The Role of Transporters (Phase III) in Xenobiotic...

of 74 /74
Biochemical and Molecular Toxicology ENVR 442/TOXC 442/BIOC 442 The Role of Transporters (Phase III) in Xenobiotic Disposition Kim L.R. Brouwer, PharmD, PhD William R. Kenan Distinguished Professor and Chair, Division of Pharmacotherapy & Experimental Therapeutics UNC Eshelman School of Pharmacy [email protected]; 919-962-7030

Embed Size (px)

Transcript of The Role of Transporters (Phase III) in Xenobiotic...

  • Biochemical and Molecular Toxicology

    ENVR 442/TOXC 442/BIOC 442

    The Role of Transporters (Phase III) in Xenobiotic Disposition

    Kim L.R. Brouwer, PharmD, PhD

    William R. Kenan Distinguished Professor and Chair, Division of Pharmacotherapy & Experimental Therapeutics

    UNC Eshelman School of Pharmacy [email protected]; 919-962-7030

    mailto:[email protected]

  • Organic Anion Transporters Solute Carrier Family 22

    Transporter Tissue distribution

    Transport mechanism

    Substrates

    OAT1 kidney, brain, choroid plexus

    antiport (dicarboxylates)

    PAH, PSP, methotrexate (MTX), cidofovir, ochratoxin A (OTA), cephaloridine, indoxyl sulfate, AZT, penicillins, cAMP, cGMP, PGE2, etc.

    OAT2 kidney, liver ? PAH, MTX, salicylate, acetylsalicylate, PGE2

    OAT3 kidney, liver, bone, brain, eye

    antiport (dicarboxylates)

    PAH, OTA, salicylate, estrone-sulfate, cAMP, PGE2, cimetidine

    OAT4 kidney, placenta antiport (dicarboxylates)

    PAH, OTA, DHEA-sulfate, estrone-sulfate, AZT, cimetidine, MTX

    F. Russel

  • Organic Anion Transporting Polypeptides Solute Carrier Family 21/SLCO

    Transporter Tissue distribution

    Transport mechanism

    Substrates

    Oatp1 (1a1) kidney, liver antiport (GSH)

    BSP,ouabain, taurocholate, estradiol glucuronide (E217G), estrone sulfate, DHEA sulfate, aldosterone, cortisol, enalapril, thyroxine, triiodo-L-thyronine (T3), leukotriene C4, PGE2, ochratoxin A

    Oatp3 (1a5) kidney, lung, retina, liver

    ? taurocholate, thyroxine, T3

    Oatp5 (1a6) kidney ? ?

    Oat-k1/k2 (1a3_v1/v2) OATP-A (1A2) OATP-H (4C1)

    kidney brain, kidney, liver kidney

    ? antiport? (GSH) ?

    MTX, folate, DHEA sulfate, E217G ochratoxin A, digoxin, MTX, AZT BSP, DHEA, estradiol glucuronide, estrone sulfate, thyroxine, T3, ochratoxin A, bile acids, fexofenadine, oubain, rocuronium, chlorambucil digoxin, ouabain, thyroxine, T3, cAMP, MTX F. Russel

  • Organic Cation Transporters Solute Carrier Family 22

    Transporter Tissue distribution

    Transport mechanism

    Substrates

    OCT1 liver uniport MPP+, TEA, acyclovir, ganciclovir

    OCT2 kidney, brain, neurons uniport TEA, MPP+, NMN, monoamines, amantadine

    OCT3 liver, skeletal muscle, placenta, kidney, heart, brain

    uniport MPP+, guanidine, monoamines, cimetidine, tyramine

    OCTN1 kidney, skeletal muscle, placenta, prostate, heart

    antiport (H+)

    TEA, MPP+, carnitine, quinidine, verapamil, pyrilamine

    OCTN2 skeletal muscle, kidney, placenta, liver, intestine, heart, etc.

    uniport Na+-carnitine cotransport

    TEA, MPP+, carnitine, choline, quinidine, verapamil, pyrilamine, valproate

    F. Russel

  • Transporter Tissue distribution

    Transport mechanism

    Substrates

    MRP1 kidney, (liver), lung, intestine, brain

    pump (ATP) glutathione, glucuronide, and sulfate conjugates, anticancer agents, GSH, GSSG, PAH

    MRP2 kidney, liver, intestine pump (ATP) glutathione, glucuronide, and sulfate conjugates, PAH, GSH, GSSG, cisplatin, methotrexate, ochratoxin A

    MRP4 kidney, liver, intestine, brain, prostate

    pump (ATP) cidofovir, PMEA, AZTMP, MTX, PAH, cAMP, cGMP, prostaglandins

    MRP6 MDR1

    kidney, liver kidney, liver, intestine, brain, placenta, lung

    pump (ATP) pump (ATP)

    BQ123, glutathione conjugates E217G, calcein, rhodamine 123, digoxin, anticancer drugs, verapamil, anti-HIV drugs, steroid hormones

    Multidrug Resistance Transporters ATP-Binding Cassette subfamily (ABCB/ABCC)

    out

    in

    NH2

    COOHATP ATP

    out

    in

    NH2 COOHATP ATP

    out

    in

    out

    in

    NH2

    COOHATP ATP

    out

    in

    out

    in

    NH2 COOHATP ATP

    MRP1 MRP2 MRP6

    MRP4 MRP5 MDR1

    F. Russel

  • Ayrton & Morgan, Xenobiotica 31:469, 2001

    Organ Distribution of Transport Proteins

    BSEP

  • Mdr1a P-gp Mdr1b P-gp

    BBB

    Gall bladder

    Liver

    Stomach

    Intestine

    Kidney

    Adapted from Schinkel, 1997

    Organ Distribution of Multidrug Resistance Mdr1 P-glycoprotein

  • P-gp Expression in Murine Brain Capillary Endothelial Cells

    Graff and Pollack, 2005

  • Ivermectin Toxicity in Mdr1a(-/-) and Mdr1a(+/+) Mice

    Schinkel et al., Cell, 77:491, 1994

  • Maintenance of Barrier Function: Xenobiotic Transporters in the Brain

    Ho and Kim, Clin Pharmacol Ther 78:260, 2005

  • P-glycoprotein staining

    Endothelial cell staining Co-localization

    Maintenance of Barrier Function: Endothelial Cells Lining the Olfactory Bulb

    Graff and Pollack, Pharm Res 22:86, 2005

  • Maintenance of Barrier Function in Sanctuary Site Tissues

    Placenta

    Leslie et al., Tox Appl Pharmacol 204:216, 2005

  • Maintenance of Barrier Function: Xenobiotic Transporters in the Intestine

    Ho and Kim, Clin Pharmacol Ther 78:260, 2005

  • Role of Mrp1 in Intestinal Toxicity of Methotrexate Intestinal toxicity induced by methotrexate treatment in wild-type [Mrp1(+/+)] and

    Mrp1 gene knockout [Mrp1(/)] mice in vivo. Mrp1 is localized primarily in proliferative cells in crypts where it is involved in active efflux of methotrexate as a

    defensive mechanism to protect the small intestinal epithelial cells from toxicity.

    Tissue sections from lower part of the small intestine were analyzed for morphology with H&E staining (top panel) and for S-phase cells with immunostaining using anti-BrdU antibody (bottom panel).

    Ho and Kim, Clin Pharmacol Ther 78:260, 2005

  • Xenobiotic Transporters in the Kidney

    Ho and Kim, Clin Pharmacol Ther 78:260, 2005

  • Effect of Probenecid on Renal Content and Urinary Excretion of Cadmium (Cd) in Mice

    Mice were injected i.p. with saline or probenecid (1 mmol/kg), and injected i.v. 30 min later with either Cd alone (1 mg Cd/kg, 74 kBq 109Cd) or Cd with dithiocarbamate chelating agents (1:30 molar ratio); urine samples were collected for 3 h and renal Cd content was determined from radioactivity.

    Kamenosono et al., Comp Biochem Physiol C Toxicol Pharmacol 132:61, 2002

  • NPT1 pOatv1 OAT1/3

    MRP6

    -KG Oat1/3

    Mrp6

    -KG

    OAT4

    MRP2/4

    -KG Oat4

    Mrp2/4

    -KG

    OCT2 Oct1/2

    MDR1

    OCTN1/2 H+

    Mdr1a/1b

    Octn1/2 H+

    OATP4C1 Oatp4c1 OATP1A2 GSH

    GSH Oatp1a1

    Oatp1a3 (Oat-k1/k2)

    Oatp1a4/a5

    blood blood urine

    human rat

    Species differences

    F. Russel

  • Available Models To Examine Renal Transport Processes

    Intact kidney in vivo Isolated perfused kidney Isolated perfused or nonperfused tubules Cultured renal cells Isolated plasma membrane vesicles (basolateral or brush border)

  • Hepatic Elimination: Phase I (P450s), Phase II (conjugation) & Phase III (transport)

    bile

    tight junction

    sinusoidal membrane

    hepatocyte

    canalicular membrane

    Metabolite

    uptake

    egress

    blood flow

    reabsorption bile

    blood flow

    sinusoidal membrane

    Parent egress

    Intracellular Sequestration

    protein binding

  • Bile and Urine as Complementary Pathways for Excretion of Foreign Compounds in Rats:

    Molecular Weight Threshold Hypothesis

    Hirom et al., Xenobiotica 6:55-64, 1976

    % of dose recovered in MW Bile Urine Sulphathiazole 255 3.1 84 4.8 ---a Succinylsulphacetamide 314 1.8 62 6.3 ---a Glutarylsulphathiazole 369 42 47 85 ---a ---b 83 1,2,3,6-Tetrahydrophthalyl- 407 45 34 sulphathiazole 81 ---a ---b 83 Bromophenol blue 670 69 3.6 ---b 19 Indocyanine green 752 82 0 ---b 0 aRenal pedicles were ligated before biliary cannulation to prevent urine formation bBile ducts were ligated; kidneys were left intact

  • Kck and Brouwer, Clin Pharmacol Ther

    in press, 2012

    The Structure of the Liver

  • Basolateral Transporters: Organic Anions

    bile bile

    tight junction

    sinusoidal membrane

    hepatocyte

    NTCP TC Na+ 2 K+

    3 Na+

    ATP

    sinusoidal membrane

    -40mV

    blood flow

    blood flow

  • Transport Protein

    Trivial Names

    Gene Symbol

    Substrates

    NTCP SLC10A1 Bile acids [cholate; glycocholate taurochenodeoxycholate; tauroursodeoxycholate; taurocholate (TC)] BSP; estrone-3-sulfate;

    Hepatic Basolateral Uptake Transporters Solute Carrier (SLC) Family 10, Member A1

    Na+-Taurocholate Cotransporting Polypeptide

    Liver-specific transporter Mediates Na+-dependent uptake of bile acids Driving force: secondary active transport, Na+ gradient BQ123, indomethacin, various steroid conjugates, bumetanide,

    furosemide and verapamil inhibit NTCP-mediated bile salt uptake but are not substrates.

  • Basolateral Transporters: Organic Anions

    bile bile

    tight junction

    sinusoidal membrane

    hepatocyte

    NTCP TC Na+

    OATPs OA- 2 K+

    3 Na+

    ATP

    sinusoidal membrane

    -40mV

    Cl- +

    blood flow

    blood flow

  • Transport Protein

    Trivial Names

    Gene Symbol

    Substrates

    OATP1A2 OATP-A OATP-1 OATP

    SLCO1A2 (previously SLC21A3)

    Bile acids; BQ-123; BSP; DHEAS; DPDPE; E217G; estrone-3-sulfate; n-methyl quinine; ouabain; T3; T4; fexofenadine

    OATP1B1 OATP-C LST-1 OATP2

    SLCO1B1 (previously SLC21A6)

    Bile acids; BQ-123; BSP; DHEAS; DPDPE; E217G; estrone-3-sulfate; ouabain; T3; T4; bilirubin; bilirubin glucuronides; LTC4; prostaglandin E2; pravastatin; rifampin

    OATP1B3

    OATP-8 LST-2

    SLCO1B3 (previously SLC21A8

    Bile acids; BQ-123; BSP; CCK-8; DHEAS; digoxin; DPDPE; E217G; estrone-3-sulfate; n-methyl quinine, ouabain; T3; T4; monoglucuronosyl bilirubin; rifampin

    OATP2B1 OATP-B SLCO2B1 (previously SLC21A9)

    benzylpenicillin; BSP; DHEAS; estrone 3-sulfate

    Hepatic Basolateral Uptake Transporters Solute Carrier Family 21 (SLCO), Member # Organic Anion Transporting Polypeptides

  • Estimated Cumulative Risk of Myopathy Associated with Taking 80 mg Simvastatin Daily,

    According to SLCO1B1 rs4149056 Genotype

    The SEARCH Collaborative Group, New Eng J Med 359:2008

  • Mean serum concentration-time profiles after single oral pravastatin dose (40mg) in three OATP1B1 genotypic groups

    Adapted from Nishizato, et al. Clin. Pharmacol. Ther. 73:554 (2003)

    Effect of SLCO1B1 Genotype on

    Oral Pravastatin Pharmacokinetics

    SLCO1B1 *15/*15, n=1 SLCO1B1 *1b/*15, n=9 SLCO1B1 *1b/*1b, n=4

    Courtesy of K. Hillgren Lilly Research Laboratories

  • Rodent Hepatic Basolateral Uptake Transporters Solute Carrier Family 21 (SLCO), Member #

    Nomenclature Specific New Old Substrate Homology Human Oatp1a1 Oatp1 Deltorphin II 67% (OATP-A) Slco1a1 Slc21a1 OATP1A2 (OATP-A) SLCO1A2 Oatp1a4 Oatp2 Digoxin 77% (Oatp1) Slco1a4 Slc21a5 OATP1B1 (OATP-C)

    SLCO1B1 Oatp1b2 Oatp4 CCK-8 60% (OATP-C) Slco1b2 Slc21a10 66% (OATP-8) OATP1B3 (OATP-8) SLCO1B3 OATP2B1 (OATP-B)

    SLCO2B1

  • Substrates for the Rat Organic Anion Transporting Polypeptides (Oatp)

    Kullak-Ublick, J. Hepatology 31:563-573, 1999

    Oatp1a1 (Oatp1) Bromosulphophthalein Bile Acids Estrone-3-sulfate Estradiol-17-glucuronide LTC4 DHEAS Ouabain Pravastatin CRC 220 BQ123 Ochratoxin A APD-ajmalinium Temocaprilat Gadoxetate Fexofenadine DPDPE Dexamethasone

    Oatp1a4 (Oatp2) Digoxin Taurocholate Estrone-3-sulfate Estradiol-17-glucuronide DHEAS LTC4 Ouabain T3, T4 APD-ajmalinium BQ123 DPDPE Fexofenadine

    Oatp1b2 (Oatp4) Bromosulphophthalein Taurocholate Estrone-3-sulfate Estradiol-17 -glucuronide DHEAS LTC4 T3, T4 BQ123 DPDPE Bilirubin/glucuronides PGE2 CCK-8

    Faber et al., Adv. Drug Deliv. Rev. 55:107-124, 2003

  • Basolateral Transporters: Organic Anions

    bile bile

    tight junction

    sinusoidal membrane

    hepatocyte

    NTCP TC Na+

    OATPs OA- 2 K+

    3 Na+

    ATP

    sinusoidal membrane

    -40mV

    Cl- +

    blood flow

    blood flow

    OA-

    OATs

  • Transport Protein

    Trivial Names

    Gene Symbol

    Substrates

    OAT2 SLC22A7 prostaglandin E2; prostaglandin F2; salicylate; tetracycline; zidovudine

    OAT4 SLC22A11 bumetanide; estrone-3-sulfate; ketoprofen; salicylate; MTX; ochratoxin A; prostaglandin E2; prostaglandin F2; tetracycline; zidovudine

    Hepatic Basolateral Uptake Transporters Solute Carrier (SLC) Family 22, Member #

    Organic Anion Transporters

    Transport Protein

    Substrates

    Oat2 p-Aminohippurate (PAH), dicarboxylates, PGE2, salicylate, methotrexate, indomethacin, nucleoside derivatives

    Oat3 PAH, estrone sulfate, ochratoxin A, cimetidine

  • Chemical Structure of Cationic Drugs Taken Up by Two Separate Hepatic

    Transport Systems

  • Basolateral Transporters: Organic Anions and Cations

    bile bile

    tight junction

    sinusoidal membrane

    hepatocyte

    NTCP TC Na+

    OATPs OA- 2 K+

    3 Na+

    ATP

    sinusoidal membrane

    OC+ Type I

    OA-

    OCT1

    -40mV

    Cl- +

    blood flow

    blood flow

    OATs

  • Transport Protein

    Trivial Names

    Gene Symbol

    Substrates

    OCT1 SLC22A1 azidoprocainamide methoiodide; n-methyl-quinidine; n-methyl-quinine; tributylmethylammonium; MPP+; tetraethylammonium

    OCT3 EMT SLC22A3 adrenaline; noradrenaline; tyramine; agmatine; MPP+

    Hepatic Basolateral Uptake Transporters Solute Carrier (SLC) Family 22, Member #

    Organic Cation Transporters

  • bile bile

    tight junction

    sinusoidal membrane

    hepatocyte

    sinusoidal membrane

    -40mV

    blood flow

    blood flow

    MRP5 (ABCC5)

    cAMP cGMP

    ATP

    MRP1,6 (ABCC1,6)

    ATP

    OA-

    ATP

    cAMP,cGMPMTX,OA-

    ATP

    MRP3 (ABCC3)

    MRP4 (ABCC4)

    OA-

    Hepatic Basolateral Export Transporters

    2 K+

    3 Na+

    ATP

  • Transport Protein

    Trivial Names

    Gene Symbol

    Substrates

    MRP1 MRP, GS-X ABCC1 daunorubicin; doxorubicin; etoposide; vincristine

    MRP3 MOAT-D MLP2 cMOAT2

    ABCC3 acetaminophen glucuronide; E217G; monovalent and sulfated bile salts; MTX

    MRP4 MOAT-B ABCC4 azidothymidine; cAMP; cGMP; PMEA; MTX MRP5 MOAT-C

    ABC11 ABCC5 cAMP; cGMP; PMEA

    MRP6 MOAT-E MLP1

    ABCC6 BQ-123

    MRP7 ABCC10 E217G; LTC4

    MRP8 ABCC11 cAMP; cGMP

    Hepatic Basolateral Export Transporters ATP-Binding Cassette (ABC) Subfamily C, Member #

    Multidrug Resistance-Associated Proteins

  • bile bile

    tight junction

    sinusoidal membrane

    hepatocyte

    OATP1B1, 1B3, 2B1 (SLCO1B1,1B3, 2B1)

    OA- OC+,Type II

    sinusoidal membrane

    -40mV

    blood flow

    blood flow

    OAT2 (SLC22A7)

    OA-

    MRP5 (ABCC5)

    cAMP cGMP

    ATP

    MRP1,6 (ABCC1,6)

    ATP

    OA-

    ATP

    cAMP,cGMPMTX,OA-

    ATP

    MRP3 (ABCC3)

    MRP4 (ABCC4)

    OCT1 (SLC22A1)

    OC+ Type I

    OA-

    Hepatic Basolateral Export Transporters

    Chandra and Brouwer, Pharm Res, 21:719, 2004

  • Hepatic Canalicular Transporters

    Kck and Brouwer, Clin Pharmacol Ther, in press, 2012

  • sinusoidal membrane

    hepatocyte -40mV

    blood flow

    bile

    BSEP (ABCB11)

    TC ATP

    blood flow

    sinusoidal membrane

    Canalicular Transporters

    tight junction

  • Transport Protein

    Trivial Names

    Gene Symbol

    Substrates

    BSEP Sister Pgp ABCB11 conjugated and unconjugated bile salts; TC

    Canalicular Transporters ATP-Binding Cassette (ABC) Subfamily B, Member 11

    Bile Salt Export Pump

    Numerous drugs (cyclosporin A, rifampicin, glibenclamide, bosentan, troglitazone) recently have been shown to inhibit BSEP function, but these compounds are not substrates for BSEP.

  • Fattinger et al., Clin Pharmacol Ther 69:223, 2001

    Concentrations of Serum Bile Salts in

    Patients w/ Bosentan-Induced Liver Injury

    Effect of Bosentan and Metabolites on ATP-Dependent

    Taurocholate Transport in cLPMs and Sf9 Vesicles

    Clinical Relevance of Drug Transport Interactions: Bosentan Inhibits BSEP

  • sinusoidal membrane

    hepatocyte -40mV

    blood flow

    MRP2 (ABCC2)

    bile

    ATP OA-

    blood flow

    sinusoidal membrane

    Canalicular Transporters

    tight junction

  • Transport Protein

    Trivial Names

    Gene Symbol

    Substrates

    MRP2 CMOAT cMRP

    ABCC2 acetaminophen glucuronide; carboxydichlorofluorescein; camptothecin; doxorubicin; cisplatin; vincristine; etoposide; glibenclamide; indomethacin; rifampin; glucuronide, glutathione, and sulfate conjugates; LTC4; MTX; pravastatin

    Canalicular Transporters ATP-Binding Cassette (ABC) Subfamily C,

    Member 2 Multidrug Resistance-Associated Protein

  • Substrates for the Canalicular Multispecific Organic Anion Transporter (Mrp2; cMOAT)

    Oude Elferink, R.P.J. et al., Biochim. Biophys. Acta 1241:215-268, 1995

    # of Negative Endogenous Compounds Charges Conjugated Bilirubin 2 Glutathione GSH 2 Glutathione GSSG 4 Cysteinyl-leukotrienes 2/3 Triiodothyronine-glucuronide 2 Coproporphyrin I 2 Bile Salt Conjugates Cholate 3-O-glucuronide 2 Lithocholate 3-O-glucuronide 2 Nordeoxycholate 3-O-glucuronide 2 Tauro-glycolithocholate 3-sulfate 2 Taurochenodeoxycholate 3-sulfate 2 Nordeoxycholate-3-sulfate 2

    # of Negative Exogenous Compounds Charges Ceftriaxone 2 Ampicillin 2 Carboxydichlorofluorescein 2 Dibromosulfophthalein 2 Bromosulfophthalein-glutathione 4 Dinitrophenyl-glutathione 2 Glutathionyl-bromoisovalerylurea 2 Naphthol-1-glucuronide 1 Indocyanine green 2 Gadolinium-ethoxybenzyl-DTPA 2 Acetaminophen glucuronide 1 Metals Zinc Copper Manganese

  • Hepatic Mrp3 Protein Levels in EHBR (Mrp2-deficient), Gunn, Bilirubin-

    treated and Sprague-Dawley Rats

    Ogawa et al., Am J Physiol 278:G438, 2000

  • Hepatic Protein Levels in Wistar and TR- Rats

    Johnson et al., Drug Metab Dispos 34:556, 2006

  • sinusoidal membrane

    hepatocyte -40mV

    blood flow

    ATP

    bile MDR1 (ABCB1) OC

    +

    Phospholipids MDR3 (ABCB4) ATP

    blood flow

    sinusoidal membrane

    Canalicular Transporters

    tight junction

  • Transport Protein

    Trivial Names

    Gene Symbol

    Substrates

    MDR1 P-gp ABCB1 amprenavir; indinavir; nelfinavir; ritonavir; saquinaviraldosterone; corticosterone; dexamethasone; digoxincyclosporin A; MX; debrisosoquine; erythromycin; lovastatin; terfenadine; digoxin; quinidine; doxorubicin; paclitaxel; rhodamine 123; etoposide; fexofenadine; losartan; vinblastine; tacrolimus; talinolol

    MDR3 PFIC3 Phospholipid flippase

    ABCB4 phospholipids

    Canalicular Transporters ATP-Binding Cassette (ABC) Subfamily B, Member #

    Multidrug Resistance Proteins

  • sinusoidal membrane

    hepatocyte -40mV

    blood flow

    bile

    ATP BCRP (ABCG2) MX

    blood flow

    sinusoidal membrane

    Canalicular Transporters

    tight junction

  • Transport Protein

    Trivial Names

    Gene Symbol

    Substrates

    BCRP MXR, ABCP

    ABCG2 daunorubicin; doxorubicin; MX; sulfated conjugates

    Canalicular Transporters ATP-Binding Cassette (ABC) Subfamily G, Member 2

    Breast Cancer Resistance Protein

    ATP-dependent half-transporter Substrates include:

    Estrone-3-sulfate SN-38

    Suzuki et al., Hepatology 36:218A (205), 2002

  • B

    OA-

    m-

    OA-

    MITOCHONDRIA

    GOLGI

    OCT1 OAT2

    ATPATP ATP

    m-

    m-

    OATPs

    OA-

    X-E-

    OST /

    B

    SPACE OF DISSE

    NTCP

    B Na+

    B

    ATP

    m-X-

    Drugs

    Other Xenobiotics/EndobioticsX- m-

    OA-

    m-

    X+

    OA-

    X-E-

    B

    ATP

    m-ATP

    ATP

    ATP

    ATP

    Pgp

    MDR3

    MRP3 MRP4 MRP5,6MRP1

    MRP2

    X-

    X-

    X-

    X- m-B

    X+

    OA-

    Hepatic Uptake and Export Transporters

    A. Rizwan

    Sinusoid

  • Model Systems to Investigate Hepatobiliary Disposition and Biliary Excretion

    Intact Liver (in vivo) Isolated Perfused Liver Liver Slices Hepatocytes (suspension, couplets, cultures)

    Sandwich-Cultured Hepatocytes Plasma Membrane Vesicles (cLPM, bLPM) Transfected Transport Proteins

  • Isolated or In Situ Perfused Liver (IPL): Experimental Procedures

    Buffer Outflow Perfusate Bile

    Portal Vein Inflow 30 ml/min rat

    5 ml/min mouse

    Bile Bile AUC

    X Cl = Perfusate Basolateral AUC

    X Cl = Liver Liver

    T1-T2

    T1-T2

    T1-T2

    T1-T2

    Chandra et al., Am J Physiol 288:G1252, 2005; Nezasa et al., Drug Metab Dispos 34:718, 2006

    Inferior Vena Cava Outflow

    Bile Duct Gall Bladder

  • CDF Biliary Excretion and Biliary Excretion Rate Constants (mean SD; min -1) in C57BL/6 WT(O),

    Mrp2 KO () and Bcrp KO () Mouse IPLs

    Nezasa et al., Drug Metab Dispos 34:718, 2006

    Kbile (min -1) 0.061 0.005

    0.039 0.011

    N.D.

  • Species Differences in Canalicular Transport Proteins Primarily Responsible for Biliary

    Excretion of Organic Anions

    Biliary Excretion Rat Mouse Human APAP-Glucuronide Mrp2 Bcrp & Mrp2 ??

    APAP-Sulfate Mrp2 & Bcrp Bcrp ?? 4MU-Glucuronide Mrp2 Bcrp & Mrp2 ??

    4MU-Sulfate Mrp2 & Bcrp Bcrp ??

    Carboxydichloro-fluorescein

    Mrp2 Mrp2 ??

    Fexofenadine P-gp Mrp2 P-gp and ??

    Zamek-Gliszczynski et al., Mol Pharm, 70:2127, 2006

  • Sandwich-Cultured Hepatocytes

    Utility Determine hepatic uptake and biliary clearance Determine metabolic clearance

    Advantages Normal cell polarity re-established Enzyme/transport activity may be modulated by culture

    conditions Applicable to hepatocytes from animals or humans Enzyme/transport proteins may be inhibited/induced in

    culture Amenable to higher throughput

    Limitations Requires 3-4 days for proper localization of canalicular

    transport proteins

  • Pre-isolation 0 hours 24 hours 48 96 hours

    Percoll Gradient 85 95% Viability

    Liver Perfusion (~35 ml/min, 37oC): 10 min Ca2+-free with chelator 10 min collagenase digestion Single pass or recirculating flow

    Hepatocyte isolation Liver capsule gently torn

    Sandwich-Cultured Hepatocytes: Experimental Procedures

    Liu et al., Am J Physiol 277: G12-G21, 1999

  • Immunohistochemical Localization of Mrp2 (green) and Mrp3 (red) in

    Day 4 Sandwich-Cultured Rat Hepatocytes

    Zhang et al., AAPSPharmSci, 2001

  • Time course of Carboxydichlorofluorescein in Sandwich-Cultured Hepatocytes

    4 hours

    28 hours

    48 hours

    96 hours

    Zhang et al., AAPSPharmSci, 2001

  • Fluorescence of 5 (and 6)-Carboxy -2,7-dichlorofluorescein in Canalicular Networks of

    Day 4 Sandwich-Cultured Hepatocytes

    Wistar Control TR-

    Bow et al., in preparation, 2010

    Mrp2 KO

    WT

    TR-

    WT

    Mouse Rat

    Swift et al., Drug Metab Rev, in press, 2010

  • Fluorescence of 5 (and 6)-Carboxy -2,7-dichloro-fluorescein in Canalicular Networks of Day 4

    Sandwich-Cultured Rat Hepatocytes

  • Bosentan: Species-dependent differences in inhibition of bile acid uptake and excretion.

    Troglitazone: Hepatocyte accumulation of troglitazone sulfate

    Can Hepatotoxicity be Predicted from In Vitro Systems?

  • Effect of Bosentan on 3H-Taurocholate Disposition in Sandwich-Cultured Rat Hepatocytes

    Kemp et al., Toxicol Sci 83:207, 2005

    Taurocholate accumulation in the absence of bosentan () or presence of 1 M ( ), 10 M (), 20 M (), 50 M (), and 100 M ( ) bosentan. Taurocholate accumulation in cells + bile canaliculi (black) or cells (grey) was simulated in control (solid line) and 100 M bosentan-treated (dashed line) sandwich-cultured rat hepatocytes.

  • 0.01 0.1 1 10 1000

    50

    100

    [bosentan] (M)

    taur

    ocho

    late

    upta

    ke(%

    con

    trol)

    IC50 (M)

    Rat-Ntcp 9

    NtcpNTCP Human-NTCP 140

    Bosentan Inhibits 3H-Taurocholate Uptake by NTCP/Ntcp-Transfected HeLa Cells

    Bosentan inhibits rat Ntcp ~15-fold more potently than human NTCP

    Experiments performed in Dr. Richard Kims laboratory at Vanderbilt University

    Leslie et al., J Pharmacol Exp Ther, 321:1170, 2007

  • 0.01 0.1 1 10 100 10000

    50

    100

    humanrat

    [bosentan] (M)

    taur

    ocho

    late

    upta

    ke(%

    con

    trol)

    Bosentan Inhibits Na+-Dependent 3H-Taurocholate Uptake in Rat and Human

    Suspended Hepatocytes

    Bosentan inhibits Na+-dependent uptake of 3H-taurocholate in rat hepatocytes ~6-fold more potently than human hepatocytes

    Hepatocytes IC50(M) Rat 5 1.7 (n=4) Human 30 (n=2)

    Leslie et al., J Pharmacol Exp Ther, 321:1170, 2007

  • Taurocholate

    Hepatocyte

    Bosentan

    Sinusoidal Blood

    Bsep

    Ntcp Na+

    Oatps

    OA-

    Bile Acids

    Bile Acids

    Current Hypothesis Bosentan inhibits rat Bsep but is not hepatotoxic in rats because inhibition of Ntcp protects the hepatocyte from

    accumulation of toxic bile salts

    Bile

  • Rat Human

    Current Hypothesis Balance between inhibition of bile acid uptake

    (NTCP/Ntcp) and excretion (BSEP/Bsep) may explain some species differences in drug-induced liver injury

    Not Hepatotoxic Hepatotoxic

    Taurocholate Drug with Hepatotoxic Potential

    Bile Bile

  • OA-

    B

    m-

    MITOCHONDRIA

    GOLGI

    OCT1 OAT2

    ATP ATP ATP

    OATPs

    OA-

    X- E-

    OST /

    B

    NTCP

    B Na+

    B

    ATP

    m-

    X-

    X+

    OA-

    X- E-

    ATP

    ATP

    ATP

    ATP

    ATP

    Pgp

    MDR3

    MRP3 MRP4

    MRP5,6

    MRP1

    MRP2

    Rat cLPM: Troglitazone (IC50 = 3.9 M) vs. TS (IC50= 0.4-0.6 M)

    B

    B

    B

    B

    B

    B

    B B

    B B

    Funk et al.,2001

    Troglitazone Sulfate is a More Potent Inhibitor of Bsep than Troglitazone

    BSEP-expressing membrane vesicles: Troglitazone (IC50 = 20 M) Yabuuchi et al., 2008

  • Medium Cell Bile

    Disposition of Troglitazone and Metabolites in Day 4 Sandwich-Cultured Rat Hepatocytes

    Lee et al. J Pharmacol Exp Ther, 332:26, 2010

  • Estimated Hepatocellular Concentrations of Troglitazone and Troglitazone Sulfate (TS) in Human

    and Rat Sandwich-Cultured Hepatocytes

    Time (min)

    0 20 40 60 80 100 120 140

    Accu

    mul

    atio

    n in

    Cel

    l (pm

    ol)

    0

    200

    400

    600

    800

    1000

    1200TGZTSTG

    BSEP-expressing membrane vesicles: Troglitazone (IC50 = 20 M)

    vs.

    Time (min)

    0 20 40 60 80 100 120 140

    Acc

    umul

    atio

    n in

    Cel

    l (pm

    ol)

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600TGZTSTG

    Rat cLPM: (IC50 = 3.9 M)

    vs. Rat cLPM: Troglitazone Sulfate (IC50 = 0.4-0.6 M)

    vs.

    Human

    Rat

    (Incubation with 10 M Troglitazone)

    M8.44l/well 6.83

    pmol/well 306 Volumelar Intracellu

    Cellin neTroglitazo ofon Accumulati ion Concentratular Hepatocell

    ==

    =

    M5.6l/well 6.83

    pmol/well 7.44 Conc. neTroglitazo ==

    M173l/well 6.83

    pmol/well 1182 Conc. Sulfate neTroglitazo ==

    Lee et al. J Pharmacol Exp Ther, 332:26, 2010

  • Cellular accumulation of TS was extensive when Kbile,TS was impaired; intracellular TS concentrations increased 3- to 6-fold when biliary excretion of TS was decreased 2- and 10-fold, respectively.

    Altered hepatobiliary transport and the extent of hepatocyte exposure may not be evident based on medium concentrations (analogous to systemic exposure in vivo).

    Impact of Kbile,TS Modulation on TS Accumulation in Sandwich-Cultured Rat Hepatocytes

    Lee et al. J Pharmacol Exp Ther, 332:26, 2010

  • OA-

    B

    m-

    MITOCHONDRIA

    GOLGI

    OCT1 OAT2

    ATP ATP ATP

    OATPs

    OA-

    X- E-

    OST /

    B

    NTCP

    B Na+

    B

    ATP

    TS

    TS

    X+

    OA-

    X- E-

    ATP

    ATP

    ATP

    ATP

    ATP

    Pgp

    MDR3

    MRP3 MRP4

    MRP5,6

    MRP1

    MRP2

    B

    B

    B

    B

    B B

    B

    B

    Troglitazone Sulfate Inhibits BSEP- and MRP4-Mediated Hepatic Excretion of Bile Acids

    TS TS TS

    B

    B

    B

    B

    Marion et al. in preparation, 2010

  • Transport Systems: Implications for Xenobiotic Disposition

    Does the parent compound and/or metabolite(s) undergo transport? What transporters are involved? What are relative affinities? Potential for xenobiotic interactions? Potential for disease state alterations in transport?

    Does the xenobiotic and/or metabolite(s) alter the expression and/or function of transport systems? Potential for xenobiotic interactions? Potential for organ toxicity?

  • Xenobiotic Transport: The More We Learn, The More We Realize

    How Little We Know! Identification of Transport Proteins in Relevant Organs Structure-Transport Relationships Factors that Regulate Transport Protein Expression,

    Localization and Function Genetics Age Dietary Influence Environmental Factors Disease States Drug Interactions

    Effects of Altered Transport Function on Xenobiotic Disposition

    In Vitro/In Vivo Correlations

    Biochemical and Molecular Toxicology ENVR 442/TOXC 442/BIOC 442The Role of Transporters (Phase III)in Xenobiotic Disposition Kim L.R. Brouwer, PharmD, PhDWilliam R. Kenan Distinguished Professor and Chair,Division of Pharmacotherapy & Experimental TherapeuticsUNC Eshelman School of [email protected]; 919-962-7030Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Organ Distribution of Multidrug Resistance Mdr1 P-glycoprotein Slide Number 8Ivermectin Toxicity in Mdr1a(-/-) and Mdr1a(+/+) MiceSlide Number 10Maintenance of Barrier Function:Endothelial Cells Lining the Olfactory BulbMaintenance of Barrier Function in Sanctuary Site TissuesSlide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Available Models To ExamineRenal Transport ProcessesHepatic Elimination: Phase I (P450s),Phase II (conjugation) & Phase III (transport)Bile and Urine as Complementary Pathways for Excretion of Foreign Compounds in Rats: Molecular Weight Threshold Hypothesis Slide Number 21Basolateral Transporters: Organic AnionsSlide Number 23Basolateral Transporters: Organic AnionsSlide Number 25Slide Number 26Slide Number 27Rodent Hepatic Basolateral Uptake TransportersSolute Carrier Family 21 (SLCO), Member #Substrates for the Rat Organic Anion Transporting Polypeptides (Oatp)Basolateral Transporters: Organic AnionsSlide Number 31Slide Number 32Basolateral Transporters: Organic Anions and CationsSlide Number 34Hepatic Basolateral Export TransportersSlide Number 36Hepatic Basolateral Export TransportersSlide Number 38Canalicular TransportersSlide Number 40Concentrations of Serum Bile Salts in Patients w/ Bosentan-Induced Liver Injury Canalicular TransportersSlide Number 43Substrates for the Canalicular Multispecific Organic Anion Transporter (Mrp2; cMOAT)Hepatic Mrp3 Protein Levels in EHBR (Mrp2-deficient), Gunn, Bilirubin-treated and Sprague-Dawley RatsHepatic Protein Levels in Wistar and TR- RatsCanalicular TransportersSlide Number 48Canalicular TransportersSlide Number 50Hepatic Uptake and Export TransportersModel Systems to Investigate Hepatobiliary Disposition and Biliary ExcretionIsolated or In Situ Perfused Liver (IPL):Experimental ProceduresCDF Biliary Excretion and Biliary Excretion Rate Constants (mean SD; min -1) in C57BL/6 WT(O), Mrp2 KO () and Bcrp KO () Mouse IPLsSpecies Differences in Canalicular Transport Proteins Primarily Responsible for Biliary Excretion of Organic Anions Sandwich-Cultured HepatocytesSlide Number 57Immunohistochemical Localization of Mrp2 (green) and Mrp3 (red) in Day 4 Sandwich-Cultured Rat HepatocytesTime course of Carboxydichlorofluorescein in Sandwich-Cultured HepatocytesFluorescence of 5 (and 6)-Carboxy -2,7-dichlorofluorescein in Canalicular Networks of Day 4 Sandwich-Cultured HepatocytesFluorescence of 5 (and 6)-Carboxy -2,7-dichloro-fluorescein in Canalicular Networks of Day 4 Sandwich-Cultured Rat HepatocytesCan Hepatotoxicity be Predicted from In Vitro Systems?Effect of Bosentan on 3H-Taurocholate Disposition in Sandwich-Cultured Rat HepatocytesBosentan Inhibits 3H-Taurocholate Uptake by NTCP/Ntcp-Transfected HeLa CellsSlide Number 65Slide Number 66Slide Number 67Slide Number 68Slide Number 69Slide Number 70Slide Number 71Slide Number 72Transport Systems:Implications for Xenobiotic DispositionXenobiotic Transport: The More We Learn, The More We Realize How Little We Know!