The Research Perspective on Teaching and Learning Science Claudine Kavanagh Doctoral Candidate Tufts...

35
The Research Perspective on Teaching and Learning Science Claudine Kavanagh Doctoral Candidate Tufts University Museum of Science, Boston

Transcript of The Research Perspective on Teaching and Learning Science Claudine Kavanagh Doctoral Candidate Tufts...

The Research Perspective on Teaching and Learning

Science

Claudine KavanaghDoctoral Candidate

Tufts UniversityMuseum of Science,

Boston

Claudine KavanaghDoctoral Candidate

Tufts UniversityMuseum of Science,

Boston

Goals of this talk

General overview of science education findings related to space science.

Multidisciplinary synthesis. No methodological details. Teach through examples.

Four questions:

1. What does the research say about understanding science?

2. What does research say about the most effective ways to share science information?

3. How do we deal with misconceptions in a gentle way that moves the public forward?

4.  How can scientists help to address some of the misconceptions?

“An analysis of students’ misconceptions reveals that intuitive knowledge consists of a number of fundamental experiential beliefs and that understanding a scientific theory requires replacing those beliefs with a different explanatory framework. For instruction to be effective, in bringing about conceptual change, we need to identify those experiential beliefs, to provide students with enough reasons to question them, and to offer a different explanatory framework to replace the one they already have” (Vosniadou, 1991).

Learning trajectory

Initial knowledge based solely on experience

Misconceptions are based on attempting to accommodate new information into existing knowledge. Students may transition through many hybrid frameworks.

Finally, some (not nearly all) may internalize (own) scientifically accepted version of subject.

“Sense-making” activities

Are vitally important Aren’t synonymous with ignorance. Students use all analytical tools available

to them Culture Religious Parascientific Observation …. and Science

What about adult learners? Most American adults do not believe in

modern cosmology, biological evolutionary theory, geological timeframe, modern theories of planetary formation. Science is not internalized by most American adults. (Gallup)

Adults’ beliefs/understandings often don’t differ greatly from children’s ideas. (Teacher data re: gravity)

No overlap between belief in science and understanding of science. (Shtulman)

Children’s cosmology example Initial knowledge: flat, static earth Intermediate hybrid models

Dual earth (one flat “dirt earth” and one globe earth in space)

Stationary globe earth or “terrarium” earth

Fully scientific models (not a universal belief, even among adults)

Tonight’s sky example

Consider three bright red objects: Mars, red star in Orion, red star in Taurus

~ same apparent magnitude, size and distance

Vastly different absolute magnitude, size and distance

How are these objects connected, according to your audience? 2D model? 3D model? Origin of the light?

More learning trajectory Intuitive model only internalized,

adult/scientific model only memorized by rote. Transitional understanding when learner

becomes aware of contradictions and seeks to resolve them using available tools, including observation and quasi-experimentation.

Finally, adult/scientific model internalized, but this does not necessarily mean the prior understanding are totally extinguished.

Consider the question: Do heavier objects fall faster? Adults often hold to Aristotelian notions.

Lab experiences in school? Too confiirmatory! (Hanuscin, 2000).

Misconceptions retained through adulthood What causes the phases of the

moon? (more on this in a minute…) What do the phases of the moon

look like from the Southern Hemisphere?

What do the phases of the moon look like from the equator?

Common misconceptions Almost every idea in science has

documented misconceptions associated with it (Phases of the Moon, Earth, Stars, Seasons, Energy, Gravity… ).

These sets of common ideas have been catalogued across cultures, age ranges and educational levels (e.g. “support theory” in gravity).

Tend to fade with increased education, but not always so.

Fundamental cognition?

Fundamental cognitive structure as yet unknown phenomenological primitives (diSessa) naïve theories (Vosniadou among others)

“One thing that is apparent from the literature is that despite the fact that conceptual routes and mechanisms are poorly understood, children’s (learners’) ideas can and do change” (Sharp, 1996).

What does the research say about understanding science?

Aristotle is alive and well and living among the undergraduates (McCloskey, Whitaker).

Many naïve theories survive intact after formal science instruction (widely reported in gravity research).

What does the research say about understanding science? Students apply scientific language to non-

scientific understandings, and sometimes teachers do too! (gravity, evolution, energy)

Your audience is likely to create an original hybrid idea from your info and their own ideas.

Be careful about the assumptions you make, even with “educated” audiences.

Even undergraduate science students have a poor understanding of what a ‘theory’ is, how to evaluate evidence and how to develop hypotheses. (Dagher & Boujaoude)

What does the research say about sharing science information?

Help your audience come to the correct conclusion on their own, whenever possible.

Direct teaching methods don’t allow individuals in your audience to critically examine their own prior knowledge.

Your information is likely to “lump” on top of non-scientific ideas about your subject, or be improperly integrated.

What does the research say about sharing science information? Find more than one way to convey

what you want to address to your audience. The audience can listen with their

hands Teachers who use hand gestures to

convey information were rated as more successful in teaching new concepts to students.

What does the research say about sharing science information? Teach the nature of science explicitly as you

also relate the findings of science (Brickhouse).

What makes science different from other forms of knowledge? (Induction/Deduction)

Why is the nature of scientific knowledge tentative? What is there to gain from using scientific tools of

analysis to answer a question? Why does science embrace skepticism? What are scientific theories? What questions can scientific methods NOT

answer?

How do we deal with misconceptions in a gentle way? Whenever possible, ask questions

that will elicit your audience’s ideas about the subject at hand.

Ask questions to dig into their deeper understanding of fundamental mechanisms (solar system: planets, but not gravity).

How do we deal with misconceptions in a gentle way? Find teaching methods that promote

conceptual change, while acknowledging your audience’s developmental perspective.

Moon phases example:

Teaching moon phases

Credit where due: Thanks to Dr. William Waller

How can scientists help to address some of the misconceptions? Research the common misconceptions in

your field (“Bird Guide” model). Recognize the relationship between

common misconceptions and fundamental misunderstandings (planets, gravity).

Make yourself available at community education events, schools, libraries, star parties, church events.

Make science real. (Feynman ice water and Car Talk)

How can scientists help to address some of the misconceptions? Engage learners’ concept of reality and

causality. Caution with language: Earth is round

(like a globe or a pizza?) Experts’ problem solving skills are

strikingly different from novices’ problem solving skills (Chi, Slotta) Experts see underlying, abstract issues. Novices report on only the surface features of

the problem. Example: gravity versus memorizing the order

of the planets.

How can scientists help to address some of the misconceptions? Even adult learners with a great deal of

education can struggle with basic concepts related to science (physics, astronomy).

Can technology help? Hansen (2004) found gains in spatial reasoning and visualization by using 3D computer modeling. On the other hand planetariums may reinforce

Aristotelian concepts.

How can scientists help to address some of the misconceptions? Your audience’s existing framework must

be made to seem inadequate. This allows your audience to create

analytical leverage to hoist old understanding out.

All misconceptions are “sense-making” activities and are not just crude ignorance.

Historical understandings. Ideas themselves are only “alive” when

people hold them as valid. (my “Fahrenheit 451” theory)

Why focus on scientific understanding among the general public? Audience?

Why focus on scientific understanding among the general public? Three distinct cultural movements exist

currently in America currently:science / nonscience / antiscience

(examples?)positive / neutral / negative

Public funding of scientific research requires public understanding of scientific findings and rationales. (SCSC / Hubble space telescope/ Beyond Einstein project)

Final questions

How does anybody ever learn anything?Nothing happens immediately…

What is the cost of doing this?Conceptual selectivity

Isn’t this awfully time consuming? Yes

Q&A

Recommended:Franknoi, Astronomy Education: A

Selective Bibliography (1998). (www.astrosociety.org/education/resources/educ_bib.html).

Sadler, Astronomy’s Conceptual Hierarchy (via ASP)

Neil Comins, Heavenly Errors

Claudine Kavanagh

[email protected] (Kavanagh, Agan, Sneider) Learning

about Phases of the Moon and Eclipses: A Guide for Teachers and Curriculum Developers. Astronomy Education Review

(Kavanagh, Sneider) Learning about Gravity: A Guide for Teachers and Curriculum Developers. (coming soon)

Groups

Moon (phases, etc.) – Claudine (Phil 3) / Cass

Solar System Scale – Marilyn / Jackie Seasons – Christine Lunar Exploration – Phil Plait (1) Mars – Sheri Solar System / Galaxies / the

Universe – Phil Sadler (2) Other – will divide into other groups