The Size of Absorption Line Systems

12
The Size of Absorption Line Systems Cloud (inhomogeneities) – Object – Large scale correlation Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R. Srianand C. Ledoux F. Stoehr C. Pichon J. Bergeron E. Rollinde M. Longhetti F. Coppolani E. Scannapieco

description

The Size of Absorption Line Systems. Cloud (inhomogeneities) – Object – Large scale correlation Patrick Petitjean Institut d’Astrophysique de Paris. B. Aracil R. Srianand C. Ledoux F. Stoehr C. Pichon - PowerPoint PPT Presentation

Transcript of The Size of Absorption Line Systems

Page 1: The Size of Absorption Line Systems

The Size of Absorption Line Systems

Cloud (inhomogeneities) – Object – Large scale correlation

Patrick PetitjeanInstitut d’Astrophysique de Paris

B. Aracil R. Srianand C. Ledoux F. Stoehr C. Pichon

J. Bergeron E. Rollinde M. Longhetti F. Coppolani E. Scannapieco

Page 2: The Size of Absorption Line Systems

Damped Lyman-alpha Systems

1. System as a whole Broad-band imaging of the field : HST - z < 1 Le Brun et al. (1997, A&A, 321, 733), Chen et al., Rao et al. -> 10 kpc - z = 1.892 LBQS 1210+1731; Kulkarni et al. (2000, ApJ 536, 36) -> 2 kpc Lenses: - z = 0.93 ; HE0512-3329; 5 kpc ; Lopez et al. 2005, astro-ph/0503026 Lyman- emission : - z > 1.9; Moeller et al. (2004, A&A, 422, L33) => Small sizes -> a few kpc : 2 (high z) to 10 (low z) kpc Additional argument ? : Homogeneity of the gas for abundance ratios Prochaska (2003, ApJ, 583, 49); Rodriguez et al. (submitted)

SiII/SII or FeII/SII are fairly constant through the profile

2. Clouds Physical conditions in the gas: nH = 1 to 100 cm-3 (Srianand et al. 2005;

Ledoux et al. 2003, MNRAS, 346, 209) => 1 (H2) to 100 (diffuse) pc Lenses: < 25 pc (Churchill et al., 2003, ApJ, 593, 203)

Page 3: The Size of Absorption Line Systems

MgII systems

1. Systems (z ~ 1) * Broad band imaging and spectroscopic follow-up -> 35 kpc Bergeron & Boissé (1991, A&A 243, 344); Steidel (1993) * Weak MgII systems ? Churchill et al. (2000) -> larger ?

2. Clouds * The case APM08279+5255

Inhomogeneities over 1kpc

Ellison et al. (2004, A&A, 414, 79)

-> photometric redshifts ?

MgII z = 0.73

100 kpc

Page 4: The Size of Absorption Line Systems

CIV sytems

1. Clouds - Lenses : Rauch et al. (2001, ApJ, 554, 823)Featureless on scales < 300 pc

2. SystemsMuch larger cross-sectionEspecially for weak systems

=> Correlation functions

Longhetti & Petitjean in prep

CIV z = 1.339

150 kpc

MgII z = 0.58

200 kpc

Page 5: The Size of Absorption Line Systems

Overall Picture

• The IGM

• Where are the metals ?

• Physical state ?

• Expelled from the center of Halos -> Winds

• Along filaments

• What about the Voids ?

•Correlations

Along the los -> Big Sample

Transverse -> Pairs or groups

Page 6: The Size of Absorption Line Systems

CIV longitudinal correlation function

Large Programme ESO – 643 CIV systems

Column density distribution

SPH Simulation : -Bubbles (radius Rbubble) around haloes of mass Mhalo

- Ionized by the UV background - Los analized the same way as data

Page 7: The Size of Absorption Line Systems

Fitting the CIV longitudinal correlation function

Fitting the column density distribution and the correlation function => Mhalo = 5x1011 Msun and Rbubble = 2.5 Mpc

Scannapieco et al., 2005, astro-ph/0503001

for Z/20

Page 8: The Size of Absorption Line Systems

Correlation in the Lyman-alpha forest

Longitudinal : Large Programme ESO : 20 LOS UVES R=45000 S/N=40-100

Transverse : 32 pairs 1-3 arcmin observed with FORS

Page 9: The Size of Absorption Line Systems

Simulated correlation functions

- Hydro simulations in a 100 Mpc simulation box- Effect of thermal broadening and peculiar velocities on longitudinal and transverse correlation functions

Longitudinal

Transverse

Page 10: The Size of Absorption Line Systems

Longitudinal correlation function

UVES

FORS

z=2

z=3

Observed versus Simulated correlation functions

see poster Aghaee

Page 11: The Size of Absorption Line Systems

Transverse correlation functionAlcock & Paczynski test

Sample should be increased to derive

Very good prospect for further investigation

Groups of QSOs

Page 12: The Size of Absorption Line Systems

Conclusion

Small scales : One to one association

Impact parameters of metal line systems : bigger sample

Completeness ?

Star-formation vs physical state of the gas

Large Scales

Where are the metals ? How are they expelled from the site of

star-formation ?

Spatial distribution of the gas and galaxies; Topology and kinematics (see poster Caucci)