The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

80
The role of molecular structure and conformation in polymer opto - electronics Charge separation: Molecular structure Enrico Da Como

Transcript of The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Page 1: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

The role of molecular structure andconformation in polymer opto-electronicsCharge separation: Molecular structure

Enrico Da Como

Page 2: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Conjugated polymers

polythiophene

Page 3: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Conjugated polymers

polythiophene

Bottom – up design for electronics

Optical, electrical & ordering properties arise at the molecular scale

Page 4: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Structure-function relationships

Polymer solar cells: transport, recombination & efficiency

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75-12

-8

-4

0

4

8

Cu

rre

nt d

en

sity (

mA

/cm

2)

Voltage (V)

Page 5: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Solar cells

1. Absorption of light and photogeneration of excitons

Mott-Wannier

~ 0.1 eV

Large radius

Charge transfer excitons

~ 0.1 – 1.0 eV

Localised between molecules

Frenkel excitons

~ 0.5 – 1.0 eV

Localised on molecule

Page 6: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Solar cells

E

e-

e-

e-

h+

h+

h+

h+

h+ DriftDiffusion

e-

e-

eV

Built-in Potential

pn junction, heterojunction

2. Exciton dissociation & 3. Transport of charge

Page 7: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Solar cells

2. Exciton dissociation & 3. Transport of charge

Donor-Acceptor system

S

-

+

Page 8: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

G. Yu, … A. J. Heeger, Science 207, 1789 (1995)

Y. Yang & Solarmer Nature Photonics 3, 649 (2009)

Polymer/fullerene photovoltaics

> 8% efficiency on lab cells

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Page 9: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Polymer/fullerene photovoltaics

Page 10: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Polymer/fullerene photovoltaics

Page 11: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Polymer/fullerene photovoltaics

Page 12: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Polymer/fullerene photovoltaics

Page 13: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

The race for 10 %

Konarka's Power Plastic

Achieves World Record 8.3%

Page 14: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Physics on different length scales

Efficiency

Layers & interfaces

Page 15: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Mesoscopic scalebulk heterojunction

Physics on different length scales

Charge transport

Morphology & molecular ordering

Page 16: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Molecular scaleDonor-Acceptor

Mesoscopic scalebulk heterojunction

Physics on different length scales

Exciton generation & dissociation

molecular ordering & mobility

Page 17: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Molecular scaleDonor-Acceptor

Charge transport

Charge separation

Physics on different length scales

Mesoscopic scalebulk heterojunction

Exciton generation & dissociation

molecular ordering & mobility

Page 18: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Photovoltaic action: competing mechanisms?E

ne

rgy

Charge separation

absorption

Polymer Fullerene

HOMO

HOMO

LUMO

LUMO

Page 19: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

En

erg

y

Charge separation

absorption

Large donor-acceptor interface

Polymer Fullerene

morphology & mobility

HOMO

LUMO

HOMO

LUMO

Photovoltaic action: competing mechanisms?

Page 20: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Efficiency = JscVocFF

Pin

Polmyer solar cell: device parameters

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75-12

-8

-4

0

4

8

Curr

en

t density (

mA

/cm

2)

Voltage (V)

= 2.9 %

P3HT:PCBM

Short circuit current Jsclight absorption

transport

Fill factor FFcharge collection

Open circuit voltage VocHOMO-LUMO offset

Page 21: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Charge transfer @ polymer:fullerene interface

structure

conformation

ordering

Donor-acceptor distance

Page 22: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in polymers

Frenkel exciton (~ 0.5 eV – 1 eV)Intra (inter) chain excitationLifetime ~ns, diffusion length ~ 10 – 20 nm

Polymer structure, conformation & excitons

Page 23: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in polymers

Frenkel exciton (~ 0.5 eV – 1 eV)Inter or intrachain excitationLifetime ~ns, diffusion length ~ 10 – 20 nm

Chemical structure, excitons, long range ordering

Page 24: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in polymersE

ne

rgy

HOMO

LUMO

En

erg

y

S0

S1

S2

T1

absorption

Page 25: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in Polymer:fullerene systems

Charge transfer excitonCoulomb bound electron-hole pair @ the donor-acceptor interface

Page 26: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in Polymer:fullerene systems

Polymer Fullerene

HOMO

HOMO

LUMO

LUMO

En

erg

y

S0

S1

S2

T1CTE?

Page 27: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in Polymer:fullerene systems

Polymer Fullerene

HOMO

HOMO

LUMO

LUMO

En

erg

y

S0

S1

S2

T1CTE?

Where is the CTE energetically?What role does it play in charge transfer/recombination?CTE vs molecular structure, conformation and ordering?

Page 28: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in Polymer:fullerene systems

Why do CTEs dissociate?Field dependence

Only 60 % of CTEs dissociate in polymer fullerene solar cells at room temperature

V. Mihailetchi, L. Koster, J. Hummelen, P. Blom, Phys. Rev. Lett. 93, 216601 (2004)

Page 29: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in Polymer:fullerene systems

Are CTEs a necessary step for charge separation?

Voc limited by CTE

Polymer Fullerene

HOMO

LUMO

LUMO

Page 30: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in Polymer:fullerene systems

Are CTEs a necessary step for charge separation?

Polymer Fullerene

HOMO

LUMO

LUMO

Veldman et al., JACS 2008

Change molecular ordering, interface states

Page 31: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Excitons in Polymer:fullerene systems

Mixed amorphous & crystalline polymer regions enhance charge separation

Higher charge separation efficiency with engineered heterojunctions

Bulk properties influence CTE dissociation

Page 32: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Charge transfer @ polymer:fullerene interface

Acceptor concentration

Page 33: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

En

erg

y(e

V)

-6.1

-5.4

-3.2

-4.2

HOMO

LUMO

HOMO

LUMO

MDMO-PPV/PCBM

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0

0.4

0.8

1.2 PCBM

PL

(a.u

.)

0.0

0.4

0.8

1.2 MDMO-PPV pristine

PL

(a.u

.)

Probing recombination with PL spectroscopy

Energy (eV)

Adv. Funct. Mater. 19, 3662 (2009)

Page 34: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

En

erg

y(e

V)

-6.1

-5.4

-3.2

-4.2

HOMO

LUMO

HOMO

LUMO

MDMO-PPV/PCBM 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0

0.4

0.8

1.2 MDMO-PPV/PCBM blendP

L (

a.u

.)

0.0

0.4

0.8

1.2 PCBM pristine

PL

(a.u

.)

0.0

0.4

0.8

1.2 MDMO-PPV pristine

PL

(a.u

.)

CTE

Energy (eV)

Probing recombination with PL spectroscopy

Adv. Funct. Mater. 19, 3662 (2009)

Page 35: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

0.8 1.2 1.6 2.00

1x105

2x105

3x105

4x105

PL

(a

.u.)

Energy (eV)0.8 1.2 1.6 2.0

Energy (eV)

80 wt % PCBM60 wt % PCBM

0.8 1.2 1.6 2.0

Energy (eV)

20 wt % PCBM

Vary the donor-acceptor interface

Adv. Funct. Mater. 19, 3662 (2009)

Page 36: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

0.8 1.2 1.6 2.00

1x105

2x105

3x105

4x105

PL

(a

.u.)

Energy (eV)0.8 1.2 1.6 2.0

Energy (eV)

80 wt % PCBM60 wt % PCBM

0.8 1.2 1.6 2.0

Energy (eV)

20 wt % PCBM

Vary the donor-acceptor interface

Adv. Funct. Mater. 19, 3662 (2009)

CTE dissociation depends on acceptor concentration

Increased probability of exciton dissociation

Arkhipov et al., Appl. Phys. Lett. 2003 82, 4605.

Page 37: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Charge transfer @ polymer:fullerene interface

Donor/Acceptor structure

Page 38: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

The role of the fullerene acceptor

En

erg

y (

eV

)

HOMO

LUMO

HOMO

LUMO

Donor/acceptor

PCBM

bis-PCBM

DPM

MDMO-PPV

VOC

Appl. Phys. Lett . 97 023301 (2010)

Page 39: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

CTE recombination

Appl. Phys. Lett . 97 023301 (2010)

Page 40: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Anti-Correlation of PLCTE intensity and JSC

0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

1.2

PL

CT

E (

arb

. u

.)

JSC

µA/cm2

Appl. Phys. Lett . 97 023301 (2010)

Anticorrelation Jsc and CTE

Page 41: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Morphology and transport

bis-PCBM PCBM

me=2 10-4 cm2/Vs me=8 10-3 cm2/Vsme= 1 10-3cm2/Vs

Appl. Phys. Lett . 97 023301 (2010)

Long range ordering? Transport?

Page 42: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Changing morphology with chain regioregularityRegiorandom P3HT Regioregular P3HT

Amorphous vs. Polycrystalline

Page 43: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Adv. Funct. Mater. 19, 3662 (2009)

1.0 1.5 2.0

ra-P3HT

PCBM

Energy (eV)

X10

RE-P3HT

RE-P3HT/PCBM

Changing morphology with chain regioregularity

100 nm

= 2.1%

PL I

nte

nsity

PL I

nte

nsity

= 0.9%

1.0 1.5 2.0

ra-P3HT

ra-P3HT/PCBM

Energy (eV)

EnergyEnergy

100 nm

Regiorandom P3HT Regioregular P3HT

What is the role of donor-acceptor distance?

Page 44: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Model system: „low band gap“ polymers

PCPDT-BT

M. Svensson, F. Zhang, O. Inganas, & M. R. Andersson, Synth. Met. 135, 137 (2003)

N. Blouin, A. Michaud, M. & Leclerc Adv. Mater. 19, (2007)

Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec,

Macromolecules 40, 1981 (2007).

„Low bandgap“ co-polymers for better light absorption

dithiophene

benzodiathiazole

LUMO

HOMO

Page 45: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Increasing solar cell efficiency

PCPDT-BT

M. Svensson, F. Zhang, O. Inganas, & M. R. Andersson, Synth. Met. 135, 137 (2003)

N. Blouin, A. Michaud, M. & Leclerc Adv. Mater. 19, (2007)

Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec,

Macromolecules 40, 1981 (2007).

„Low bandgap“ co-polymers for better light absorption

dithiophene

benzodiathiazole

Page 46: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Low-bandgap copolymers

Page 47: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

500 1000 1500 2000

Abs

orpt

ion

(arb

. uni

ts)

Wavelength (nm)

800 nm

PCPDT-2TBT

PCPDT-BDT

PCPDT-2TTP

PCPDT-BT

800 nm

660 nm

800 nm

Low-bandgap copolymers

Tautz et al submitted

Stronger vs weaker acceptor

Shifting the donor-acceptor centre of mass

Page 48: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

IR Absorption

HOMO -1

LUMO +1

Measuring IR absorption of chemically

induced polarons

HOMO

LUMO

e-P1

Where are the polarons?

-0.1

0.0

0.1

500 1000 1500 2000 2500 3000 3500

-0.1

0.0

0.1

-0.1

0.0

0.1

P1

Ch

emic

ally

in

du

ced

O

D (

arb

. u

.)

GB

P1

GB

Probe

Wavelength [nm]

Probe

P2

P1

GB

Ex

Ex P2

GB

P1

P2

-5

0

5

0

5

-10

0

10

-0.1

0.0

0.1

-5

0

5

P2

Probe

P2

Page 49: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

IR Absorption

HOMO -1

LUMO +1

Measuring IR absorption of chemically

induced polarons

HOMO

LUMO

e-P1

Where are the polarons?

-0.1

0.0

0.1

500 1000 1500 2000 2500 3000 3500

-0.1

0.0

0.1

-0.1

0.0

0.1

P1

Ch

emic

ally

in

du

ced

O

D (

arb

. u

.)

GB

P1

GB

Wavelength [nm]

P2

P1

GB

P2

GB

P1

P2

-0.1

0.0

0.1

P2

Page 50: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

IR Absorption

HOMO -1

LUMO +1

Measuring IR absorption of chemically

induced polarons

HOMO

LUMO

e-P1

Where are the polarons?

-0.1

0.0

0.1

500 1000 1500 2000 2500 3000 3500

-0.1

0.0

0.1

-0.1

0.0

0.1

P1

Ch

emic

ally

in

du

ced

O

D (

arb

. u

.)

GB

P1

GB

Probe

Probe

Wavelength [nm]

Probe

Ex P2

P1

GB

Ex

Ex P2

GB

P1

P2

-5

0

5

0

5

-10

0

10

Op

tica

lly

in

du

ced

(1

0-4)

-0.1

0.0

0.1

-5

0

5

P2

Probe

Page 51: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Polaron formation in realtime

10

20

30

10

20

10

20

Time delay (fs)

PCPDT-BT

Po

laro

n p

air

yie

ld (

%)

P3HT

PCPDT-BDT

PCPDT-2TBT

PCPDT-2TTP

IRF

-1000 -750 -500 -250 0 250 500 7500

10

20

10

20

D A

D A

D A

D A

UU U U-

= 15.9%

= 21.4%

= 13.9%

= 7.9%

= 23.6%

Page 52: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Polaron formation in realtime

10

20

30

10

20

10

20

Time delay (fs)

PCPDT-BT

Po

laro

n p

air

yie

ld (

%)

P3HT

PCPDT-BDT

PCPDT-2TBT

PCPDT-2TTP

IRF

-1000 -750 -500 -250 0 250 500 7500

10

20

10

20

D A

D A

D A

D A

UU U U-

= 15.9%

= 21.4%

= 13.9%

= 7.9%

= 23.6%

Page 53: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Polaron formation in realtime

10

20

30

10

20

10

20

Time delay (fs)

PCPDT-BT

Po

laro

n p

air

yie

ld (

%)

P3HT

PCPDT-BDT

PCPDT-2TBT

PCPDT-2TTP

IRF

-1000 -750 -500 -250 0 250 500 7500

10

20

10

20

D A

D A

D A

D A

UU U U-

= 15.9%

= 21.4%

= 13.9%

= 7.9%

= 23.6%

Acceptor strength only slightly influencing efficiency

Important role of spatial separation

Page 54: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Charge transfer @ polymer:fullerene interface

structure

conformation

ordering

Donor-acceptor distance

Page 55: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Mesoscopic scalebulk heterojunction

Physics on different length scales

Charge transport

Morphology & molecular ordering

Page 56: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Molecular scaleDonor-Acceptor

Mesoscopic scalebulk heterojunction

Physics on different length scales

Exciton generation & dissociation

molecular ordering & mobility

How to improve efficiency at every length scale?

Page 57: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Conformation & structure

Long range ordering

Charge transfer

Page 58: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Adv. Funct. Mater. 19, 3662 (2009)

1.0 1.5 2.0

ra-P3HT

PCBM

Energy (eV)

X10

RE-P3HT

RE-P3HT/PCBM

Changing morphology with chain regioregularity

100 nm

= 2.1%

PL I

nte

nsity

PL I

nte

nsity

= 0.9%

1.0 1.5 2.0

ra-P3HT

ra-P3HT/PCBM

Energy (eV)

EnergyEnergy

100 nm

Regiorandom P3HT Regioregular P3HT

Page 59: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

100 nm

The effect of long range ordering

AnnealedNot Annealed

= 2.1% = 4.0%

Page 60: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

100 nm

AnnealedNot Annealed

= 2.1% = 4.0%

1.0 1.5 2.0

PL

in

ten

sity

X10

RE-P3HT/PCBM

RE-P3HT/PCBM

(annealed)

Energy (eV)Adv. Funct. Mater. 19, 3662 (2009)

The effect of long range ordering

Page 61: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

100 nm

AnnealedNot Annealed

= 2.1% = 4.0%

Adv. Funct. Mater. 19, 3662 (2009) J. App. Phys.100, 043702 (2006)

Ambipolar transportUnipolar (hole) transport

The effect of long range ordering

How to induce long range ordering?

Page 62: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Page 63: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Conformation & structure

Long range orderingDoping

Charge transfer

Increase mobility without changing morphology?

Page 64: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Increasing mobility by molecular doping

P doping by electron transfer in the

ground state

F4TCNQ

Yim et al., Adv Mater, 2008, 20Zhang et al., Phys Rev B, 2010, 81

Zhang et al., Adv Func Mater, 2009, 19

Page 65: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Increasing mobility by molecular doping

P doping by electron transfer in the

ground state

PCPDTBT:PCBM

F4TCNQ

SPP1355

Page 66: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Fill tail states with excess

charge carriers

Increase Mobility

+

Energ

y (

eV

)

Disordered film

Increasing mobility by molecular doping

g(E)

Page 67: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Charge transport

Charge separation

Improvement in charge separation, mobility, efficiency

Photocurrent & Efficiency?

Page 68: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

0.9 1.0 1.1 1.2 1.3 1.4

PCBM

PCPDTBT

1.0 1.2 1.4 1.6 1.8

PL inte

nsity (

arb

.units)

Energy (eV)

PCPDTBT/PCBM

Energy (eV)

PL inte

nsity (

arb

. units)

Doping & Charge separation

+

-

Page 69: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

0.9 1.0 1.1 1.2 1.3 1.4

PCBM

PCPDTBT

1.0 1.2 1.4 1.6 1.8

PL inte

nsity (

arb

.units)

Energy (eV)

PCPDTBT/PCBM

Energy (eV)

PL inte

nsity (

arb

. units)

+

-

0%

1%

3%

4%

Doping & CTE recombination

Page 70: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

0 200 400 600 800

Time (ps)

0%

2%

4%

5%

No

rm.

PL

inte

nsity

Doping & CTE recombination

Page 71: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

0 100 200 300

0%

2%

4%

5%

PL inte

nsity (

arb

. u

nits)

Time (ps)

Lower density of CTE or very fast dissociation with doping?

Doping & CTE recombination

Page 72: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Doping & Polaron formation

Janssen et al. Adv. Mater

(2010)-T/

T x

10

4

0 50 100 150 200 250 3000

2

Time delay (ps)

-

T/T

(x10

-3)

0%

EProbe

Page 73: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Doping & Polaron formation

Janssen et al. Adv. Mater

(2010)-T/

T x

10

4

0

2

0 50 100 150 200 250 3000

22%

-

T/T

(x10

-3)

0%

Time delay (ps)

EProbe

Page 74: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Doping & Polaron formation

Janssen et al. Adv. Mater

(2010)-T/

T x

10

4

0

2

0

2

0 50 100 150 200 250 3000

24%

2%

-

T/T

(x10

-3)

0%

Time delay (ps)

EProbe

Page 75: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Doping & Polaron formation

Janssen et al. Adv. Mater

(2010)-T/

T x

10

4

0

2

0

2

0

2

0 50 100 150 200 250 3000

25%

4%

2%

-

T/T

(x10

-3)

0%

Time delay (ps)

EProbe

Page 76: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

PCPDTBT PCBM

En

erg

y

tCT-r

tCT-ftFR-r

tP-f

tP-r

0 100 200 300

0%

2%

4%

5%

PL

in

ten

sity (

arb

. u

nits)

Time (ps)

Time Delay (ps)

0

2

0.0

1.6

0

2

0.0

1.6

0

2

0.0

1.6

0

2

0.0

1.6

0 50 100 150 200 250 300 Po

laro

n d

en

sity (

x1

01

7/c

m3)

0%

-T

/T (

x1

0-4)

2%

4%

5%

Rate equation model

Page 77: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

PCPDTBT PCBM

En

erg

y

tCT-r

tCT-ftFR-r

tP-f

tP-r

0 100 200 300

0%

2%

4%

5%

PL

in

ten

sity (

arb

. u

nits)

Time (ps)

Time Delay (ps)

0

2

0.0

1.6

0

2

0.0

1.6

0

2

0.0

1.6

0

2

0.0

1.6

0 50 100 150 200 250 300 Po

laro

n d

en

sity (

x1

01

7/c

m3)

0%

-T

/T (

x1

0-4)

2%

4%

5%

Doping

[%] tFR-r tCT-f tP-f tCT-r tP-r[ps] [ps] [ps] [ps] [ps]

0 125 0.2 0.2 300 1400

2 125 0.5 0.2 300 1000

4 125 0.95 0.2 300 400

5 0.15 0.95 0.2 250 300

Rate equation model

Page 78: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Decrease in CTE emission and larger density of polarons with doping

Conclusion: doping helps!

Phys. Rev. Lett. 107, 127402 (2011)

Page 79: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

Substrate

Anode

Transport layer

Active layer: Polymer/fullerene

Metal contact

Charge transport

Charge separation

Improvement in charge separation, mobility, efficiency

Efficiency?

Page 80: The Role of Molecular Structure and Conformation in Polymer Opto-Electronics

09.03.2015 Präsentationstitel 80

Thank you for your attention