.52

094.

90.

0681

74.

40.

4434

87

426

1787

491

40

b57

2978

724

0.56

5726

0.05

668

2.9

0.40

945.

30.

0523

94.

50.

5435

510

348

1630

210

211

8

b58

615

121

0.38

1144

0.05

875

3.2

0.43

596.

50.

0538

25.

70.

4936

811

367

2036

412

910

1

b59

3217

754

0.15

6090

0.05

505

2.6

0.40

474.

70.

0533

14.

00.

5534

59

345

1434

290

101

b60

2672

603

0.39

4972

0.05

178

2.4

0.38

554.

30.

0539

93.

50.

5732

58

331

1237

179

88

Tabl

e 1

— S

k 5

(San

dsto

ne b

, Pos

telw

itz F

orm

atio

n, M

iddl

e Tu

roni

an) —

50°

53′ 4

7.4″

N; 1

4° 14

′ 15.

5″ E

, m

easu

red

sing

le z

ircon

gra

ins:

116

, con

cord

ant w

ithin

90 –

110%

of c

onco

rdan

ce: 6

9Is

otop

e ra

tiosc

Ages

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

]%

%[%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

%

a242

8076

31.

0367

00.

0394

42.

30.

3216

4.6

0.05

915

4.0

0.51

249

628

312

573

8744

Page 24: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

124

Tabl

e 1

— S

k 5

(San

dsto

ne b

, Pos

telw

itz F

orm

atio

n, M

iddl

e Tu

roni

an) c

ontin

ued.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a340

709

340

290.

3829

870.

0823

82.

30.

7120

2.6

0.06

269

1.4

0.85

510

1154

611

698

3073

a422

119

313

200.

9138

951

0.05

486

2.5

0.42

983.

10.

0568

21.

80.

8234

49

363

1048

539

71

a530

418

399

240.

1250

330.

0651

52.

20.

5022

2.5

0.05

591

1.2

0.88

407

941

39

449

2791

a619

768

289

150.

1528

010.

0542

22.

30.

3994

2.7

0.05

342

1.5

0.83

340

834

18

347

3498

a811

853

182

100.

3427

370.

0542

02.

70.

3998

3.8

0.05

350

2.6

0.71

340

934

211

350

6097

a910

817

111

90.

6534

880.

0764

22.

30.

6034

3.2

0.05

727

2.2

0.72

475

1147

912

502

4995

a10

1238

113

88

0.24

425

0.05

347

2.6

0.56

596.

90.

0767

66.

40.

3833

69

455

2611

1512

730

a11

2699

473

1.65

2796

0.04

935

2.5

0.37

713.

90.

0554

33.

00.

6431

17

325

1142

966

72

a13

9086

140

80.

6083

90.

0536

02.

40.

4918

6.7

0.06

654

6.3

0.36

337

840

623

823

131

41

a14

1992

629

817

0.28

1402

0.05

636

3.0

0.49

226.

70.

0633

46.

00.

4435

310

406

2372

012

849

a15

2545

423

1.28

484

0.05

724

3.0

0.51

284.

70.

0649

73.

60.

6435

911

420

1677

376

46

a16

5460

107

60.

6417

060.

0529

32.

50.

3842

3.4

0.05

265

2.3

0.74

333

833

010

314

5210

6

a17

9294

184

100.

3445

540.

0553

62.

30.

4087

3.0

0.05

354

1.9

0.77

347

834

89

352

4399

b247

1851

51.

4412

980.

0844

42.

80.

6810

4.3

0.05

849

3.3

0.66

523

1452

718

548

7195

b325

554

455

240.

1625

832

0.05

500

2.5

0.40

452.

90.

0533

51.

40.

8834

59

345

834

431

100

b541

0532

40.

6165

840.

1088

72.

90.

9342

4.8

0.06

223

3.7

0.62

666

1967

024

682

8098

b824

147

213

240.

8239

893

0.09

986

2.8

0.83

153.

20.

0604

01.

60.

8661

416

614

1561

835

99

b941

775

6824

0.95

6981

0.29

662

2.7

4.37

533.

10.

1069

81.

60.

8616

7540

1708

2617

4929

96

b10

1054

818

49

0.40

468

0.04

617

3.1

0.44

914.

60.

0705

63.

40.

6829

19

377

1594

570

31

b11

2070

527

316

0.32

1429

0.05

858

2.7

0.43

425.

30.

0537

64.

60.

5136

710

366

1636

110

310

2

b15

1708

120

913

0.46

503

0.05

635

2.8

0.61

255.

80.

0788

35.

00.

4935

310

485

2311

6810

030

b16

9641

312

745

0.76

281

0.28

513

3.1

3.84

033.

60.

0976

81.

80.

8716

1745

1601

2915

8034

102

b18

4969

475

0.50

8202

0.09

978

2.7

0.83

244.

30.

0605

03.

40.

6261

316

615

2062

273

99

b19

5091

565

0.74

1210

0.08

389

2.7

0.68

523.

70.

0592

42.

60.

7251

913

530

1657

656

90

b20

1036

920

411

0.35

5866

0.05

388

2.7

0.39

793.

50.

0535

62.

20.

7733

89

340

1035

350

96

b21

1733

1836

6520

20.

0939

890.

0499

12.

60.

3636

3.0

0.05

284

1.4

0.88

314

831

58

322

3398

b24

1455

717

916

0.64

3318

0.08

321

3.0

0.66

313.

50.

0577

91.

80.

8651

515

516

1452

239

99

b25

2788

831

425

0.30

1160

0.07

799

2.8

0.61

564.

70.

0572

43.

80.

5948

413

487

1850

183

97

b26

2243

0627

310

90.

6974

470.

3533

42.

66.

0646

2.8

0.12

448

1.1

0.92

1951

4419

8525

2021

1996

b27

4581

996

0.91

1693

0.05

563

2.7

0.41

464.

00.

0540

52.

90.

6834

99

352

1237

366

93

b28

5936

641

951

0.97

567

0.10

082

3.5

0.85

873.

80.

0617

81.

70.

9061

920

629

1866

636

93

b29

9323

173

110.

2037

350.

0633

62.

70.

4777

3.8

0.05

468

2.7

0.71

396

1039

713

399

6199

b30

7877

100

80.

2413

531

0.08

290

2.9

0.66

173.

70.

0578

82.

30.

7951

314

516

1552

550

98

b32

1820

348

140.

7476

940.

2608

42.

73.

3060

3.1

0.09

193

1.6

0.86

1494

3614

8225

1466

3110

2

b33

5023

111

82.

0636

670.

0537

72.

70.

3968

3.9

0.05

353

2.8

0.69

338

933

911

351

6496

b35

3165

694

0.91

5823

0.05

956

2.8

0.44

624.

20.

0543

33.

20.

6637

310

375

1338

572

97

Page 25: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

125

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— S

k 5

(San

dsto

ne b

, Pos

telw

itz F

orm

atio

n, M

iddl

e Tu

roni

an) c

ontin

ued.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

b36

8459

819

572

1.29

3061

80.

2961

62.

74.

0859

2.9

0.10

006

1.1

0.92

1672

3916

5124

1625

2110

3

b38

2075

437

521

0.77

1498

0.05

144

2.6

0.43

084.

80.

0607

34.

00.

5432

38

364

1563

086

51

b39

8529

102

110.

3740

230.

1069

53.

40.

8995

6.2

0.06

100

5.1

0.55

655

2165

130

639

111

102

b40

8020

792

390.

4710

793

0.39

144

2.6

6.91

942.

80.

1282

01.

10.

9221

3047

2101

2520

7319

103

b41

8050

140

80.

6184

260.

0538

22.

60.

3954

3.6

0.05

329

2.5

0.72

338

933

811

341

5799

b42

1728

618

917

0.37

2841

70.

0887

42.

90.

7137

3.6

0.05

833

2.2

0.80

548

1554

715

542

4710

1

b43

7530

787

0.74

3632

0.07

712

2.7

0.60

873.

60.

0572

42.

40.

7547

912

483

1450

152

96

b44

2960

422

0.42

1631

0.05

576

2.9

0.41

044.

70.

0533

83.

70.

6135

010

349

1434

584

101

b46

1158

978

90.

7418

996

0.10

695

2.7

0.89

874.

00.

0609

43.

10.

6665

517

651

2063

766

103

b47

1176

615

68

0.11

1714

40.

0557

82.

70.

4082

3.2

0.05

307

1.6

0.87

350

934

89

332

3510

5

b48

1139

114

47

0.03

9509

0.05

586

2.6

0.41

423.

30.

0537

92.

00.

7935

09

352

1036

246

97

b49

4068

503

1.40

3807

0.05

693

2.6

0.42

334.

40.

0539

33.

60.

5935

79

358

1336

880

97

b50

5166

263

0.60

6230

0.10

865

2.6

0.92

793.

80.

0619

42.

80.

6966

517

667

1967

259

99

b52

3431

210

126

0.76

357

0.25

475

6.9

3.25

358.

50.

0926

35.

10.

8014

6390

1470

6914

8096

99

b53

5905

503

0.21

8297

0.06

804

2.8

0.52

523.

90.

0559

82.

70.

7242

412

429

1445

260

94

b54

1486

016

58

0.18

8458

0.05

033

2.5

0.36

593.

20.

0527

32.

00.

7931

78

317

931

745

100

b55

4659

463

1.11

5443

0.05

469

2.7

0.40

754.

20.

0540

43.

20.

6534

39

347

1237

371

92

b57

1969

714

510

0.25

2872

90.

0677

03.

00.

5209

3.4

0.05

581

1.6

0.88

422

1242

612

445

3695

b58

5008

483

0.27

9235

0.05

568

2.8

0.41

593.

70.

0541

72.

50.

7434

99

353

1137

856

92

b59

1779

313

48

0.16

517

0.06

065

3.3

0.45

106.

00.

0539

34.

90.

5638

012

378

1936

811

110

3

b60

6355

329

118

0.07

430

0.06

288

2.9

0.47

854.

10.

0552

02.

80.

7239

311

397

1342

062

94

b62

2865

712

211

0.10

1000

00.

0951

12.

60.

7749

2.9

0.05

909

1.2

0.91

586

1558

313

570

2710

3

b63

8204

353

0.54

5050

0.09

407

2.7

0.76

963.

80.

0593

42.

80.

6958

015

580

1758

060

100

b64

4949

522

1.05

1804

0.03

787

2.5

0.27

644.

00.

0529

33.

10.

6324

06

248

932

670

74

b65

8495

163

0.79

4469

0.16

686

3.0

1.67

894.

10.

0729

72.

80.

7399

527

1001

2610

1356

98

b66

2708

110

912

0.99

4893

0.09

585

2.6

0.81

082.

90.

0613

51.

20.

9159

015

603

1365

225

91

c294

9012

811

0.53

1660

60.

0799

62.

00.

6382

2.6

0.05

789

1.6

0.78

496

1050

110

526

3594

c344

795

971

510.

2993

000.

0536

21.

40.

4022

1.9

0.05

441

1.2

0.76

337

534

35

388

2787

c482

9518

710

0.59

3017

0.05

071

1.9

0.38

873.

20.

0555

92.

60.

5831

96

333

943

658

73

c528

825

655

340.

2318

162

0.05

308

1.5

0.40

302.

00.

0550

51.

30.

7533

35

344

641

429

80

c675

1815

88

0.36

1258

0.05

082

2.0

0.42

063.

30.

0600

32.

60.

6032

06

356

1060

557

53

c769

1974

80.

5311

330

0.10

543

2.2

0.89

953.

70.

0618

72.

90.

6164

614

651

1867

062

96

c846

0490

50.

3979

130.

0604

62.

20.

4910

4.8

0.05

890

4.2

0.46

378

840

616

563

9267

c952

460

9542

1.52

1119

90.

3339

41.

85.

4271

2.4

0.11

787

1.6

0.75

1857

3018

8921

1924

2997

c11

2352

524

619

0.19

521

0.07

254

2.4

0.84

094.

90.

0840

74.

30.

4845

110

620

2312

9484

35

d210

6465

103

511.

0182

459

0.41

460

3.6

7.41

953.

70.

1297

90.

90.

9722

3668

2163

3320

9515

107

Page 26: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

126

Tabl

e 1

— S

k 5

(San

dsto

ne b

, Pos

telw

itz F

orm

atio

n, M

iddl

e Tu

roni

an) c

ontin

ued.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

d331

680

118

621.

0061

140.

0194

03.

90.

1434

10.8

0.05

360

10.1

0.36

124

513

614

354

227

35

d492

7273

80.

4423

610.

1058

13.

90.

8907

5.0

0.06

105

3.1

0.79

648

2464

724

641

6610

1

d639

459

332

370.

8144

500.

0998

63.

50.

8608

4.1

0.06

252

2.2

0.84

614

2063

120

692

4789

d741

243

268

290.

2688

60.

1031

23.

51.

1788

3.9

0.08

290

1.7

0.90

633

2179

122

1267

3350

d812

149

227

140.

6335

730.

0589

03.

70.

4369

4.3

0.05

380

2.3

0.85

369

1336

813

363

5110

2

d915

496

152

161.

0529

890.

0848

43.

70.

7396

4.3

0.06

323

2.1

0.87

525

1956

219

716

4573

d11

1930

436

822

0.44

4279

0.05

973

3.6

0.44

574.

20.

0541

22.

20.

8537

413

374

1337

650

99

d13

2276

137

022

0.16

2348

0.06

061

4.0

0.51

564.

80.

0616

92.

70.

8337

915

422

1766

358

57

d14

1071

6520

874

0.89

7768

0.30

778

3.6

4.36

463.

70.

1028

51.

10.

9617

3055

1706

3116

7620

103

d15

1233

820

513

0.69

940

0.05

719

3.7

0.54

024.

90.

0685

13.

20.

7535

913

439

1888

467

41

d16

1469

531

217

0.18

4775

0.05

652

3.6

0.42

444.

10.

0544

62.

00.

8735

412

359

1239

045

91

d17

5791

107

71.

1812

210.

0570

93.

50.

4774

4.4

0.06

064

2.6

0.81

358

1239

614

627

5657

d18

6841

958

0.47

1185

10.

0851

43.

60.

6779

4.6

0.05

775

2.9

0.78

527

1852

619

520

6310

1

d20

1698

033

317

0.38

1221

0.05

053

4.2

0.36

018.

80.

0516

87.

80.

4731

813

312

2427

117

811

7

d21

1552

118

019

0.69

8071

0.09

431

3.7

0.78

884.

20.

0606

61.

90.

8958

121

590

1962

742

93

d24

1565

524

820

0.95

2303

0.06

796

3.7

0.56

354.

70.

0601

32.

80.

8042

415

454

1760

861

70

d25

2652

603

0.20

1211

0.05

965

3.7

0.44

215.

10.

0537

63.

50.

7337

313

372

1636

178

103

d27

8363

211

110.

3015

685

0.05

501

3.6

0.40

594.

10.

0535

12.

00.

8834

512

346

1235

044

99

d28

2381

273

0.45

3844

0.11

525

4.0

0.97

975.

00.

0616

53.

00.

8070

327

693

2566

263

106

d29

3774

939

528

1.24

109

0.05

002

4.4

1.31

226.

40.

1902

54.

70.

6931

514

851

3827

4477

11

d31

1222

815

719

1.96

3103

0.08

579

3.7

0.73

454.

30.

0620

92.

10.

8753

119

559

1967

745

78

d32

7338

209

120.

5459

680.

0547

33.

60.

4170

4.7

0.05

526

3.0

0.78

343

1235

414

423

6681

d33

4976

142

90.

9855

810.

0531

53.

60.

3924

4.3

0.05

355

2.4

0.83

334

1233

612

352

5395

d35

7516

188

100.

3716

920.

0518

24.

00.

4280

4.9

0.05

990

2.8

0.83

326

1336

215

600

6054

d37

6405

168

121.

3826

440.

0564

53.

50.

4375

4.8

0.05

621

3.3

0.73

354

1236

915

461

7377

d38

1869

142

0.87

358

0.12

734

3.8

1.50

968.

50.

0859

87.

60.

4577

328

934

5313

3814

658

d39

2779

644

0.17

5142

0.05

792

3.8

0.43

315.

30.

0542

33.

80.

7036

313

365

1738

185

95

d40

1277

012

916

0.60

4810

0.11

888

3.5

1.06

104.

40.

0647

32.

60.

8172

424

734

2376

654

95

d41

6278

135

80.

3581

730.

0585

93.

50.

4467

4.6

0.05

530

2.9

0.78

367

1337

514

424

6487

d43

6174

108

70.

4411

428

0.06

009

3.6

0.45

284.

80.

0546

53.

20.

7537

613

379

1539

871

95

d44

1166

920

912

0.18

4589

0.05

880

3.6

0.47

034.

40.

0580

02.

60.

8136

813

391

1453

056

70

Page 27: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

127

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— S

k 6-

2 (la

biat

us S

ands

tone

, Sch

milk

a Fo

rmat

ion,

Low

er T

uron

ian)

— 5

0° 52

′ 28.

8″ N

; 14°

14′ 0

2.2″

E,

mea

sure

d si

ngle

zirc

on g

rain

s: 1

26, c

onco

rdan

t with

in 9

0 – 11

0% o

f con

cord

ance

: 41

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a111

174

232

190.

5335

890.

0756

92.

60.

6390

3.4

0.06

123

2.2

0.76

470

1250

214

647

4873

a277

6725

011

0.27

937

0.04

134

3.6

0.41

765.

30.

0732

64.

00.

6726

19

354

1610

2180

26

a316

0257

30.

0821

430.

0570

03.

30.

4306

6.2

0.05

479

5.2

0.53

357

1136

419

403

116

89

a434

828

593

320.

3114

70.

0411

92.

40.

9600

5.4

0.16

902

4.8

0.44

260

668

327

2548

8110

a569

625

10.

9612

140.

0529

84.

50.

4226

6.7

0.05

785

5.0

0.67

333

1435

820

524

109

64

a685

6924

517

0.17

4394

0.07

378

2.4

0.60

843.

60.

0598

12.

60.

6845

911

483

1459

757

77

a714

5829

42.

2011

740.

0972

13.

00.

8084

6.8

0.06

032

6.1

0.45

598

1760

231

615

131

97

a815

233

251

330.

5060

580.

1272

05.

61.

1433

7.3

0.06

519

4.8

0.76

772

4177

440

780

100

99

a930

5157

70.

5092

40.

1168

13.

01.

1955

8.5

0.07

423

7.9

0.36

712

2079

948

1048

159

68

a10

416

161

0.47

751

0.06

167

4.4

0.46

689.

30.

0548

98.

10.

4838

617

389

3040

818

295

a11

4872

143

100.

1977

830.

0724

42.

20.

5832

3.6

0.05

839

2.8

0.62

451

1046

714

545

6283

a12

1931

395

1.10

803

0.11

098

3.5

1.02

376.

20.

0669

05.

20.

5567

822

716

3383

510

881

a13

2551

108

50.

0946

930.

0544

53.

20.

4126

6.0

0.05

497

5.1

0.53

342

1135

118

411

114

83

a14

1388

564

0.52

2587

0.06

073

2.8

0.45

597.

70.

0544

57.

10.

3738

010

381

2539

016

098

a15

1937

241

823

0.34

105

0.04

257

2.7

1.11

514.

30.

1900

03.

30.

6326

97

761

2327

4254

10

a16

2842

766

0.40

4302

0.07

487

2.5

0.60

764.

60.

0588

63.

90.

5446

511

482

1856

284

83

a17

1878

544

0.31

3262

0.08

024

2.8

0.64

094.

80.

0579

34.

00.

5749

813

503

1952

787

94

a18

5702

136

110.

6016

310.

0772

33.

50.

6954

6.5

0.06

531

5.4

0.54

480

1653

627

784

114

61

a19

9249

96

0.29

4227

0.59

549

4.4

17.9

278

6.4

0.21

835

4.7

0.69

3012

106

2986

6329

6975

101

a20

3021

144

70.

6455

500.

0458

46.

20.

3478

8.8

0.05

503

6.3

0.70

289

1830

323

414

141

70

a21

2782

130

70.

0250

870.

0584

52.

80.

4398

5.0

0.05

458

4.2

0.55

366

1037

016

395

9393

a22

884

753

0.69

772

0.03

388

7.0

0.25

3713

.00.

0543

010

.90.

5421

515

230

2738

324

556

a23

1895

485

0.32

3350

0.10

643

5.4

0.83

568.

90.

0569

47.

10.

6065

233

617

4248

915

713

3

a24

3489

182

110.

3464

650.

0620

74.

20.

4673

5.7

0.05

461

3.9

0.73

388

1638

919

396

8798

a25

4033

069

249

0.43

950.

0487

92.

11.

4349

2.7

0.21

329

1.6

0.80

307

690

416

2931

2610

a26

2770

154

90.

6656

100.

0536

82.

00.

3686

4.8

0.04

980

4.4

0.42

337

731

913

186

101

182

a27

668

353

1.70

1285

0.05

793

2.8

0.41

837.

80.

0523

77.

20.

3736

310

355

2430

216

512

0

a28

3252

226

463

0.47

8611

0.22

861

4.0

2.77

405.

40.

0880

13.

60.

7413

2748

1349

4113

8370

96

a29

2913

167

90.

2854

790.

0532

03.

40.

3921

5.3

0.05

346

4.1

0.63

334

1133

615

348

9396

a30

2537

758

229

0.21

970.

0345

73.

20.

9088

9.0

0.19

068

8.4

0.36

219

765

645

2748

139

8

a31

1561

575

0.45

2447

0.08

597

2.6

0.74

226.

10.

0626

15.

50.

4353

213

564

2769

511

876

a32

7622

3313

0.63

6681

0.36

283

3.5

5.77

245.

00.

1153

93.

60.

6919

9660

1942

4418

8665

106

a33

2760

121

90.

3648

140.

0723

02.

90.

5747

4.3

0.05

765

3.1

0.69

450

1346

116

517

6887

a34

6570

106

190.

6692

060.

1687

52.

71.

6722

3.5

0.07

187

2.3

0.75

1005

2599

823

982

4710

2

a35

2469

529

088

0.19

2480

0.31

134

3.1

3.74

226.

50.

0871

75.

70.

4717

4747

1580

5313

6411

012

8

a36

5430

196

160.

1737

840.

0835

13.

80.

7482

5.0

0.06

498

3.3

0.76

517

1956

722

774

6967

Page 28: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

128

Tabl

e 1

— S

k 6-

2 (la

biat

us S

ands

tone

, Sch

milk

a Fo

rmat

ion,

Low

er T

uron

ian)

con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

a37

3838

217

130.

6069

340.

0585

23.

30.

4503

5.0

0.05

581

3.8

0.66

367

1237

816

445

8382

a38

2056

715

0.43

3497

0.07

543

3.2

0.61

625.

40.

0592

44.

30.

5946

914

487

2157

694

81

a39

1017

033

724

0.21

3767

0.07

506

3.1

0.58

644.

00.

0566

62.

60.

7746

714

469

1547

857

98

a40

1714

405

0.82

2831

0.10

652

4.2

0.90

0110

.60.

0612

99.

70.

4065

326

652

5264

920

910

0

b135

1598

90.

2916

960.

0938

22.

10.

9355

5.6

0.07

232

5.2

0.36

578

1167

128

995

107

58

b241

6792

100.

8067

710.

0968

13.

80.

8162

5.1

0.06

115

3.4

0.74

596

2260

623

644

7392

b359

7214

716

0.94

2472

0.09

686

3.0

0.87

314.

30.

0653

73.

10.

6959

617

637

2078

665

76

b423

9897

60.

4619

310.

0591

23.

30.

4479

5.2

0.05

494

4.1

0.63

370

1237

617

410

9190

b514

5257

30.

3325

960.

0604

52.

60.

4690

5.3

0.05

627

4.7

0.48

378

1039

117

463

103

82

b622

6385

50.

0542

290.

0615

92.

60.

4585

4.9

0.05

399

4.1

0.54

385

1038

316

371

9310

4

b738

282

589

360.

4210

40.

0439

73.

01.

1944

5.2

0.19

703

4.2

0.58

277

879

829

2802

6910

b840

5225

111

1.04

7907

0.03

641

2.8

0.25

834.

20.

0514

53.

10.

6723

16

233

926

171

88

b926

8810

06

0.19

4783

0.06

087

2.5

0.47

415.

70.

0564

95.

10.

4438

19

394

1947

211

381

b10

3670

938

0.61

6442

0.07

976

2.3

0.63

083.

70.

0573

62.

90.

6149

511

497

1550

664

98

b11

4014

172

90.

3926

900.

0540

92.

80.

4075

4.5

0.05

463

3.5

0.63

340

934

713

397

7885

b12

4655

200

100.

3385

850.

0501

52.

50.

3759

4.1

0.05

436

3.2

0.61

315

832

411

386

7382

b13

1114

4617

666

0.34

8423

0.34

175

5.6

9.23

016.

10.

1958

82.

60.

9118

9592

2361

5827

9242

68

b14

5972

141

130.

1537

920.

0925

52.

30.

8761

6.8

0.06

866

6.4

0.34

571

1363

933

888

132

64

b15

1687

775

0.56

3225

0.06

143

3.4

0.44

477.

20.

0525

06.

30.

4838

413

374

2330

714

312

5

b16

1301

740

327

0.09

467

0.06

768

7.0

0.60

2420

.10.

0645

618

.90.

3542

229

479

8076

039

856

b17

2791

593

390.

8023

137

0.37

297

3.0

6.17

163.

90.

1200

12.

50.

7720

4354

2000

3519

5644

104

b18

2078

875

0.19

3977

0.06

265

2.6

0.45

415.

70.

0525

85.

00.

4639

210

380

1831

111

412

6

b19

4376

184

100.

5159

450.

0553

12.

80.

4308

5.2

0.05

648

4.3

0.55

347

1036

416

471

9674

b20

4506

157

100.

1081

590.

0658

22.

90.

5038

4.0

0.05

551

2.8

0.72

411

1241

414

433

6295

b21

2350

108

60.

3812

500.

0577

31.

90.

4263

5.8

0.05

355

5.5

0.33

362

736

118

352

123

103

b22

5610

4811

0.53

1456

0.21

815

3.2

2.35

673.

90.

0783

52.

30.

8112

7237

1230

2811

5646

110

b23

6473

173

120.

1136

420.

0676

82.

10.

6494

7.7

0.06

959

7.4

0.28

422

950

831

916

153

46

b24

6308

295

190.

4011

103

0.06

307

4.6

0.48

967.

00.

0563

05.

30.

6639

418

405

2446

411

785

b25

2651

112

70.

0311

510.

0654

13.

30.

4956

5.6

0.05

495

4.6

0.58

408

1340

919

410

102

100

b26

2299

109

60.

7239

090.

0554

12.

30.

4514

5.5

0.05

908

4.9

0.43

348

837

817

570

108

61

b27

5234

113

140.

6083

400.

1136

22.

90.

9923

4.8

0.06

334

3.9

0.60

694

1970

025

720

8296

b28

2950

239

90.

4319

210.

0349

42.

70.

2969

4.3

0.06

164

3.4

0.62

221

626

410

661

7333

b29

2398

880

330.

7188

610.

3710

87.

46.

4285

8.7

0.12

564

4.5

0.86

2034

131

2036

7920

3879

100

b30

6558

300

190.

7711

993

0.05

566

3.0

0.42

274.

20.

0550

72.

90.

7134

910

358

1341

566

84

b32

2118

106

60.

7139

650.

0557

82.

60.

4138

5.5

0.05

380

4.8

0.48

350

935

216

363

109

96

b34

7286

232

140.

1755

20.

0562

83.

80.

6775

5.2

0.08

731

3.5

0.73

353

1352

521

1367

6826

Page 29: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

129

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 1

— S

k 6-

2 (la

biat

us S

ands

tone

, Sch

milk

a Fo

rmat

ion,

Low

er T

uron

ian)

con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

b35

6791

371

210.

3630

900.

0589

15.

00.

4461

6.9

0.05

493

4.7

0.73

369

1837

522

409

106

90

b36

1160

238

718

0.38

268

0.03

998

3.2

0.60

686.

80.

1100

85.

90.

4825

38

482

2618

0110

814

b37

4956

244

130.

2221

940.

0550

72.

00.

4618

3.7

0.06

081

3.2

0.54

346

738

512

633

6855

b38

1213

310

225

0.72

1342

70.

2259

22.

22.

8129

4.2

0.09

031

3.6

0.53

1313

2613

5932

1432

6892

b39

2702

766

0.24

2192

0.08

163

2.8

0.62

825.

00.

0558

14.

20.

5650

614

495

2044

593

114

b40

1362

967

180.

3913

979

0.26

094

4.0

3.52

454.

40.

0979

61.

80.

9214

9554

1533

3515

8633

94

b42

3987

107

70.

2120

100.

0680

63.

10.

5504

5.2

0.05

865

4.2

0.60

424

1344

519

554

9277

b43

1076

223

012

0.29

182

0.04

482

1.4

0.78

595.

70.

1271

65.

50.

2428

34

589

2620

5997

14

b44

5953

130

110.

4817

790.

0831

82.

10.

7461

3.2

0.06

505

2.4

0.67

515

1156

614

776

5066

b45

2877

637

0.70

2603

0.09

917

1.8

0.79

764.

80.

0583

34.

50.

3761

010

595

2254

298

112

b46

1291

423

0.56

2214

0.06

416

2.6

0.52

266.

20.

0590

75.

60.

4240

110

427

2257

012

270

b47

1691

520

813

0.43

121

0.04

303

7.3

1.08

069.

80.

1821

46.

50.

7427

219

744

5326

7210

810

b48

3599

106

50.

1233

790.

0533

32.

70.

3890

4.2

0.05

289

3.2

0.65

335

933

412

324

7310

3

b49

1425

532

0.31

874

0.02

802

4.2

0.64

4910

.40.

1669

49.

50.

4117

87

505

4225

2715

97

b50

1152

362

0.97

458

0.04

943

3.3

0.58

9711

.90.

0865

311

.50.

2831

110

471

4613

5022

123

b52

3627

626

0.53

4163

0.08

640

3.6

0.71

664.

90.

0601

63.

30.

7553

419

549

2160

970

88

b53

4137

106

60.

2675

970.

0579

51.

60.

4376

4.6

0.05

476

4.3

0.35

363

636

914

403

9590

b54

3431

835

0.14

6081

0.05

877

3.2

0.45

815.

00.

0565

33.

80.

6436

811

383

1647

384

78

b55

5273

119

60.

0216

830.

0533

63.

50.

4373

5.2

0.05

944

3.9

0.66

335

1136

816

583

8557

b56

5848

734

0.51

269

0.05

136

4.6

0.73

749.

50.

1041

38.

30.

4932

314

561

4216

9915

219

b57

4187

985

0.20

3107

0.05

801

3.6

0.45

986.

50.

0574

85.

50.

5436

413

384

2151

012

071

b58

3070

334

1.05

4365

0.11

020

2.3

0.94

154.

60.

0619

63.

90.

5167

415

674

2367

384

100

b59

1324

314

65

0.30

970.

0239

54.

50.

6510

11.0

0.19

718

10.1

0.41

153

750

945

2803

165

5

b60

1610

152

1.00

1390

0.12

363

2.3

1.09

725.

50.

0643

65.

00.

4175

116

752

3075

410

610

0

c126

1848

60.

3632

470.

1301

73.

81.

2075

5.7

0.06

728

4.3

0.66

789

2880

432

846

8993

c225

9678

70.

1968

90.

0975

42.

60.

8850

9.0

0.06

581

8.6

0.29

600

1564

444

800

180

75

c352

6124

67

0.62

200

0.02

183

13.2

0.45

3616

.60.

1506

810

.10.

8013

918

380

5423

5417

26

c415

9867

50.

5028

320.

0719

52.

40.

5709

5.5

0.05

755

5.0

0.43

448

1045

921

513

109

87

c514

4371

40.

3115

840.

0579

13.

50.

4383

6.6

0.05

489

5.6

0.53

363

1236

921

408

124

89

c625

0611

27

0.36

4680

0.06

304

3.0

0.47

174.

90.

0542

73.

80.

6239

412

392

1638

286

103

c760

1917

013

0.33

1032

0.07

518

4.9

0.75

476.

50.

0728

14.

30.

7546

722

571

2910

0987

46

c827

0216

79

0.14

4893

0.05

890

1.9

0.44

436.

70.

0547

16.

40.

2836

97

373

2140

014

492

c922

3754

60.

4837

770.

1040

93.

90.

8652

5.4

0.06

028

3.7

0.72

638

2463

326

614

8010

4

c10

9746

212

1877

0.12

480.

0304

55.

81.

8122

6.5

0.43

167

2.8

0.90

193

1110

5043

4023

425

c11

6260

129

140.

2725

560.

1053

64.

21.

0668

7.2

0.07

343

5.8

0.59

646

2673

738

1026

118

63

c12

1675

374

0.81

2073

0.08

694

4.3

0.77

617.

60.

0647

56.

20.

5753

722

583

3476

613

170

Page 30: The Upper Cretaceous section at Schmilka in Saxony ......Das Oberkreide‑Profil bei Schmilka in Sachsen (Elbsandsteingebirge, Deutschland) – syntektonische Sedimentation und inverse

M. Hofmann et al.: The Upper Cretaceous section at Schmilka in Saxony (Elbsandsteingebirge, Germany)

130

Tabl

e 1

— S

k 6-

2 (la

biat

us S

ands

tone

, Sch

milk

a Fo

rmat

ion,

Low

er T

uron

ian)

con

tinue

d.

Isot

ope

ratio

scAg

es

 20

7 Pba

UbPb

bTh

/Ub

206 Pb

/204 Pb

206 Pb

/238 Uc

2 σ

207 Pb

/235 Uc

2 σ

207 Pb

/206 Pb

e2 σ

Rhod

206 Pb

/238 U

2 σ

207 Pb

/235 U

2 σ

207 Pb

/206 Pb

2 σ

conc

 

Num

ber

[cps

][p

pm]

[ppm

][%

][%

][%

]  

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[Ma]

[%]

c13

3870

189

110.

0370

830.

0650

43.

10.

5008

5.9

0.05

584

5.0

0.53

406

1241

220

446

112

91

c14

4384

226

130.

3280

490.

0580

65.

40.

4433

7.4

0.05

538

5.1

0.72

364

1937

324

428

114

85

c15

4708

8310

0.98

520

0.09

223

3.3

1.18

605.

10.

0932

63.

90.

6456

918

794

2914

9374

38

c16

2384

776

0.29

4161

0.08

355

2.3

0.66

944.

10.

0581

13.

40.

5551

711

520

1753

475

97

c17

2965

159

90.

4053

070.

0572

12.

40.

4516

5.2

0.05

726

4.6

0.46

359

837

816

501

100

72

c18

3150

171

90.

1459

060.

0568

43.

60.

4267

5.9

0.05

444

4.7

0.61

356

1236

118

389

106

92

c19

4510

150

80.

1226

00.

0497

43.

20.

6482

16.0

0.09

450

15.7

0.20

313

1050

766

1518

295

21

c20

5214

201

140.

1087

280.

0717

53.

20.

5917

4.7

0.05

981

3.5

0.68

447

1447

218

597

7575

c21

1355

704

0.32

1403

0.05

331

3.5

0.39

166.

90.

0532

85.

90.

5133

512

336

2034

113

498

c22

1128

284

1.16

801

0.11

693

3.5

1.09

146.

70.

0676

95.

80.

5271

323

749

3685

911

983

c23

3676

137

140.

3956

810.

1047

02.

20.

9554

5.0

0.06

618

4.5

0.44

642

1368

125

812

9579

c24

818

362

0.88

1480

0.05

915

3.7

0.45

837.

60.

0561

96.

60.

4837

013

383

2446

014

781

c25

8205

222

310.

5256

070.

1400

61.

81.

2047

3.9

0.06

238

3.5

0.46

845

1480

322

687

7512

3

c26

1378

652

024

0.72

263

0.03

599

4.7

0.59

255.

70.

1193

93.

30.

8222

811

472

2219

4759

12

c27

9944

364

190.

7323

30.

0441

63.

00.

7380

5.1

0.12

122

4.1

0.60

279

856

122

1974

7214

c28

3265

173

90.

4259

580.

0495

93.

90.

3733

6.1

0.05

460

4.7

0.64

312

1232

217

396

106

79

c29

3420

872

833

0.37

880.

0293

12.

40.

8644

6.2

0.21

387

5.7

0.39

186

463

329

2935

926

c30

1016

563

0.66

1538

0.05

259

3.1

0.38

576.

90.

0531

96.

10.

4633

010

331

2033

713

998

a W

ithin

-run

bac

kgro

und-

corr

ecte

d m

ean

207 P

b si

gnal

in c

ount

s per

seco

ndb

U a

nd P

b co

nten

t and

Th/

U ra

tio w

ere

calc

ulat

ed re

lativ

e to

GJ-

1 an

d ar

e ac

cura

te to

app

roxi

mat

ely

10%

c C

orre

cted

for b

ackg

roun

d, m

ass b

ias,

lase

r ind

uced

U-P

b fr

actio

natio

n an

d co

mm

on P

b (if

det

ecta

ble,

see

anal

ytic

al m

etho

d) u

sing

Sta

cey

& K

ram

ers (

1975

) mod

el P

b co

mpo

sitio

n. 20

7 Pb/

235 U

cal

cula

ted

usin

g 20

7 Pb/

206 P

b/(23

8 U/20

6 Pb

× 1/

137.

88).

Erro

rs a

re p

ropa

gate

d by

qua

drat

ic a

dditi

on o

f with

in-r

un e

rror

s (2S

E) a

nd th

e re

prod

ucib

ility

of G

J-1

(2SD

)d

Rho

is th

e er

ror c

orre

latio

n de

fined

as e

rr20

6 Pb/

238 U

/err

207 P

b/23

5 U.