The role of cell characteristic on sunlight-mediated photochemical disinfection in agricultural...

16
The role of cell characteristic on sunlight-mediated photochemical disinfection in agricultural run-off waters James Gutierrez- BRITE Student Amy Gong-BRITE Mentor Dr. Sharon Walker- BRITE Faculty Advisor UCR Bacterial Adhesion Research Laboratory
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    2

Transcript of The role of cell characteristic on sunlight-mediated photochemical disinfection in agricultural...

The role of cell characteristic on sunlight-mediated

photochemical disinfection in agricultural run-off waters

James Gutierrez- BRITE StudentAmy Gong-BRITE Mentor

Dr. Sharon Walker- BRITE Faculty Advisor

UCR Bacterial Adhesion Research Laboratory

Relevance

http://www.pcee.org/Images/Images_Questions/06_12_11_point_non_point.gif

Cellular Characteristic

Zeta Potential

Hydrophobicity

Cell Lysis test

EPS analysis

Size

Viability

Surface charge

What are Extracellular Polymeric Substances?

Copyright © 2008 American Chemical Society

•Amount and composition vary due to physiology, growth phase, pH, temperature and other environmental factors

•Made up (usually) primarily of polysaccharides (sugars) and proteins with traces amounts of nucleic acids

EPS extraction methods

• Azeredo and Lazarova• Cold ethanol• Sonication

+

•Simplified systemNo addition “quenchers” are neededNo catalyst needed

•Common pollutant from agricultural run off

Photo-chemical Transformation

NO3-

.NO3- + NO3

- NO2- + O(3P)

NO2- + .O-

Followed by

.O- + H2O .OH + OH-

light

Why Nitrate?

Halmann, M. M. (1996). Photodegradation of water pollutants. Boca Raton: CRC Press.

How Hydroxyl Radical kills

• Disrupts the cell membrane

D21G Photolysis

Viability change over time

0.01

0.10

1.00

10.00

100.00

0 100 200 300 400 500

sunlight exposure (min)

Via

bili

ty (

%)

0 mM KNO3, no light

0 mM KNO3, sunlight

10 mM KNO3, no light

10 mM KNO3, sunlight

100 mM KNO3, no light

100 mM KNO3, sunlight

Population change over time

1.000E+05

1.000E+06

1.000E+07

1.000E+08

0 100 200 300 400 500

sunlight exposure (min)

Ba

cte

ria

l po

pu

lati

on

0 mM KNO3, no light

0 mM KNO3, sunlight

10 mM KNO3, no light

10 mM KNO3, sunlight

100 mM KNO3, no light

100 mM KNO3, sunlight

Ln Bacteria Concetration change over time

14.500

15.000

15.500

16.000

16.500

17.000

17.500

18.000

18.500

0 100 200 300 400 500

sunlight exposure (min)

Ln

co

nc

etr

ati

on

0 mM KNO3, no light

0 mM KNO3, sunlight

10 mM KNO3, no light

10 mM KNO3, sunlight

100 mM KNO3, no light

100 mM KNO3, sunlight

Linear (0 mM KNO3,sunlight)Linear (10 mM KNO3,sunlight)Linear (100 mM KNO3,sunlight)

Population change over time

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

0 100 200 300 400 500

sunlight exposure (min)

Ba

cte

ria

l po

pu

lati

on

0 mM KNO3, no light

0 mM KNO3, sunlight

10 mM KNO3, no light

10 mM KNO3, sunlight

100 mM KNO3, no light

100 mM KNO3, sunlight

HU1 Photolysis

Viability change over time

0.01

0.10

1.00

10.00

100.00

0 50 100 150 200 250 300 350 400

sunlight exposure (min)

Via

bili

ty (

%)

0 mM KNO3, no light

0 mM KNO3, sunlight

10 mM KNO3, no light

10 mM KNO3, sunlight

100 mM KNO3, no light

100 mM KNO3, sunlight

Ln Bacteria Concentration change over time

14.000

14.500

15.000

15.500

16.000

16.500

17.000

17.500

18.000

18.500

19.000

0 50 100 150 200 250 300 350 400

sunlight exposure (min)

Ln

co

nc

etr

ati

on

0 mM KNO3, no light

0 mM KNO3, sunlight

10 mM KNO3, no light

10 mM KNO3, sunlight

100 mM KNO3, no light

100 mM KNO3, sunlight

Linear (10 mM KNO3,sunlight)

Linear (100 mM KNO3,sunlight)

Population change over time

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 100 200 300 400 500

sunlight exposure (min)

Ba

cte

ria

l po

pu

lati

on

0 mM KNO3, no light

0 mM KNO3, sunlight

10 mM KNO3, no light

10 mM KNO3, sunlight

100 mM KNO3, no light

100 mM KNO3, sunlight

DC1 Photolysis

Viability change over time

0.01

0.10

1.00

10.00

100.00

0 100 200 300 400 500

sunlight exposure (min)

Via

bili

ty (

%)

0 mM KNO3, no light

0 mM KNO3, sunlight

10 mM KNO3, no light

10 mM KNO3, sunlight

100 mM KNO3, no light

100 mM KNO3, sunlight

Ln Bacteria Concetration over time

13.000

14.000

15.000

16.000

17.000

18.000

19.000

0 100 200 300 400 500

sunlight exposure (min)

Ln

Co

nc

etr

ati

on

0 mM KNO3, no light

0 mM KNO3, sunlight

10 mM KNO3, no light

10 mM KNO3, sunlight

100 mM KNO3, no light

100 mM KNO3, sunlight

Linear (10 mM KNO3,sunlight)

Linear (100 mM KNO3,sunlight)

Hydrophobicity

0%

20%

40%

60%

80%

100%

D21G HU1 DC1

Microbial Adhesion to Hydrocarbon (MATH) test

Zeta Potential

-70

-60

-50

-40

-30

-20

-10

0

D21G HU1 DC1

mV

EPS

Cell Type Mean Sugara

Content(mg/cell x 1011)

Mean Proteinb Content

(mg/cell x 1011)

Average Sugar to

Protein Ratio

Average Cell Concentration(1011 bac/mL)

D21g 2.62 58.78 0.05 0.30

HU1 2.08 76.16 0.04 0.42

DC1 1.41 61.21 0.04 0.61

a Based on Xanthan gum as the standard. b Based on Bovine Serum Albumin (BSA) as the standard.

Discussion

• Increased concentration of nitrate increases bacterial kill rates. Further work will include Dissolved Organic Matter.

• Yet to identify the role of EPS. We suspect that EPS is assisting the bactericidal effect.

Future work

• Finish tests in triplicate• Begin testing in Sun simulator with low, medium

and high EPS E. coli strains• Quantify the reaction rate and rate constants for

bactericide• Identify solution chemistry effect of the

photochemical disinfection• Optimized condition for the reaction to take

place

Acknowledgments

• The BRITE program and BRITE participants.

• UCR Bacterial Adhesion Research Lab members

• Dr. Sharon Walker

• Amy Gong