The Role of Transporters (Phase III) in Xenobiotic...
Embed Size (px)
Transcript of The Role of Transporters (Phase III) in Xenobiotic...
-
Biochemical and Molecular Toxicology
ENVR 442/TOXC 442/BIOC 442
The Role of Transporters (Phase III) in Xenobiotic Disposition
Kim L.R. Brouwer, PharmD, PhD
William R. Kenan Distinguished Professor and Chair, Division of Pharmacotherapy & Experimental Therapeutics
UNC Eshelman School of Pharmacy [email protected]; 919-962-7030
mailto:[email protected]
-
Organic Anion Transporters Solute Carrier Family 22
Transporter Tissue distribution
Transport mechanism
Substrates
OAT1 kidney, brain, choroid plexus
antiport (dicarboxylates)
PAH, PSP, methotrexate (MTX), cidofovir, ochratoxin A (OTA), cephaloridine, indoxyl sulfate, AZT, penicillins, cAMP, cGMP, PGE2, etc.
OAT2 kidney, liver ? PAH, MTX, salicylate, acetylsalicylate, PGE2
OAT3 kidney, liver, bone, brain, eye
antiport (dicarboxylates)
PAH, OTA, salicylate, estrone-sulfate, cAMP, PGE2, cimetidine
OAT4 kidney, placenta antiport (dicarboxylates)
PAH, OTA, DHEA-sulfate, estrone-sulfate, AZT, cimetidine, MTX
F. Russel
-
Organic Anion Transporting Polypeptides Solute Carrier Family 21/SLCO
Transporter Tissue distribution
Transport mechanism
Substrates
Oatp1 (1a1) kidney, liver antiport (GSH)
BSP,ouabain, taurocholate, estradiol glucuronide (E217G), estrone sulfate, DHEA sulfate, aldosterone, cortisol, enalapril, thyroxine, triiodo-L-thyronine (T3), leukotriene C4, PGE2, ochratoxin A
Oatp3 (1a5) kidney, lung, retina, liver
? taurocholate, thyroxine, T3
Oatp5 (1a6) kidney ? ?
Oat-k1/k2 (1a3_v1/v2) OATP-A (1A2) OATP-H (4C1)
kidney brain, kidney, liver kidney
? antiport? (GSH) ?
MTX, folate, DHEA sulfate, E217G ochratoxin A, digoxin, MTX, AZT BSP, DHEA, estradiol glucuronide, estrone sulfate, thyroxine, T3, ochratoxin A, bile acids, fexofenadine, oubain, rocuronium, chlorambucil digoxin, ouabain, thyroxine, T3, cAMP, MTX F. Russel
-
Organic Cation Transporters Solute Carrier Family 22
Transporter Tissue distribution
Transport mechanism
Substrates
OCT1 liver uniport MPP+, TEA, acyclovir, ganciclovir
OCT2 kidney, brain, neurons uniport TEA, MPP+, NMN, monoamines, amantadine
OCT3 liver, skeletal muscle, placenta, kidney, heart, brain
uniport MPP+, guanidine, monoamines, cimetidine, tyramine
OCTN1 kidney, skeletal muscle, placenta, prostate, heart
antiport (H+)
TEA, MPP+, carnitine, quinidine, verapamil, pyrilamine
OCTN2 skeletal muscle, kidney, placenta, liver, intestine, heart, etc.
uniport Na+-carnitine cotransport
TEA, MPP+, carnitine, choline, quinidine, verapamil, pyrilamine, valproate
F. Russel
-
Transporter Tissue distribution
Transport mechanism
Substrates
MRP1 kidney, (liver), lung, intestine, brain
pump (ATP) glutathione, glucuronide, and sulfate conjugates, anticancer agents, GSH, GSSG, PAH
MRP2 kidney, liver, intestine pump (ATP) glutathione, glucuronide, and sulfate conjugates, PAH, GSH, GSSG, cisplatin, methotrexate, ochratoxin A
MRP4 kidney, liver, intestine, brain, prostate
pump (ATP) cidofovir, PMEA, AZTMP, MTX, PAH, cAMP, cGMP, prostaglandins
MRP6 MDR1
kidney, liver kidney, liver, intestine, brain, placenta, lung
pump (ATP) pump (ATP)
BQ123, glutathione conjugates E217G, calcein, rhodamine 123, digoxin, anticancer drugs, verapamil, anti-HIV drugs, steroid hormones
Multidrug Resistance Transporters ATP-Binding Cassette subfamily (ABCB/ABCC)
out
in
NH2
COOHATP ATP
out
in
NH2 COOHATP ATP
out
in
out
in
NH2
COOHATP ATP
out
in
out
in
NH2 COOHATP ATP
MRP1 MRP2 MRP6
MRP4 MRP5 MDR1
F. Russel
-
Ayrton & Morgan, Xenobiotica 31:469, 2001
Organ Distribution of Transport Proteins
BSEP
-
Mdr1a P-gp Mdr1b P-gp
BBB
Gall bladder
Liver
Stomach
Intestine
Kidney
Adapted from Schinkel, 1997
Organ Distribution of Multidrug Resistance Mdr1 P-glycoprotein
-
P-gp Expression in Murine Brain Capillary Endothelial Cells
Graff and Pollack, 2005
-
Ivermectin Toxicity in Mdr1a(-/-) and Mdr1a(+/+) Mice
Schinkel et al., Cell, 77:491, 1994
-
Maintenance of Barrier Function: Xenobiotic Transporters in the Brain
Ho and Kim, Clin Pharmacol Ther 78:260, 2005
-
P-glycoprotein staining
Endothelial cell staining Co-localization
Maintenance of Barrier Function: Endothelial Cells Lining the Olfactory Bulb
Graff and Pollack, Pharm Res 22:86, 2005
-
Maintenance of Barrier Function in Sanctuary Site Tissues
Placenta
Leslie et al., Tox Appl Pharmacol 204:216, 2005
-
Maintenance of Barrier Function: Xenobiotic Transporters in the Intestine
Ho and Kim, Clin Pharmacol Ther 78:260, 2005
-
Role of Mrp1 in Intestinal Toxicity of Methotrexate Intestinal toxicity induced by methotrexate treatment in wild-type [Mrp1(+/+)] and
Mrp1 gene knockout [Mrp1(/)] mice in vivo. Mrp1 is localized primarily in proliferative cells in crypts where it is involved in active efflux of methotrexate as a
defensive mechanism to protect the small intestinal epithelial cells from toxicity.
Tissue sections from lower part of the small intestine were analyzed for morphology with H&E staining (top panel) and for S-phase cells with immunostaining using anti-BrdU antibody (bottom panel).
Ho and Kim, Clin Pharmacol Ther 78:260, 2005
-
Xenobiotic Transporters in the Kidney
Ho and Kim, Clin Pharmacol Ther 78:260, 2005
-
Effect of Probenecid on Renal Content and Urinary Excretion of Cadmium (Cd) in Mice
Mice were injected i.p. with saline or probenecid (1 mmol/kg), and injected i.v. 30 min later with either Cd alone (1 mg Cd/kg, 74 kBq 109Cd) or Cd with dithiocarbamate chelating agents (1:30 molar ratio); urine samples were collected for 3 h and renal Cd content was determined from radioactivity.
Kamenosono et al., Comp Biochem Physiol C Toxicol Pharmacol 132:61, 2002
-
NPT1 pOatv1 OAT1/3
MRP6
-KG Oat1/3
Mrp6
-KG
OAT4
MRP2/4
-KG Oat4
Mrp2/4
-KG
OCT2 Oct1/2
MDR1
OCTN1/2 H+
Mdr1a/1b
Octn1/2 H+
OATP4C1 Oatp4c1 OATP1A2 GSH
GSH Oatp1a1
Oatp1a3 (Oat-k1/k2)
Oatp1a4/a5
blood blood urine
human rat
Species differences
F. Russel
-
Available Models To Examine Renal Transport Processes
Intact kidney in vivo Isolated perfused kidney Isolated perfused or nonperfused tubules Cultured renal cells Isolated plasma membrane vesicles (basolateral or brush border)
-
Hepatic Elimination: Phase I (P450s), Phase II (conjugation) & Phase III (transport)
bile
tight junction
sinusoidal membrane
hepatocyte
canalicular membrane
Metabolite
uptake
egress
blood flow
reabsorption bile
blood flow
sinusoidal membrane
Parent egress
Intracellular Sequestration
protein binding
-
Bile and Urine as Complementary Pathways for Excretion of Foreign Compounds in Rats:
Molecular Weight Threshold Hypothesis
Hirom et al., Xenobiotica 6:55-64, 1976
% of dose recovered in MW Bile Urine Sulphathiazole 255 3.1 84 4.8 ---a Succinylsulphacetamide 314 1.8 62 6.3 ---a Glutarylsulphathiazole 369 42 47 85 ---a ---b 83 1,2,3,6-Tetrahydrophthalyl- 407 45 34 sulphathiazole 81 ---a ---b 83 Bromophenol blue 670 69 3.6 ---b 19 Indocyanine green 752 82 0 ---b 0 aRenal pedicles were ligated before biliary cannulation to prevent urine formation bBile ducts were ligated; kidneys were left intact
-
Kck and Brouwer, Clin Pharmacol Ther
in press, 2012
The Structure of the Liver
-
Basolateral Transporters: Organic Anions
bile bile
tight junction
sinusoidal membrane
hepatocyte
NTCP TC Na+ 2 K+
3 Na+
ATP
sinusoidal membrane
-40mV
blood flow
blood flow
-
Transport Protein
Trivial Names
Gene Symbol
Substrates
NTCP SLC10A1 Bile acids [cholate; glycocholate taurochenodeoxycholate; tauroursodeoxycholate; taurocholate (TC)] BSP; estrone-3-sulfate;
Hepatic Basolateral Uptake Transporters Solute Carrier (SLC) Family 10, Member A1
Na+-Taurocholate Cotransporting Polypeptide
Liver-specific transporter Mediates Na+-dependent uptake of bile acids Driving force: secondary active transport, Na+ gradient BQ123, indomethacin, various steroid conjugates, bumetanide,
furosemide and verapamil inhibit NTCP-mediated bile salt uptake but are not substrates.
-
Basolateral Transporters: Organic Anions
bile bile
tight junction
sinusoidal membrane
hepatocyte
NTCP TC Na+
OATPs OA- 2 K+
3 Na+
ATP
sinusoidal membrane
-40mV
Cl- +
blood flow
blood flow
-
Transport Protein
Trivial Names
Gene Symbol
Substrates
OATP1A2 OATP-A OATP-1 OATP
SLCO1A2 (previously SLC21A3)
Bile acids; BQ-123; BSP; DHEAS; DPDPE; E217G; estrone-3-sulfate; n-methyl quinine; ouabain; T3; T4; fexofenadine
OATP1B1 OATP-C LST-1 OATP2
SLCO1B1 (previously SLC21A6)
Bile acids; BQ-123; BSP; DHEAS; DPDPE; E217G; estrone-3-sulfate; ouabain; T3; T4; bilirubin; bilirubin glucuronides; LTC4; prostaglandin E2; pravastatin; rifampin
OATP1B3
OATP-8 LST-2
SLCO1B3 (previously SLC21A8
Bile acids; BQ-123; BSP; CCK-8; DHEAS; digoxin; DPDPE; E217G; estrone-3-sulfate; n-methyl quinine, ouabain; T3; T4; monoglucuronosyl bilirubin; rifampin
OATP2B1 OATP-B SLCO2B1 (previously SLC21A9)
benzylpenicillin; BSP; DHEAS; estrone 3-sulfate
Hepatic Basolateral Uptake Transporters Solute Carrier Family 21 (SLCO), Member # Organic Anion Transporting Polypeptides
-
Estimated Cumulative Risk of Myopathy Associated with Taking 80 mg Simvastatin Daily,
According to SLCO1B1 rs4149056 Genotype
The SEARCH Collaborative Group, New Eng J Med 359:2008
-
Mean serum concentration-time profiles after single oral pravastatin dose (40mg) in three OATP1B1 genotypic groups
Adapted from Nishizato, et al. Clin. Pharmacol. Ther. 73:554 (2003)
Effect of SLCO1B1 Genotype on
Oral Pravastatin Pharmacokinetics
SLCO1B1 *15/*15, n=1 SLCO1B1 *1b/*15, n=9 SLCO1B1 *1b/*1b, n=4
Courtesy of K. Hillgren Lilly Research Laboratories
-
Rodent Hepatic Basolateral Uptake Transporters Solute Carrier Family 21 (SLCO), Member #
Nomenclature Specific New Old Substrate Homology Human Oatp1a1 Oatp1 Deltorphin II 67% (OATP-A) Slco1a1 Slc21a1 OATP1A2 (OATP-A) SLCO1A2 Oatp1a4 Oatp2 Digoxin 77% (Oatp1) Slco1a4 Slc21a5 OATP1B1 (OATP-C)
SLCO1B1 Oatp1b2 Oatp4 CCK-8 60% (OATP-C) Slco1b2 Slc21a10 66% (OATP-8) OATP1B3 (OATP-8) SLCO1B3 OATP2B1 (OATP-B)
SLCO2B1
-
Substrates for the Rat Organic Anion Transporting Polypeptides (Oatp)
Kullak-Ublick, J. Hepatology 31:563-573, 1999
Oatp1a1 (Oatp1) Bromosulphophthalein Bile Acids Estrone-3-sulfate Estradiol-17-glucuronide LTC4 DHEAS Ouabain Pravastatin CRC 220 BQ123 Ochratoxin A APD-ajmalinium Temocaprilat Gadoxetate Fexofenadine DPDPE Dexamethasone
Oatp1a4 (Oatp2) Digoxin Taurocholate Estrone-3-sulfate Estradiol-17-glucuronide DHEAS LTC4 Ouabain T3, T4 APD-ajmalinium BQ123 DPDPE Fexofenadine
Oatp1b2 (Oatp4) Bromosulphophthalein Taurocholate Estrone-3-sulfate Estradiol-17 -glucuronide DHEAS LTC4 T3, T4 BQ123 DPDPE Bilirubin/glucuronides PGE2 CCK-8
Faber et al., Adv. Drug Deliv. Rev. 55:107-124, 2003
-
Basolateral Transporters: Organic Anions
bile bile
tight junction
sinusoidal membrane
hepatocyte
NTCP TC Na+
OATPs OA- 2 K+
3 Na+
ATP
sinusoidal membrane
-40mV
Cl- +
blood flow
blood flow
OA-
OATs
-
Transport Protein
Trivial Names
Gene Symbol
Substrates
OAT2 SLC22A7 prostaglandin E2; prostaglandin F2; salicylate; tetracycline; zidovudine
OAT4 SLC22A11 bumetanide; estrone-3-sulfate; ketoprofen; salicylate; MTX; ochratoxin A; prostaglandin E2; prostaglandin F2; tetracycline; zidovudine
Hepatic Basolateral Uptake Transporters Solute Carrier (SLC) Family 22, Member #
Organic Anion Transporters
Transport Protein
Substrates
Oat2 p-Aminohippurate (PAH), dicarboxylates, PGE2, salicylate, methotrexate, indomethacin, nucleoside derivatives
Oat3 PAH, estrone sulfate, ochratoxin A, cimetidine
-
Chemical Structure of Cationic Drugs Taken Up by Two Separate Hepatic
Transport Systems
-
Basolateral Transporters: Organic Anions and Cations
bile bile
tight junction
sinusoidal membrane
hepatocyte
NTCP TC Na+
OATPs OA- 2 K+
3 Na+
ATP
sinusoidal membrane
OC+ Type I
OA-
OCT1
-40mV
Cl- +
blood flow
blood flow
OATs
-
Transport Protein
Trivial Names
Gene Symbol
Substrates
OCT1 SLC22A1 azidoprocainamide methoiodide; n-methyl-quinidine; n-methyl-quinine; tributylmethylammonium; MPP+; tetraethylammonium
OCT3 EMT SLC22A3 adrenaline; noradrenaline; tyramine; agmatine; MPP+
Hepatic Basolateral Uptake Transporters Solute Carrier (SLC) Family 22, Member #
Organic Cation Transporters
-
bile bile
tight junction
sinusoidal membrane
hepatocyte
sinusoidal membrane
-40mV
blood flow
blood flow
MRP5 (ABCC5)
cAMP cGMP
ATP
MRP1,6 (ABCC1,6)
ATP
OA-
ATP
cAMP,cGMPMTX,OA-
ATP
MRP3 (ABCC3)
MRP4 (ABCC4)
OA-
Hepatic Basolateral Export Transporters
2 K+
3 Na+
ATP
-
Transport Protein
Trivial Names
Gene Symbol
Substrates
MRP1 MRP, GS-X ABCC1 daunorubicin; doxorubicin; etoposide; vincristine
MRP3 MOAT-D MLP2 cMOAT2
ABCC3 acetaminophen glucuronide; E217G; monovalent and sulfated bile salts; MTX
MRP4 MOAT-B ABCC4 azidothymidine; cAMP; cGMP; PMEA; MTX MRP5 MOAT-C
ABC11 ABCC5 cAMP; cGMP; PMEA
MRP6 MOAT-E MLP1
ABCC6 BQ-123
MRP7 ABCC10 E217G; LTC4
MRP8 ABCC11 cAMP; cGMP
Hepatic Basolateral Export Transporters ATP-Binding Cassette (ABC) Subfamily C, Member #
Multidrug Resistance-Associated Proteins
-
bile bile
tight junction
sinusoidal membrane
hepatocyte
OATP1B1, 1B3, 2B1 (SLCO1B1,1B3, 2B1)
OA- OC+,Type II
sinusoidal membrane
-40mV
blood flow
blood flow
OAT2 (SLC22A7)
OA-
MRP5 (ABCC5)
cAMP cGMP
ATP
MRP1,6 (ABCC1,6)
ATP
OA-
ATP
cAMP,cGMPMTX,OA-
ATP
MRP3 (ABCC3)
MRP4 (ABCC4)
OCT1 (SLC22A1)
OC+ Type I
OA-
Hepatic Basolateral Export Transporters
Chandra and Brouwer, Pharm Res, 21:719, 2004
-
Hepatic Canalicular Transporters
Kck and Brouwer, Clin Pharmacol Ther, in press, 2012
-
sinusoidal membrane
hepatocyte -40mV
blood flow
bile
BSEP (ABCB11)
TC ATP
blood flow
sinusoidal membrane
Canalicular Transporters
tight junction
-
Transport Protein
Trivial Names
Gene Symbol
Substrates
BSEP Sister Pgp ABCB11 conjugated and unconjugated bile salts; TC
Canalicular Transporters ATP-Binding Cassette (ABC) Subfamily B, Member 11
Bile Salt Export Pump
Numerous drugs (cyclosporin A, rifampicin, glibenclamide, bosentan, troglitazone) recently have been shown to inhibit BSEP function, but these compounds are not substrates for BSEP.
-
Fattinger et al., Clin Pharmacol Ther 69:223, 2001
Concentrations of Serum Bile Salts in
Patients w/ Bosentan-Induced Liver Injury
Effect of Bosentan and Metabolites on ATP-Dependent
Taurocholate Transport in cLPMs and Sf9 Vesicles
Clinical Relevance of Drug Transport Interactions: Bosentan Inhibits BSEP
-
sinusoidal membrane
hepatocyte -40mV
blood flow
MRP2 (ABCC2)
bile
ATP OA-
blood flow
sinusoidal membrane
Canalicular Transporters
tight junction
-
Transport Protein
Trivial Names
Gene Symbol
Substrates
MRP2 CMOAT cMRP
ABCC2 acetaminophen glucuronide; carboxydichlorofluorescein; camptothecin; doxorubicin; cisplatin; vincristine; etoposide; glibenclamide; indomethacin; rifampin; glucuronide, glutathione, and sulfate conjugates; LTC4; MTX; pravastatin
Canalicular Transporters ATP-Binding Cassette (ABC) Subfamily C,
Member 2 Multidrug Resistance-Associated Protein
-
Substrates for the Canalicular Multispecific Organic Anion Transporter (Mrp2; cMOAT)
Oude Elferink, R.P.J. et al., Biochim. Biophys. Acta 1241:215-268, 1995
# of Negative Endogenous Compounds Charges Conjugated Bilirubin 2 Glutathione GSH 2 Glutathione GSSG 4 Cysteinyl-leukotrienes 2/3 Triiodothyronine-glucuronide 2 Coproporphyrin I 2 Bile Salt Conjugates Cholate 3-O-glucuronide 2 Lithocholate 3-O-glucuronide 2 Nordeoxycholate 3-O-glucuronide 2 Tauro-glycolithocholate 3-sulfate 2 Taurochenodeoxycholate 3-sulfate 2 Nordeoxycholate-3-sulfate 2
# of Negative Exogenous Compounds Charges Ceftriaxone 2 Ampicillin 2 Carboxydichlorofluorescein 2 Dibromosulfophthalein 2 Bromosulfophthalein-glutathione 4 Dinitrophenyl-glutathione 2 Glutathionyl-bromoisovalerylurea 2 Naphthol-1-glucuronide 1 Indocyanine green 2 Gadolinium-ethoxybenzyl-DTPA 2 Acetaminophen glucuronide 1 Metals Zinc Copper Manganese
-
Hepatic Mrp3 Protein Levels in EHBR (Mrp2-deficient), Gunn, Bilirubin-
treated and Sprague-Dawley Rats
Ogawa et al., Am J Physiol 278:G438, 2000
-
Hepatic Protein Levels in Wistar and TR- Rats
Johnson et al., Drug Metab Dispos 34:556, 2006
-
sinusoidal membrane
hepatocyte -40mV
blood flow
ATP
bile MDR1 (ABCB1) OC
+
Phospholipids MDR3 (ABCB4) ATP
blood flow
sinusoidal membrane
Canalicular Transporters
tight junction
-
Transport Protein
Trivial Names
Gene Symbol
Substrates
MDR1 P-gp ABCB1 amprenavir; indinavir; nelfinavir; ritonavir; saquinaviraldosterone; corticosterone; dexamethasone; digoxincyclosporin A; MX; debrisosoquine; erythromycin; lovastatin; terfenadine; digoxin; quinidine; doxorubicin; paclitaxel; rhodamine 123; etoposide; fexofenadine; losartan; vinblastine; tacrolimus; talinolol
MDR3 PFIC3 Phospholipid flippase
ABCB4 phospholipids
Canalicular Transporters ATP-Binding Cassette (ABC) Subfamily B, Member #
Multidrug Resistance Proteins
-
sinusoidal membrane
hepatocyte -40mV
blood flow
bile
ATP BCRP (ABCG2) MX
blood flow
sinusoidal membrane
Canalicular Transporters
tight junction
-
Transport Protein
Trivial Names
Gene Symbol
Substrates
BCRP MXR, ABCP
ABCG2 daunorubicin; doxorubicin; MX; sulfated conjugates
Canalicular Transporters ATP-Binding Cassette (ABC) Subfamily G, Member 2
Breast Cancer Resistance Protein
ATP-dependent half-transporter Substrates include:
Estrone-3-sulfate SN-38
Suzuki et al., Hepatology 36:218A (205), 2002
-
B
OA-
m-
OA-
MITOCHONDRIA
GOLGI
OCT1 OAT2
ATPATP ATP
m-
m-
OATPs
OA-
X-E-
OST /
B
SPACE OF DISSE
NTCP
B Na+
B
ATP
m-X-
Drugs
Other Xenobiotics/EndobioticsX- m-
OA-
m-
X+
OA-
X-E-
B
ATP
m-ATP
ATP
ATP
ATP
Pgp
MDR3
MRP3 MRP4 MRP5,6MRP1
MRP2
X-
X-
X-
X- m-B
X+
OA-
Hepatic Uptake and Export Transporters
A. Rizwan
Sinusoid
-
Model Systems to Investigate Hepatobiliary Disposition and Biliary Excretion
Intact Liver (in vivo) Isolated Perfused Liver Liver Slices Hepatocytes (suspension, couplets, cultures)
Sandwich-Cultured Hepatocytes Plasma Membrane Vesicles (cLPM, bLPM) Transfected Transport Proteins
-
Isolated or In Situ Perfused Liver (IPL): Experimental Procedures
Buffer Outflow Perfusate Bile
Portal Vein Inflow 30 ml/min rat
5 ml/min mouse
Bile Bile AUC
X Cl = Perfusate Basolateral AUC
X Cl = Liver Liver
T1-T2
T1-T2
T1-T2
T1-T2
Chandra et al., Am J Physiol 288:G1252, 2005; Nezasa et al., Drug Metab Dispos 34:718, 2006
Inferior Vena Cava Outflow
Bile Duct Gall Bladder
-
CDF Biliary Excretion and Biliary Excretion Rate Constants (mean SD; min -1) in C57BL/6 WT(O),
Mrp2 KO () and Bcrp KO () Mouse IPLs
Nezasa et al., Drug Metab Dispos 34:718, 2006
Kbile (min -1) 0.061 0.005
0.039 0.011
N.D.
-
Species Differences in Canalicular Transport Proteins Primarily Responsible for Biliary
Excretion of Organic Anions
Biliary Excretion Rat Mouse Human APAP-Glucuronide Mrp2 Bcrp & Mrp2 ??
APAP-Sulfate Mrp2 & Bcrp Bcrp ?? 4MU-Glucuronide Mrp2 Bcrp & Mrp2 ??
4MU-Sulfate Mrp2 & Bcrp Bcrp ??
Carboxydichloro-fluorescein
Mrp2 Mrp2 ??
Fexofenadine P-gp Mrp2 P-gp and ??
Zamek-Gliszczynski et al., Mol Pharm, 70:2127, 2006
-
Sandwich-Cultured Hepatocytes
Utility Determine hepatic uptake and biliary clearance Determine metabolic clearance
Advantages Normal cell polarity re-established Enzyme/transport activity may be modulated by culture
conditions Applicable to hepatocytes from animals or humans Enzyme/transport proteins may be inhibited/induced in
culture Amenable to higher throughput
Limitations Requires 3-4 days for proper localization of canalicular
transport proteins
-
Pre-isolation 0 hours 24 hours 48 96 hours
Percoll Gradient 85 95% Viability
Liver Perfusion (~35 ml/min, 37oC): 10 min Ca2+-free with chelator 10 min collagenase digestion Single pass or recirculating flow
Hepatocyte isolation Liver capsule gently torn
Sandwich-Cultured Hepatocytes: Experimental Procedures
Liu et al., Am J Physiol 277: G12-G21, 1999
-
Immunohistochemical Localization of Mrp2 (green) and Mrp3 (red) in
Day 4 Sandwich-Cultured Rat Hepatocytes
Zhang et al., AAPSPharmSci, 2001
-
Time course of Carboxydichlorofluorescein in Sandwich-Cultured Hepatocytes
4 hours
28 hours
48 hours
96 hours
Zhang et al., AAPSPharmSci, 2001
-
Fluorescence of 5 (and 6)-Carboxy -2,7-dichlorofluorescein in Canalicular Networks of
Day 4 Sandwich-Cultured Hepatocytes
Wistar Control TR-
Bow et al., in preparation, 2010
Mrp2 KO
WT
TR-
WT
Mouse Rat
Swift et al., Drug Metab Rev, in press, 2010
-
Fluorescence of 5 (and 6)-Carboxy -2,7-dichloro-fluorescein in Canalicular Networks of Day 4
Sandwich-Cultured Rat Hepatocytes
-
Bosentan: Species-dependent differences in inhibition of bile acid uptake and excretion.
Troglitazone: Hepatocyte accumulation of troglitazone sulfate
Can Hepatotoxicity be Predicted from In Vitro Systems?
-
Effect of Bosentan on 3H-Taurocholate Disposition in Sandwich-Cultured Rat Hepatocytes
Kemp et al., Toxicol Sci 83:207, 2005
Taurocholate accumulation in the absence of bosentan () or presence of 1 M ( ), 10 M (), 20 M (), 50 M (), and 100 M ( ) bosentan. Taurocholate accumulation in cells + bile canaliculi (black) or cells (grey) was simulated in control (solid line) and 100 M bosentan-treated (dashed line) sandwich-cultured rat hepatocytes.
-
0.01 0.1 1 10 1000
50
100
[bosentan] (M)
taur
ocho
late
upta
ke(%
con
trol)
IC50 (M)
Rat-Ntcp 9
NtcpNTCP Human-NTCP 140
Bosentan Inhibits 3H-Taurocholate Uptake by NTCP/Ntcp-Transfected HeLa Cells
Bosentan inhibits rat Ntcp ~15-fold more potently than human NTCP
Experiments performed in Dr. Richard Kims laboratory at Vanderbilt University
Leslie et al., J Pharmacol Exp Ther, 321:1170, 2007
-
0.01 0.1 1 10 100 10000
50
100
humanrat
[bosentan] (M)
taur
ocho
late
upta
ke(%
con
trol)
Bosentan Inhibits Na+-Dependent 3H-Taurocholate Uptake in Rat and Human
Suspended Hepatocytes
Bosentan inhibits Na+-dependent uptake of 3H-taurocholate in rat hepatocytes ~6-fold more potently than human hepatocytes
Hepatocytes IC50(M) Rat 5 1.7 (n=4) Human 30 (n=2)
Leslie et al., J Pharmacol Exp Ther, 321:1170, 2007
-
Taurocholate
Hepatocyte
Bosentan
Sinusoidal Blood
Bsep
Ntcp Na+
Oatps
OA-
Bile Acids
Bile Acids
Current Hypothesis Bosentan inhibits rat Bsep but is not hepatotoxic in rats because inhibition of Ntcp protects the hepatocyte from
accumulation of toxic bile salts
Bile
-
Rat Human
Current Hypothesis Balance between inhibition of bile acid uptake
(NTCP/Ntcp) and excretion (BSEP/Bsep) may explain some species differences in drug-induced liver injury
Not Hepatotoxic Hepatotoxic
Taurocholate Drug with Hepatotoxic Potential
Bile Bile
-
OA-
B
m-
MITOCHONDRIA
GOLGI
OCT1 OAT2
ATP ATP ATP
OATPs
OA-
X- E-
OST /
B
NTCP
B Na+
B
ATP
m-
X-
X+
OA-
X- E-
ATP
ATP
ATP
ATP
ATP
Pgp
MDR3
MRP3 MRP4
MRP5,6
MRP1
MRP2
Rat cLPM: Troglitazone (IC50 = 3.9 M) vs. TS (IC50= 0.4-0.6 M)
B
B
B
B
B
B
B B
B B
Funk et al.,2001
Troglitazone Sulfate is a More Potent Inhibitor of Bsep than Troglitazone
BSEP-expressing membrane vesicles: Troglitazone (IC50 = 20 M) Yabuuchi et al., 2008
-
Medium Cell Bile
Disposition of Troglitazone and Metabolites in Day 4 Sandwich-Cultured Rat Hepatocytes
Lee et al. J Pharmacol Exp Ther, 332:26, 2010
-
Estimated Hepatocellular Concentrations of Troglitazone and Troglitazone Sulfate (TS) in Human
and Rat Sandwich-Cultured Hepatocytes
Time (min)
0 20 40 60 80 100 120 140
Accu
mul
atio
n in
Cel
l (pm
ol)
0
200
400
600
800
1000
1200TGZTSTG
BSEP-expressing membrane vesicles: Troglitazone (IC50 = 20 M)
vs.
Time (min)
0 20 40 60 80 100 120 140
Acc
umul
atio
n in
Cel
l (pm
ol)
0
200
400
600
800
1000
1200
1400
1600TGZTSTG
Rat cLPM: (IC50 = 3.9 M)
vs. Rat cLPM: Troglitazone Sulfate (IC50 = 0.4-0.6 M)
vs.
Human
Rat
(Incubation with 10 M Troglitazone)
M8.44l/well 6.83
pmol/well 306 Volumelar Intracellu
Cellin neTroglitazo ofon Accumulati ion Concentratular Hepatocell
==
=
M5.6l/well 6.83
pmol/well 7.44 Conc. neTroglitazo ==
M173l/well 6.83
pmol/well 1182 Conc. Sulfate neTroglitazo ==
Lee et al. J Pharmacol Exp Ther, 332:26, 2010
-
Cellular accumulation of TS was extensive when Kbile,TS was impaired; intracellular TS concentrations increased 3- to 6-fold when biliary excretion of TS was decreased 2- and 10-fold, respectively.
Altered hepatobiliary transport and the extent of hepatocyte exposure may not be evident based on medium concentrations (analogous to systemic exposure in vivo).
Impact of Kbile,TS Modulation on TS Accumulation in Sandwich-Cultured Rat Hepatocytes
Lee et al. J Pharmacol Exp Ther, 332:26, 2010
-
OA-
B
m-
MITOCHONDRIA
GOLGI
OCT1 OAT2
ATP ATP ATP
OATPs
OA-
X- E-
OST /
B
NTCP
B Na+
B
ATP
TS
TS
X+
OA-
X- E-
ATP
ATP
ATP
ATP
ATP
Pgp
MDR3
MRP3 MRP4
MRP5,6
MRP1
MRP2
B
B
B
B
B B
B
B
Troglitazone Sulfate Inhibits BSEP- and MRP4-Mediated Hepatic Excretion of Bile Acids
TS TS TS
B
B
B
B
Marion et al. in preparation, 2010
-
Transport Systems: Implications for Xenobiotic Disposition
Does the parent compound and/or metabolite(s) undergo transport? What transporters are involved? What are relative affinities? Potential for xenobiotic interactions? Potential for disease state alterations in transport?
Does the xenobiotic and/or metabolite(s) alter the expression and/or function of transport systems? Potential for xenobiotic interactions? Potential for organ toxicity?
-
Xenobiotic Transport: The More We Learn, The More We Realize
How Little We Know! Identification of Transport Proteins in Relevant Organs Structure-Transport Relationships Factors that Regulate Transport Protein Expression,
Localization and Function Genetics Age Dietary Influence Environmental Factors Disease States Drug Interactions
Effects of Altered Transport Function on Xenobiotic Disposition
In Vitro/In Vivo Correlations
Biochemical and Molecular Toxicology ENVR 442/TOXC 442/BIOC 442The Role of Transporters (Phase III)in Xenobiotic Disposition Kim L.R. Brouwer, PharmD, PhDWilliam R. Kenan Distinguished Professor and Chair,Division of Pharmacotherapy & Experimental TherapeuticsUNC Eshelman School of [email protected]; 919-962-7030Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Organ Distribution of Multidrug Resistance Mdr1 P-glycoprotein Slide Number 8Ivermectin Toxicity in Mdr1a(-/-) and Mdr1a(+/+) MiceSlide Number 10Maintenance of Barrier Function:Endothelial Cells Lining the Olfactory BulbMaintenance of Barrier Function in Sanctuary Site TissuesSlide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Available Models To ExamineRenal Transport ProcessesHepatic Elimination: Phase I (P450s),Phase II (conjugation) & Phase III (transport)Bile and Urine as Complementary Pathways for Excretion of Foreign Compounds in Rats: Molecular Weight Threshold Hypothesis Slide Number 21Basolateral Transporters: Organic AnionsSlide Number 23Basolateral Transporters: Organic AnionsSlide Number 25Slide Number 26Slide Number 27Rodent Hepatic Basolateral Uptake TransportersSolute Carrier Family 21 (SLCO), Member #Substrates for the Rat Organic Anion Transporting Polypeptides (Oatp)Basolateral Transporters: Organic AnionsSlide Number 31Slide Number 32Basolateral Transporters: Organic Anions and CationsSlide Number 34Hepatic Basolateral Export TransportersSlide Number 36Hepatic Basolateral Export TransportersSlide Number 38Canalicular TransportersSlide Number 40Concentrations of Serum Bile Salts in Patients w/ Bosentan-Induced Liver Injury Canalicular TransportersSlide Number 43Substrates for the Canalicular Multispecific Organic Anion Transporter (Mrp2; cMOAT)Hepatic Mrp3 Protein Levels in EHBR (Mrp2-deficient), Gunn, Bilirubin-treated and Sprague-Dawley RatsHepatic Protein Levels in Wistar and TR- RatsCanalicular TransportersSlide Number 48Canalicular TransportersSlide Number 50Hepatic Uptake and Export TransportersModel Systems to Investigate Hepatobiliary Disposition and Biliary ExcretionIsolated or In Situ Perfused Liver (IPL):Experimental ProceduresCDF Biliary Excretion and Biliary Excretion Rate Constants (mean SD; min -1) in C57BL/6 WT(O), Mrp2 KO () and Bcrp KO () Mouse IPLsSpecies Differences in Canalicular Transport Proteins Primarily Responsible for Biliary Excretion of Organic Anions Sandwich-Cultured HepatocytesSlide Number 57Immunohistochemical Localization of Mrp2 (green) and Mrp3 (red) in Day 4 Sandwich-Cultured Rat HepatocytesTime course of Carboxydichlorofluorescein in Sandwich-Cultured HepatocytesFluorescence of 5 (and 6)-Carboxy -2,7-dichlorofluorescein in Canalicular Networks of Day 4 Sandwich-Cultured HepatocytesFluorescence of 5 (and 6)-Carboxy -2,7-dichloro-fluorescein in Canalicular Networks of Day 4 Sandwich-Cultured Rat HepatocytesCan Hepatotoxicity be Predicted from In Vitro Systems?Effect of Bosentan on 3H-Taurocholate Disposition in Sandwich-Cultured Rat HepatocytesBosentan Inhibits 3H-Taurocholate Uptake by NTCP/Ntcp-Transfected HeLa CellsSlide Number 65Slide Number 66Slide Number 67Slide Number 68Slide Number 69Slide Number 70Slide Number 71Slide Number 72Transport Systems:Implications for Xenobiotic DispositionXenobiotic Transport: The More We Learn, The More We Realize How Little We Know!