The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

21
The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School

Transcript of The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

Page 1: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

The Standard Normal Distribution

Fr. Chris A.P.Statistics

St. Francis High School

Page 2: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

Requirements for Any Probability Distribution

• Always Positive

• Total area under the curve must be 1(Since 1 represents 100%)

Page 3: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

The Standard NormalDistribution

1

2πex2

Any value of x will produce a

POSITIVE result

Page 4: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

But is the area below equal 1?

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

„- x 2ÄÄÄÄÄÄ2

ÄÄÄÄÄÄÄÄÄÄÄÄÄè !!!!!!!2 p

Page 5: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

In other words, does

∫−∞

∞1

2πex2 dx=1? YES!

Page 6: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

Lets work it out…

∫−∞

∞1

2πex2 dx=∫

−∞

∞12π

e−x2

2 dx

=12π∫

−∞

e−x2

2 dx

Page 7: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

But there is a problem…

∫−∞

e−x2

2 dx Has NO antiderivative!

But Karl Friedrich Gauss figured a tricky way around this!

Page 8: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

Let us introduce an “I” such that:

I = e−x2

2 dx∫−∞

So the area under the “Standard Normal Curve”

would beI2π

Page 9: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

But let’s concentrate on the I

I = e−x2

2 dx∫−∞

∞Since x is merely avariable of integration, we can also express I as

∫−∞

e−y2

2 dyI =

Page 10: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

So why not express I2 as

e−y2

2 dye−x2

2 dxI 2 = ∫−∞

∫−∞

or

−∞

∫−∞

∫e−x22 e

−y2

2 dxdy

Page 11: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

−∞

∫−∞

∫e−x22 e

−y2

2 dxdy=

−∞

∫−∞

∫e− x2+y2( )2 dxdy

This double integral is actually the volume under a 3-D “bell”

-20

2

-2

0

2

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

Page 12: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

Rectangles aren’t the only thing that integrates!

We can now do a clever change of variableby converting to Polar coordinates!

x + y = r

x

2

ry

2 2

−∞

∫−∞

∫e− x2+y2( )2 dxdy=

e− r2( )

2 rdrdθ∫∫π

0 −∞

Page 13: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

How polar coordinates work,and how to make the switch...

Any integral can be computed by the limit of Riemann sums over Cartesian rectangles or Riemann sums over polar rectangles. The area of a Cartesian rectangle of sides dx and dy is dx*dy but the area of a polar rectangle of sides dr and dt is NOT just dr*dt

Page 14: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

Rather dA is a bit more...

Asector =12dθ r2

dA=12b

2dθ−12a

2dθ

=12 (a+b)(a−b)dθ

Since 12 (a+b) =r and (a−b)=dr

dA=rdrdθGetting back to our story...

Page 15: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

Recall the Pythagorean Theorem?

We can now do a clever change of variableby converting to Polar coordinates!

x + y = r

x

2

ry

2 2

−∞

∫−∞

∫e− x2+y2( )2 dxdy=

e− r2( )

2 rdrdθ∫∫π

0 −∞

Page 16: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

So now we DO have an antiderivative!

e− r2( )

2 rdrdθ=∫∫π

0 −∞

∫π

0

−e− r2( )

2

−∞

Page 17: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

∫π

0

−e− r2( )

2

−∞

dθ= ∫π

0

e− r2( )

2

−∞

And because of symmetry

=2∫π

0

e− r2( )

2

0

dθ=2 1

e02−

1e

∞2dθ∫

π

0

We can now start evaluating the integral from negative to positive infinity…

Page 18: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

Almost there!

2 1

e02−

1e

∞2dθ∫

π

0

=2 11

−limb→ ∞

1

eb2

dθ∫π

0

1−0 dθ dθ∫π

0

=2 =2∫π

0

=2π

Page 19: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

But that wasn’t “I”

I 2 =2πSo

I = 2π

...that was “I” squared!

Page 20: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

Recall the area under the Standard Normal Curve

I2π

So… =2π2π

=1

Page 21: The Standard Normal Distribution Fr. Chris A.P.Statistics St. Francis High School.

So the area under the curve is 1!

Wasn’t Professor Gauss clever?

It is no accident that many Mathematicians still prefer to call

the “Standard Normal” distribution

The Gaussian Distribution