The Timoshenko Beam · Timoshenko theory Equilibrium equations in terms of deflections Combining...

48
Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 The Timoshenko Beam Book Chapters [O] V2/Ch2 [F] Ch13

Transcript of The Timoshenko Beam · Timoshenko theory Equilibrium equations in terms of deflections Combining...

Institute of Structural Engineering Page 1

Method of Finite Elements I

Chapter 6

The Timoshenko Beam

Book Chapters[O] V2/Ch2[F] Ch13

Institute of Structural Engineering Page 2

Method of Finite Elements I

Today’s Lecture

• Timoshenko beam theory

• Weak form

• Discretization

• Stiffness matrix – load vector

• Shear locking

Timoshenko beam elements

Institute of Structural Engineering Page 3

Method of Finite Elements I

Reminder: Euler-Bernoulli theory

Assumptions:

Uniaxial Element

The longitudinal direction is sufficiently larger than the other two

Prismatic Element

The cross-section of the element does not change along the element’s length

Institute of Structural Engineering Page 4

Method of Finite Elements I30-Apr-10

Reminder: Euler-Bernoulli theory

Euler/ Bernoulli assumption

Upon deformation, plane sections remain plane AND perpendicular to the beam

axis

z

z

dwu y y

dx

dw

dx

2

2

0

xx

xy

du wy

dx x

dw du dw dw

dx dy dx dx

Institute of Structural Engineering Page 5

Method of Finite Elements I

Reminder: Euler-Bernoulli theory

Valid for:

Slender beams: / 1 /100h L

Institute of Structural Engineering Page 6

Method of Finite Elements I

Timoshenko theory

Assumptions:

Uniaxial Element

The longitudinal direction is sufficiently larger than the other two

Prismatic Element

The cross-section of the element does not change along the element’s length

Institute of Structural Engineering Page 7

Method of Finite Elements I30-Apr-10

Timoshenko theory

Timoshenko assumption

Upon deformation, plane sections remain plane but not necessarily perpendicular

to the beam axis

z

z

dw

dx

z z

dw

dx

Institute of Structural Engineering Page 8

Method of Finite Elements I

Timoshenko theory

Valid for:

Slender beams:

Thick beams:

/ 1 /100h L

/ 1 /10h L

Institute of Structural Engineering Page 9

Method of Finite Elements I30-Apr-10

Timoshenko theoryDisplacements

Strains

z z

dwu y y

dx

w w x

, 0

0

zxx yy

xy z

u wy

x x y

w u w w w

x y x x x

Stresses

,

2 1

xx xx

xy xy

E

EG G

Institute of Structural Engineering Page 10

Method of Finite Elements I30-Apr-10

Timoshenko theoryCross sectional forces – Bending Moment

2z zxx xx z z

A A A A

d dM y dA E y dA E y y dA E y dA EI

dx dx

M

xx

x

y

Normal stress distribution

where:

2

z

A

zz

I y dA

d

dx

Or:

b z

b z

M D

D EI

→ moment of inertia

→ bending strain/curvature

Institute of Structural Engineering Page 11

Method of Finite Elements I30-Apr-10

Timoshenko theoryCross sectional forces – Shear Force

xy xy xy xy

A A A

V dA G dA G dA GA

x

y

xy

Vx

y

xy

V

Actual shear stress distribution Assumed shear stress distribution

,

2 1A

EA dA G

where:

Or:

,s xy sV D D kGA where is introduced to account for the actual stress distribution 1k

Institute of Structural Engineering Page 12

Method of Finite Elements I30-Apr-10

Timoshenko theoryShear Correction parameter for standard cross sections

5 / 6k 6 / 7k 0.32k

0.416k 0.5k 0.358k

Institute of Structural Engineering Page 13

Method of Finite Elements I30-Apr-10

Timoshenko theoryEquilibrium equations (identical to Bernoulli beams)

Force equilibrium

Moment equilibrium

y

dVf x

dx

dM

V xdx

Combined

2

2 y

d Mf x

dx

yf x

Institute of Structural Engineering Page 14

Method of Finite Elements I30-Apr-10

2

22 3

const

2 3

y

EIz zz z z y z y

zz

d Mf x

dxd d d

M EI k EI f x EI f xdx dx dx

dk

dx

Timoshenko theoryEquilibrium equations in terms of deflections

Equilibrium + Moment-curvature relation + Curvature definition

Force equilibrium + Shear force-Shear strain relation + Shear strain definition

2

const

2

y

ykGA zxy z y

xy z

dVf x

dxf xd dw d d w

V kGA kGA f xdx dx dx dx kGA

dw

dx

Institute of Structural Engineering Page 15

Method of Finite Elements I30-Apr-10

3

243

4 22

2

zz y

yzz y

yz

dEI f x

d f xd w EIdxEI f x

dx kGA dxf xd d w

dx dx kGA

Timoshenko theoryEquilibrium equations in terms of deflections

Combining the two expressions

Institute of Structural Engineering Page 16

Method of Finite Elements I30-Apr-10

3

243

4 22

2

zz y

yzz y

yz

dEI f x

d f xd w EIdxEI f x

dx kGA dxf xd d w

dx dx kGA

Timoshenko theoryEquilibrium equations in terms of deflections

Combining the two expressions

Comparison to Bernoulli-Euler theory

24

4 2

yzz

d f xd w EIEI p x

dx kGA dx

4

4z y

d wEI f x

dx

Timoshenko Bernoulli-Euler

Institute of Structural Engineering Page 17

Method of Finite Elements I30-Apr-10

Weak formPrinciple of Virtual Work

0

InternalVirtualWork ExternalVirtualWork

L

xx xx xy xy y z i yi zi i

i iV

dV w f m dx w F M

where:

yf

m

yiF

iM

→ distributed force

→ distributed moment

→ nodal force

→ nodal moment

Institute of Structural Engineering Page 18

Method of Finite Elements I30-Apr-10

Weak form

Bending Shear

0 0

0 0

xx xx xy xy xx xx xy xy

V V V

zxx xy xy

V V

L L

zxx xy xy

A A

M V

L L

zxy

dV dV dV

dy dV dV

dx

dy dA dx dA dx

dx

dM dx V

dx

0 0

L L

z zb xy s xy

dx

d dD dx D dx

dx dx

Internal Virtual Work

Institute of Structural Engineering Page 19

Method of Finite Elements I30-Apr-10

2 2

2 2

0 0b

z zzzizz

L L

z y i yi i

i i iDdd

dxdx

d w d w dw dwEI dx w f m dx w F M

dx dx dx dx

0 0 0

z z

L L L

z zb xy s xy y z i yi zi i

i i

d dD dx D dx w f m dx w F M

dx dx

Weak formPrinciple of Virtual Work

Principle of Virtual Work – Euler Bernoulli theory

Institute of Structural Engineering Page 20

Method of Finite Elements I30-Apr-10

Weak formPrinciple of Virtual Work

0 0 0

L L L

z b z xy s xy y z i yi zi i

i i

D dx D dx w f m dx w F M

Principle of Virtual Work – Euler Bernoulli theory

0 0

L L

z b z y z i yi zi i

i i

D dx w f m dx w F M

Institute of Structural Engineering Page 21

Method of Finite Elements I30-Apr-10

Discretization

Two noded beam element

Isoparametric coordinates are used

Independent assumptions need to be made for the deflections and rotations

4 dofs are available in total (1 deflection and 1 rotation per node)

A linear assumption is made for both the deflections and the rotations:

2l

1 1 0

0 1 0 1, zw a a b b

Institute of Structural Engineering Page 22

Method of Finite Elements I30-Apr-10

DiscretizationShape functions – Linear isoparametric

2l

1 1 0

1N

-1 1

2N

-1 1

Geometry

1

1 1

2

xx N N

x

2

2 2,

1 11 ,

2 2

dNN N

d

1

1 1,

1 11 ,

2 2

dNN N

d

1

1, 1,

2

1 2 1

2

1 1

2 2 2 2

xdxJ N N

xd

x x x L

x

1 2dJ

dx L

Institute of Structural Engineering Page 23

Method of Finite Elements I30-Apr-10

DiscretizationDisplacements – Virtual Displacements

1

1 2

2

1

1

1 2

2

2

1

1

1 2

2

2

or

0 0

0 0

z

z

z

z

ww N N

w

w

w N Nw

w

w N Nw

w

w

w

N

u

w

N

u

N u

N u

1

1 2

2

1

1

1 2

2

2

1

1

1 2

2

2

or

0 0

0 0

z

z

z

z

z

z

z

z

z

N N

w

N Nw

w

N Nw

θ

θ

θ

N

u

θ

N

u

N u

N u

Rotations – Virtual Rotations

Institute of Structural Engineering Page 24

Method of Finite Elements I30-Apr-10

DiscretizationBending strain – Virtual bending strain

1 1

1 1

1 1

1, 2, 1, 2,

2 2

2 2

1

1

2

2

0 0 0 0

1 2 1 20 0

2 2

1 1, , 0 0

z zzz x x

J Jz z

z

z

z z

w w

d d dN N N N

w wdx dx dx

w

wL L

L L

bB

u

b b bB u B u B

Institute of Structural Engineering Page 25

Method of Finite Elements I30-Apr-10

DiscretizationShear strain – Virtual shear strain

1 1

1 1

1, 2, 1 2

2 21 1

2 2

1

1

2

2

0 0 0 0

1 1 1 11 1

2 2

1 1, , 1

2

z z

xy x x

L Lz z

z

z

xy xy

w w

dwN N N N

w wdx

w

wL L

L

sB

u

s s sB u B u B 1 1

12L

Institute of Structural Engineering Page 26

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorPrinciple of Virtual Work (distributed moments and nodal forces ignored)

0 0 0

L L L

z b z xy s xy yD dx D dx w f dx

Substituting the discretized fields

0 0 0

L L L

T T T T T T

b s y

T

D dx D dx f dx

b b s s wu B B u u B B u u N

u0

L

T T

bD dx b bB B u u

0

L

T T

sD dx s sB B u u

0

0 0 0

L

T

y

L L L

T T T

b s y

f dx

D dx D dx f dx

w

b b s s w

fK

N

B B B B u N

Institute of Structural Engineering Page 27

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorStiffness matrix

0 0

, ,

L L

T T

b sD dx D dx b s b b b s s sK K K K B B K B B

Load Vector

0

L

T

yf dx wf N

1 10 0 ,

1 1 1 11 1 ,

2 2

b z

s

D EIL L

D kGAL L

b

s

B

B

1 1

1 0 1 02 2

wN

Institute of Structural Engineering Page 28

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorStiffness matrix – Analytical integration

1

0 1

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

L

T T

b b

b

z

D dx D Jd

D

L

EI

L

b b b b b

b

bb

K B B B B

K

K K

Institute of Structural Engineering Page 29

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorStiffness matrix – Analytical integration

1

0 1

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

L

T T

b b

b

z

D dx D Jd

D

L

EI

L

b b b b b

b

bb

K B B B B

K

K K

→ Similar to a bar element!

Institute of Structural Engineering Page 30

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorStiffness matrix – Analytical integration

1

0 1

2 2

2 2

2 2

2 2

1 1 1 11 1

2 2 2 2

1 1 1 1

2 3 2 6 2 3 2 6

1 1 1 11 1

2 2 2 2

1 1 1 1

2 6 2 32 6 2 3

L

T T

s s

ss

D dx D Jd

L L

L L L L

L L L L

D L LD L kGAL

L LL

L L L L

L L L L

L L

s s s s s

ss

K B B B B

K K

Institute of Structural Engineering Page 31

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorLoad vector– Analytical integration

0 0

2

0

2

0

L L

T T

y y

y

y

f dx f Jd

f

f

w wf N N

f

Institute of Structural Engineering Page 32

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorLoad vector– Analytical integration

0 0

2

0

2

0

L L

T T

y y

y

y

f dx f Jd

f

f

w wf N N

f → Also similar to a bar element!

Institute of Structural Engineering Page 33

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorStiffness matrix – Numerical integration

1

0 1

L

T T T

b b i i b i

i

D dx D Jd w D J

b b b b b b bK B B B B B B

Stiffness matrix – Required number of Gauss points

Institute of Structural Engineering Page 34

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorStiffness matrix – Numerical integration

1

0 1

L

T T T

b b i i b i

i

D dx D Jd w D J

b b b b b b bK B B B B B B

Stiffness matrix – Required number of Gauss points

1 10 0 constant

constant

constant

constant 0

b

T

i b i

L L

J

D

D J p

b

b b

B

B B

→ 1 Gauss point is enough

Institute of Structural Engineering Page 35

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorStiffness matrix – Numerical integration

1

0 1

L

T T T

s s i i s i

i

D dx D Jd w D J

s s s s s s sK B B B B B B

Stiffness matrix – Required number of Gauss points

Institute of Structural Engineering Page 36

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorStiffness matrix – Numerical integration

1

0 1

L

T T T

s s i i s i

i

D dx D Jd w D J

s s s s s s sK B B B B B B

Stiffness matrix – Required number of Gauss points

1 1 1 11 1 linear

2 2

constant

constant

quadratic 2

s

T

i s i

L L

J

D

D J p

s

s s

B

B B

→ 2 Gauss points are

required

Institute of Structural Engineering Page 37

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorLoad vector – Numerical integration

0 0

L L

T T T

y y i i y

i

f dx f Jd w f J w w wf N N N

Load vector – Required number of Gauss points

Institute of Structural Engineering Page 38

Method of Finite Elements I30-Apr-10

Stiffness Matrix – Load VectorLoad vector – Numerical integration

1

0 1

L

T T T

y y i i y

i

f dx f Jd w f J

w w wf N N N

Load vector – Required number of Gauss points

1 1

1 0 1 0 linear2 2

constant

constant

linear

y

T

y

J

f

f J

w

w

N

N

→ 1 Gauss point is enough

Institute of Structural Engineering Page 39

Method of Finite Elements I30-Apr-10

Shear lockingExplanation

Consider a 2 noded beam under pure bending:

For a slender beam no shear strain should occur, however since

1constzz z

dM EI b

dx

1 1 0xy z

dwa b

dx

0 1w a a

→ shear strain is not zero for any value of 1a

Institute of Structural Engineering Page 40

Method of Finite Elements I30-Apr-10

Shear lockingGeometrical interpretation

Element deformation for a slender beam Actual deformation of a slender beam

1z 2z

1 2

xy0xy

Institute of Structural Engineering Page 41

Method of Finite Elements I30-Apr-10

Shear lockingIn terms of the system of equations

2

3

z zEI EI kGAkGAL L

L L L

b s b sb s

K K K K K K K

Ku f

Assuming an orthogonal cross section:

3

3

3

2

2

5

6 2 112

5

12 12 1

h

EbhbhE

LL L

Eb Eb h

LL

L

b s

b s

K K K

K K

Since for slender beams ,

the shear term dominates the bending

one leading to artificially stiff systems

3h h

L L

Institute of Structural Engineering Page 42

Method of Finite Elements I30-Apr-10

Shear lockingIn terms of the system of equations

As the beam becomes more slender , the coefficient of the shear term

increases much faster than the one of the bending term

The higher coefficient of the shear term can be seen as penalty parameter rendering

the system stiffer

At the limit, the system becomes extremely stiff leading to a “locking” effect

For general cross sections, the thickness to length ratio affects the results similarly

3

2 5

12 12 1

zEI Eb EbkGAL L

h h

L LL

b s b sb sK K K K K K K

Ku f

0h

L

Institute of Structural Engineering Page 43

Method of Finite Elements I30-Apr-10

Shear lockingA first remedy: Reduced integration

Locking is essentially caused by the “spurious” linear term in the shear strain:

Ignoring the energy produced by that term would remove locking effects

A simple way of improving the performance of the element, is to simply reduce the

integration order used for the shear term

Using a single Gauss point can accurately integrate functions of order 2x1-1=1, thus the

quadratic terms produced by the “spurious” linear term cannot be accurately integrated

1 1xy z

dwa

dxb

Institute of Structural Engineering Page 44

Method of Finite Elements I30-Apr-10

Shear lockingA first remedy: Reduced integration

Shear part of the stiffness matrix using full and reduced integration:

2 2

2 2

1 12 2

2 2

1 12 2

4

2 2

4

4 4

s

L L

L L

D

L LL

L

L L

L L L

r

sK

2 2

2 2

1 12 2

2 3 2 6

1 12 2

2 6 2 3

s

L L

L L L L

D

L LL

L L L L

sK

Reduced integrationFull integration

Institute of Structural Engineering Page 45

Method of Finite Elements I30-Apr-10

Shear lockingA first remedy: Reduced integration

Resulting forces for a displacement vector corresponding to pure bending for the fully

integrated shear contribution of the stiffness matrix:

2 2 2

2

2 2

1 102 2

0

2 3 2 6 6

0 01 1

2 2

6

2 6 2 3

s s

L L

L L L L L

D D

L LL L

L

L L L L

sK u

1 1 2 2 0 0TT

z zw w u

Institute of Structural Engineering Page 46

Method of Finite Elements I30-Apr-10

Shear lockingA first remedy: Reduced integration

Resulting forces for a displacement vector corresponding to pure bending for the shear

contribution of the stiffness matrix obtained using reduced integration:

2 2

2 2

1 12 2

0 0

02 4 2 4

0 01 1

2 2 0

2 4 2 4

s

L L

L L L L

D

L LL

L L L L

r

sK u

1 1 2 2 0 0TT

z zw w u

→ The shear term yields no forces!

Institute of Structural Engineering Page 47

Method of Finite Elements I30-Apr-10

Shear lockingAn alternative remedy: Assumed shear strain field

An alternative interpolation scheme can be used for the shear strain:

where:

DI

xy γN γ

γN

DIγ

→ a vector of interpolation functions used for the shear stain

→ a vector of shear strain values computed at specific interpolation points

Institute of Structural Engineering Page 48

Method of Finite Elements I30-Apr-10

Shear lockingAn alternative remedy: Assumed shear strain field

For the two noded beam element the shear strain should be constant, thus only one

point is required

The midpoint of the element is selected, where the strain assumes the value:

The interpolation function is set constant:

The resulting element is equivalent to the one using reduced integration

1

1 2 1 1 2

2

2

1 1 1 10

2 2 2

zDI z zxy

z

w

w w

wL L L

1N