The simulation and optimization workflow for extrusion ... · The Extrusion Blow Molding Process 1....

20
Dr. Reinold Hagen Stiftung Folie 1 ENGINEERING für die Blasformtechnik The simulation and optimization workflow for extrusion blow molded parts and how it benefits from the VMAP Interface Standard 1) Dr. Reinold Hagen Stiftung, Bonn 2) TREE-Institut Hochschule Bonn-Rhein-Sieg, Sankt Augustin Dr. Olaf Bruch 1,2 Patrick Michels 1 Dirk Grommes 1 Dr. Reinold Hagen Stiftung Kautexstraße 53 53229 Bonn www.hagen-stiftung.de 3DEXPERIENCE® Conference Darmstadt, 19.-21. November 2019

Transcript of The simulation and optimization workflow for extrusion ... · The Extrusion Blow Molding Process 1....

  • Dr. Reinold Hagen Stiftung

    Folie 1

    ENGINEERING für die Blasformtechnik

    The simulation and optimization workflow for extrusion blow molded parts and how it benefits from the VMAP Interface

    Standard

    1) Dr. Reinold Hagen Stiftung, Bonn

    2) TREE-Institut Hochschule Bonn-Rhein-Sieg, Sankt Augustin

    Dr. Olaf Bruch1,2

    Patrick Michels1

    Dirk Grommes1

    Dr. Reinold Hagen Stiftung Kautexstraße 53

    53229 Bonn www.hagen-stiftung.de

    3DEXPERIENCE® Conference

    Darmstadt, 19.-21. November 2019

  • Dr. Reinold Hagen Stiftung

    Folie 2

    Content

    1. Introduction

    2. CAE-Workflow of blow molded plastic parts

    3. The demand for interfaces

    • Process dependent material properties

    • Local surface film coefficients

    • Deformed structure and residual stresses

    4. The VMAP interface standard

    5. Summary and outlook

  • Dr. Reinold Hagen Stiftung

    Folie 3

    1. Introduction Extrusion Blow Molding

    Consumer packaging

    Industrial packaging

    Technical parts and automotive

  • Dr. Reinold Hagen Stiftung

    Folie 4

    1. Introduction The Extrusion Blow Molding Process

    1. extrusion of the parison

    2. closing of the mold

    3. inflation of the parison

    4. opening of the mold / article removal

    5. post-machining / deflashing

    Wall thickness is a process dependent factor!

    Picture source: Thielen, Michael; Hartwig, Klaus; Gust, Peter, Blasformen von Kunststoff-Hohlkörpern Carl Hanser Verlag, Munich, 2006

  • Dr. Reinold Hagen Stiftung

    Folie 5

    2. CAE-Workflow of blow molded plastic parts Blow molding simulation

    Blow Molding Simulation

    Cooling Simulation

    Shrinkage and Warpage

    Process Simulation Product Simulation Material Modelling and

    Interfaces

    Drop Test (crash)

    Top Load Test (short-term)

    Stacking Test (long-term)

    Model Calibration

    Spannungs - Dehnungs - Kurve des Gsell Materialmodells

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.2 0.4 0.6 0.8 1 1.2

    Dehnung

    Sp

    an

    nu

    ng

    in

    N/m

    Dehnrate = 1/s

    Dehnrate = 10 /s

    Dehnrate = 100 /s

    Dehnrate = 1000 /s

    Blow Molding Simulation Mapping

  • Dr. Reinold Hagen Stiftung

    Folie 6

    2. CAE-Workflow of blow molded plastic parts Blow molding simulation

    Feasibility studies and prediction of wall thickness distribution

    Guide Wall in Dual Cavity

    Automotive fuel tank

    Optimization of wall thickness distribution

  • Dr. Reinold Hagen Stiftung

    Folie 7

    2. CAE-Workflow of blow molded plastic parts Shrinkage and Warpage

    Blow Molding Simulation

    Cooling Simulation

    Shrinkage and Warpage

    Process Simulation Product Simulation Material Modelling and

    Interfaces

    Drop Test (crash)

    Top Load Test (short-term) Model Calibration

    Mapping

    Spannungs - Dehnungs - Kurve des Gsell Materialmodells

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.2 0.4 0.6 0.8 1 1.2

    Dehnung

    Sp

    an

    nu

    ng

    in

    N/m

    Dehnrate = 1/s

    Dehnrate = 10 /s

    Dehnrate = 100 /s

    Dehnrate = 1000 /s

    Cooling Simulation

    Shrinkage and Warpage

  • Dr. Reinold Hagen Stiftung

    Folie 8

    2. CAE-Workflow of blow molded plastic parts Shrinkage and Warpage

    Process simulation Cooling Simulation Shrinkage & Warpage

    Wall thickness distribution

    Local strain and stresses

    Temperatures

    Residual stresses Displacements

    fu

    lly o

    r se

    qu

    en

    tial

    ly c

    ou

    ple

    d

    CFD-Simulation of the cooling

    channels

  • Dr. Reinold Hagen Stiftung

    Folie 9

    2. CAE-Workflow of blow molded plastic parts Virtual product testing

    Blow Molding Simulation

    Cooling Simulation

    Shrinkage and Warpage

    Process Simulation Product Simulation Material Modelling and

    Interfaces

    Drop Test (crash)

    Top Load Test (short-term)

    Stacking Test (long-term)

    Model Calibration

    Mapping

    Spannungs - Dehnungs - Kurve des Gsell Materialmodells

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.2 0.4 0.6 0.8 1 1.2

    Dehnung

    Sp

    an

    nu

    ng

    in

    N/m

    Dehnrate = 1/s

    Dehnrate = 10 /s

    Dehnrate = 100 /s

    Dehnrate = 1000 /s

    Drop Test (crash)

    Top Load Test (short-term)

    Stacking Test (long-term)

  • Dr. Reinold Hagen Stiftung

    Folie 10

    2. CAE-Workflow of blow molded plastic parts Virtual product testing

    Top-Load-Test Internal pressure test

    Drop test

    Short term

    Crash

    Creep/Relaxation

    Long term

    Jerry can

    Fuel tank

  • Dr. Reinold Hagen Stiftung

    Folie 11

    3. The demand for interfaces

    Blow Molding Simulation

    Cooling Simulation

    Shrinkage and Warpage

    Process Simulation Product Simulation Material Modelling and

    Interfaces

    Drop Test (crash)

    Top Load Test (short-term)

    Stacking Test (long-term)

    Model Calibration

    Mapping

    Spannungs - Dehnungs - Kurve des Gsell Materialmodells

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.2 0.4 0.6 0.8 1 1.2

    Dehnung

    Sp

    an

    nu

    ng

    in

    N/m

    Dehnrate = 1/s

    Dehnrate = 10 /s

    Dehnrate = 100 /s

    Dehnrate = 1000 /s

  • Dr. Reinold Hagen Stiftung

    Folie 12

    3. The demand for interfaces Process dependent material properties

    Varying wall thicknesses and stretching ratios result in

    varying local material properties

    780790800810820830840850860870

    1 1,5 2 2,5 3 3,5 4Ela

    stic M

    od

    ulu

    s [N

    /mm

    ² ]

    Degree of stretching λ / stretching ratio Φ [ - ]

    E1(Φ) E2(Φ)

    experimentally

    confirmed

    a) b) c)

    d)

    Distribution of elastic modulus in a typical blow molded bottle a) Stretching ratio b) Local elastic moduli in principal directions c) Regression function

    F[-] E1 [N/mm²] E2 [N/mm²]

    Process simulation of a handle bottle

  • Dr. Reinold Hagen Stiftung

    Folie 13

    3. The demand for interfaces Process dependent material properties

    Interface Dr. Reinold Hagen Stiftung:

    Identification of the degree of stretching and

    the orientation

    Mapping of: • Local wall thickness • Local strain and stress • Local orientation • Local temperatures

    Input Data (Struct. FEA) • Local wall thickness • Local elastic moduli • Local orientation • Local temperatures

    ABAQUS Simulation Model

    Material Data: Calculation of the

    process-dependent elastic modulus

    Loads, boundary conditions etc.

    Process Mesh

    Structural Analysis

    Mesh

    Process Simulation B-SIM (Accuform)

    Data Exchange Interface

    Model alignment

    Data transfer

    Interface Dr. Reinold Hagen Stiftung

    Procedure:

    • Deformation state

    • Deformation gradient

    • Polar decomposition

    • Main axes transformation

    Undistorted mesh (parison)

    Distorted mesh (blown part)

    Fraunhofer SCAI MpCCI Mapper

    Interface between Acuform/BSIM and Simulia/Abaqus

  • Dr. Reinold Hagen Stiftung

    Folie 14

    3. The demand for interfaces Process dependent material properties

    Principal Direction 1 (max. stretch)

    Principal Direction 2 (min. stretch)

    Orientation of maximum and minimum stretch in principal directions Mapped onto structural mesh of an typical blow molded bottle

    Import into Abaqus: e.g. *Elastic in combination with *Distribution

  • Dr. Reinold Hagen Stiftung

    Folie 15

    Deformed shape after the shrinkage and

    warpage simulation

    3. The demand for interfaces Deformed structure and residual stresses

    Transfer of • deformation state • residual stresses

    Top-Load-Test Internal pressure

    Drop test

    Short term

    Crash

    Creep/Relaxation

    Long term

    Import into Abaqus: *Import or *Initial conditions in combination with SIGINI User Subroutine

  • Dr. Reinold Hagen Stiftung

    Folie 16

    3. The demand for interfaces Local surface film coefficients

    Cooling simulation

    Determination of local heat transfer coefficients

    Mapping

    CFD simulation Flow of cooling water

    inside of mold

    Altair/AcuSolve

    Abaqus

    Import into Abaqus: *CFILM

  • Dr. Reinold Hagen Stiftung

    Folie 17

    4. The VMAP interface standard

    Interoperability of Engineering Data within Integrated CAE Workflows

    • defined international standard

    • integrated import/export and translation tools

    • supported by leading software vendors

    The VMAP standard and import/export interface tools will provide users with a vendor-neutral methodology of transferring material and engineering data between different CAE software along the whole simulation process chain.

    http://vmap.eu.com/

    • hybrid modelling of consumer products (Philips) • composite component in aerospace (Convergent) • additive manufacturing (Bosch)

    29 Partners from 6 countries The VMAP project will be demonstrated by different manufacturing use cases:

    • extrusion blow molding (Rikutec, Hagen Stiftung) • composite light weight vehicles (AUDI, KIT) • injection molding (Bosch)

  • Dr. Reinold Hagen Stiftung

    Folie 18

    4. The VMAP interface standard CAE-Workflow Extrusion blow molding

    Process Simulation Process dependent

    material Cooling

    Warpage

    Structural Analysis

    Top-Load Test/ Internal Pressure Test (short-term)

    Drop Test (crash)

    Creep Test (long term)

    B-SIM Custom

    Tool CFD simulation

  • Dr. Reinold Hagen Stiftung

    Folie 19

    o Better simulation results through integrative modelling of blow molded parts and utilizing of specialized CAE-Tools

    o High demand for data transfer between different simulation tools

    o Deformations o Stretches and Strain o (Residual) stresses o Temperatures o Surface heat coefficients o …

    o Interface development especially between different CAE-Tools can be very time consuming

    o Reduced development time through utilization of standard interfaces like VMAP

    o VMAP interface standard offers enhanced flexibility to use different simulations tools

    Outlook

    o Further support of VMAP through leading ISVs is desirable and needed

    o Simulia/Abaqus currently supported through external Wrapper tool

    o Extension of VMAP standard to other domains (machine and sensor data, particle and molecular dynamics, multiscale modelling New proposal: VMAP analytics

    5. Summary and outlook

  • Dr. Reinold Hagen Stiftung

    Folie 20

    Thank you for your Attention!