The Quest for the Artificial Pancreas

44
The Quest for the Artificial Pancreas Clinical and Engineering Studies Francis J. Doyle III Department of Chemical Engineering Biomolecular Science and Engineering Program Institute for Collaborative Biotechnologies UC, Santa Barbara UIUC Control & Modeling in Biomedical Systems Symposium, April 22, 2010

Transcript of The Quest for the Artificial Pancreas

Page 1: The Quest for the Artificial Pancreas

The Quest for the Artificial Pancreas Clinical and Engineering Studies

Francis J. Doyle IIIDepartment of Chemical Engineering

Biomolecular Science and Engineering ProgramInstitute for Collaborative Biotechnologies

UC, Santa Barbara

UIUC Control & Modeling in Biomedical Systems Symposium, April 22, 2010

Page 2: The Quest for the Artificial Pancreas

Artificial Organs

• pancreas

Controlled Drug Delivery

• anesthesia• pancreas

• heart

• kidney

anesthesia

• blood pressure

• analgesia

• limbs

• cochlear implant

ti l th i

• HIV

• cancer

bl d l• retinal prosthesis

• proprioception system

• blood glucose

Page 3: The Quest for the Artificial Pancreas

Controlled Drug Delivery

• Dosing of a therapeutic agent is dynamicC t t d li ti– Constant delivery over time

– Cyclic or pulsatile or biphasic

– Triggered by environment– Triggered by environment

• Design of novel biomaterials to achieve• Design of novel biomaterials to achieve optimal dosing is active area of research

• Control and dynamic systems approach– Optimized design of a polymer (e.g., hydrogel)

[Brannon-Peppas, 1997]

p g p y ( g , y g )

– Algorithmic optimization of delivery device

Page 4: The Quest for the Artificial Pancreas

Diabetes Mellitus• World’s most common and costly disease

• About one in every 400 to 600 children and adolescents has type 1 y ypdiabetes mellitus (T1DM)

National Diabetes Fact Sheet, 2005, Centers for Disease Control and Prevention

• Complications of T1DM reduce life expectancy by ~15 yearsComplications of T1DM reduce life expectancy by 15 years through micro- and macro-vascular disease– Heart disease and stroke– Blindness

Kid di– Kidney disease– Nervous system disease

• Evidence that intensive insulin therapy (IIT) reduces complicationsEvidence that intensive insulin therapy (IIT) reduces complicationsDiabetes Control and Complications Trial Research Group, 1993

• Increased hypoglycemic events with IITDi b t C t l d C li ti T i l R h G 1993Diabetes Control and Complications Trial Research Group, 1993

Page 5: The Quest for the Artificial Pancreas

The Cost of Diabetes

(billions of $)

Costs of Diabetes

[ADA 2003]

• Complications– Heart disease and strokeHeart disease and stroke– High blood pressure– Blindness– Kidney disease– Kidney disease– Nervous system disease

Page 6: The Quest for the Artificial Pancreas

Glucose Homeostasis

Page 7: The Quest for the Artificial Pancreas

Artificial Pancreas in the News

Endocrine News, 2009

Diabetes Tech. Ther., 2009

Page 8: The Quest for the Artificial Pancreas

(i) Automatic Control

The Glucose – Insulin “Loop”

?(i) Automatic Control

(iii) Efficient Solution

(ii) Day‐to‐day Control?

Glucose InsulinDeliveryMeasurement Delivery

Page 9: The Quest for the Artificial Pancreas

Normalization of Glycemia

Healthy Individual (MD) Optimized Type 1 Patient

Figure 1 Twenty four hour continuous g lucose t racing o f a subject without diabetes. This isthe level of glucose regulation we aim for in our deve lopment of a closed-loop controller for

Figure 12 Twenty four hour continuous glucose tracing for a subject with type 1 diabetes mellitus after correcting basal and bolus insulin profiles. Note elimination of glucose

an artificial pancreas. Unpublished data from NIH funded study (R01 -DK068706, R01-DK068663).

excursions, hyper- and hypoglycemia.Unpublished data from NIH funded study (R01-DK068706, R01-DK068663).

Page 10: The Quest for the Artificial Pancreas

Sampled Data Sampled Data –– Blood GlucoseBlood Glucose

Page 11: The Quest for the Artificial Pancreas

UCSB/Sansum Approach

Feedback control algorithmCore insulin delivery algorithm

Ellingsen et al., 2009, J. Diabetes Sci. Tech.; Percival et al., submitted, 2009

Hypoglycemia predictionAlarms and pump shut‐off

Dassau et al., 2008, Diabetes

Meal detectionAugment control algorithm

Dassau et al., 2008, Diabetes Care

Iterative learning controlAccount for intra‐subject variations

Zisser et al 2005 Diabetes Technol Ther ; Wang et al 2009 IEEE Trans Biomed Eng 2009

Dassau et al., 2008, Diabetes Care

Hardware‐in‐the‐loop trialsTesting communication protocols of off‐the‐shelf devices

Zisser et al., 2005 Diabetes Technol. Ther.; Wang et al., 2009, IEEE Trans Biomed Eng, 2009

Dassau et al 2009 Diabetes Technol TherDassau et al., 2009, Diabetes Technol . Ther

Page 12: The Quest for the Artificial Pancreas

Real-time Glucose Measurement

Source: Medtronic DiabetesSource: DexCom,Inc.

Page 13: The Quest for the Artificial Pancreas

Continuous Subcutaneous Insulin Infusion (CSII)

http://www.endotext.org/diabetes

Page 14: The Quest for the Artificial Pancreas

APS Platform for Device Integration

Artificial Pancreas System

Page 15: The Quest for the Artificial Pancreas

Artificial Pancreas (Artificial Pancreas (ββ--cell) Software cell) Software

Human Machine Interface

Sensor & Capillary

Rate or amountCapillarymeasurements

Deliveredinsulin

Insulin delivery

Event log

Physician override

Capillary BG

Page 16: The Quest for the Artificial Pancreas

Artificial Pancreas Software Artificial Pancreas Software 

Clinical Sites with access to the APS:

SDRI / UCSBSDRI / UCSBStanford Medical SchoolBarbara Davis Center 

fUniversity of VirginiaUniversity of Padova, ItalyUniversity of Montpellier, FranceSchneider Children's Medical Center of Israel , Israel…

Dassau et al., 2008, "Modular Artificial β‐Cell System: A Prototype for Clinical Research “, J Diabetes Sci Technol 2(5), 863‐872

UCSB/Sansum APS ©Artificial Pancreas Software

β y ypDassau & Zisser et al., 2009, “Sansum / UCSB Artificial Pancreas Software (APS)”, Food and Drug Administration Master File,( MAF‐ 1625)

Page 17: The Quest for the Artificial Pancreas

Hardware-in-the-Loop Testing

• A complete artificial β-cell system testing platform, allowing:p , g

Systematic analysisComponent Verification and ValidationComplete system V&VPnP for in silico patientsPnP for in silico patientsPnP for control algorithms

• Realistic virtual clinical trial

Page 18: The Quest for the Artificial Pancreas

Model-Based Control Approach for Diabetes[Parker, Peppas, Doyle III, IEEE Trans Biomed. Eng. 1999]

Model-basedAlgorithmD i d

Controller Patient

AlgorithmDesiredGlucose Level GlucoseInsulin

-

ModelKalman Filter -

UpdateFilter

Compartmental Model

Key tenet of Robust Control Theory:Key tenet of Robust Control Theory:Achievable performance is directly tied to model accuracy

Page 19: The Quest for the Artificial Pancreas

Moving Horizon Concept of MPC

kpast future

ktarget glucose value

predicted glucose trend

glucose measurements

k+pk+mk+1

projected insulin delivery

k+pk+m ......k+1

time

Page 20: The Quest for the Artificial Pancreas

Individualized Algorithm: Subject Model

300 YSI value (mg/dL)

250

g/dL

)

Sensor value(mg/dL)

200

cose

(mg

BOLUS

150Glu

c

1000 100 200 300 400

Time (min)MEAL Time (min)MEAL

Page 21: The Quest for the Artificial Pancreas

Individualized Algorithm: Subject Model

lagged values of blood sugar (2-3)

lagged values of insulin delivered (1-2)

lagged values of CHO consumed (4-5)

Typical subject model has ~8 coefficients

Page 22: The Quest for the Artificial Pancreas

Algorithm Engineering MPC for Diabetes

“Traditional” MPC has been employed in petroleum• Traditional MPC has been employed in petroleum refineries for ~4 decades

• Application to T1DM requires algorithm customization

• UCSB/Sansum innovations:Discrete event disturbance estimation (i e meals)– Discrete event disturbance estimation (i.e., meals)

– Efficient programming implementation (mpMPC)

– Safety constraints (Insulin-on-Board)y ( )

Page 23: The Quest for the Artificial Pancreas

Multi-Parametric Programming Implementation[Percival et al., AIChE, 2008]

• Biomedical devices are subject to stringent FDA regulation

Limitations on on line optimization

[ , , ]

– Limitations on on-line optimization– Prior risk analysis mandatory

• MPC can be transformed into a multi-parametric program (mpMPC)parametric program (mpMPC)

– Offline optimization over state-space region• Lookup table of optimal control laws

– Online optimization• Determine critical region in state-space• Evaluate an affine function of the state vector

• In silico response to an announced 60 g CHO meal 00:00 04:00 08:00 12:00

50

100

150

200

250

Glu

cose

(mg/

dL)

Closed-loopSetpointDesired rangePredicted outputOpen-loop

– Bolus-style controller response– Hyperglycemia and hypoglycemia avoided– Euglycemia restored in under three hours– Variations in the state vector change the

critical region used to evaluate the control00:00 04:00 08:00 12:000

2

4

6

8

Insu

lin d

eliv

ery

(U/h

)

Insulin deliveredBasal setpointPredicted moves

200critical region used to evaluate the control law

00:00 04:00 08:00 12:000

100

200

Reg

ion

Time

Page 24: The Quest for the Artificial Pancreas

Safety Constraints – Insulin on Board (IOB)

Residual insulin (IOB) remains active for up to 8 hours

Clinicians and bolus “wizards” factor in IOB

Constraint formulationChoose IOB curve

Time–Action Profile Of Insulin Glargine Following Subcutaneous Injection. Glycemic clamp study. [Taken from Lepore et al Diabetes 49:2142 2148 2000]

Calculate IOBAllow insulin for correctionAllow insulin for mealsC t i t l l ith 60

80

100

]

2 hour curve3 hour curve4 hour curve5 hour curve6 hour curve

al, Diabetes 49:2142–2148, 2000]

Constrain control algorithm

0 1 2 3 4 5 6 7 80

20

40

60

IOB

[%]

7 hour curve8 hour curve

0 1 2 3 4 5 6 7 8Time [hr]

Walsh and Roberts, Pumping Insulin, 2006Zisser et al., Diabetes TechnolTher, 2008Ellingsen et al., J Diabetes SciTechnol, 2009

Page 25: The Quest for the Artificial Pancreas

Clinical Evaluation

FDA requirementsInvestigational Device Exemption (IDE)Detailed proof of safety of protocol/softwareMaster file already acknowledged for APS

Phase I – in silico trialUVa-Padova simulation platform300 virtual subjectsMaster file already acknowledgedMaster file already acknowledgedEvaluate same clinical protocol

Phase II – human subject studiesInitial studies underway in IsraelPlanned studies in Santa Barbara in late 2009Large international trial (multi site) planned for 2010Large international trial (multi-site) planned for 2010

Page 26: The Quest for the Artificial Pancreas

In Silico Trial Results[100 adult subjects][100 adult subjects]

Page 27: The Quest for the Artificial Pancreas

Clinical Trial Results[Schneider Children’s Medical Center of Israel, Tel Aviv]

Page 28: The Quest for the Artificial Pancreas

Clinical Trial Results Summary

Starting point in Upper B-zoneTime in range (80 -180 mg/dL): ~70%g ( g )No hypoglycemia episodes CVGA : all in A+B zone

(Including meal time)( g )

Page 29: The Quest for the Artificial Pancreas

( ) ( )1

( )P M

rk j k j j k j jJ u y y Q u u R

+ + += − + −∑ ∑( ) ( )

( )

1 0

1 1

( )

. .

, 1,

k j k j j k j s jj j

k j k j k j

J u y y Q u u R

s t

x f x u j P

+ + += =

+ + − + −

+

= ∀ =

∑ ∑

( )min max

, 1,

1,

1

k j k j k j

k j

l k

y g x u j P

u u u j M

u u u j M

+ + +

+

= ∀ =

≤ ≤ ∀ =

Δ ≤ Δ ≤ Δ ∀ =1,low k j upu u u j M+Δ ≤ Δ ≤ Δ ∀

Set-point MPC keeps the reference at a constant value that is the t t f th ti i titarget of the optimization

However, a precise reference is not consistent with medical practice

3

Page 30: The Quest for the Artificial Pancreas

( )1

( )P M

rangek j j k j s jJ u y Q u u R

+ += + −∑ ∑ ( )

( )

1 0

1 1

. .

, 1,

0 1

j j

k j k j k j

s t

y f y u j P

= =

+ + − + −= ∀ =Zone-MPC optimizes future predictions into a predefined range

max0 1,k ju u j M+≤ ≤ ∀ = predefined range

Accounted cost

150

200

dL]

dynamics

/dL]

50

100

150

Glu

cose

[mg/

d Permitted zone

ucos

e [m

g/

100 150 200 2500

4Sampling time

Glu

Page 31: The Quest for the Artificial Pancreas

injection treatment

150

200

250

se [m

g/dL

][m

g/dL

]

200 400 600 800 1000 1200 1400

50

100

Glu

co

Time [min]Glu

cose

[

101

102

[U/h

r] [U

/h]

Bolus

200 400 600 800 1000 1200 140010

-1

100

Insu

lin

Ti [ i ]

Insu

lin

7am 1pm 8pm Time [min]

8Time of day[h]

7am 1pm 8pm

Page 32: The Quest for the Artificial Pancreas

injection treatment Zone-MPC range: 80 to 140 [mg/dL]

150

200

250

se [m

g/dL

][m

g/dL

]

200 400 600 800 1000 1200 1400

50

100

Glu

co

Time [min]Glu

cose

[

101

102

[U/h

r] [U

/h]

200 400 600 800 1000 1200 140010

-1

100

Insu

lin

Ti [ i ]

Insu

lin

7am 1pm 8pm Time [min]

8Time of day[h]

7am 1pm 8pm

Page 33: The Quest for the Artificial Pancreas

injection treatment Zone-MPC range: 80 to 140 [mg/dL]

Zone-MPC range: 100 to 120 [mg/dL]

150

200

250

se [m

g/dL

][m

g/dL

]

g [ g/ ]

200 400 600 800 1000 1200 1400

50

100

Glu

co

Time [min]Glu

cose

[

101

102

[U/h

r] [U

/h]

200 400 600 800 1000 1200 140010

-1

100

Insu

lin

Ti [ i ]

Insu

lin

7am 1pm 8pm Time [min]

8Time of day[h]

7am 1pm 8pm

Page 34: The Quest for the Artificial Pancreas

injection treatment Zone-MPC range: 80 to 140 [mg/dL]

MPC set-point: 110 [mg/dL]Zone-MPC range: 100 to 120 [mg/dL]

150

200

250

se [m

g/dL

]

p [ g/ ]g [ g/ ]

[mg/

dL]

200 400 600 800 1000 1200 1400

50

100

Glu

co

Time [min]Glu

cose

[

101

102

[U/h

r] [U

/h]

200 400 600 800 1000 1200 140010

-1

100

Insu

lin

Ti [ i ]

Insu

lin

7am 1pm 8pm Time [min]

8The tighter the range becomes, the higher the variability in control moves

Time of day[h]7am 1pm 8pm

Page 35: The Quest for the Artificial Pancreas

Meal Controller % of time % in zone A Low blood High blood mode in range

between 70 and 180 mg/dL

and B of the control

variability grid analysis

glucose index (LBGI )

gglucose index

(HBGI )

g g yUnannounced Zone 80-140

mg/dL56 100 0 8.1

Zone 100-120 mg/dL

66 100 0 6.3g

Set-point 110 mg/dL

68 100 0.1 5.6

Announced Zone 80-140 mg/dL

72 90 0.2 5.1g

Zone 100-120 mg/dL

79 80 0.5 3.8

Set-point 110 mg/dL

82 80 0.6 3.3g

“Optimal” injection treatment 50 90 0 9.2

Page 36: The Quest for the Artificial Pancreas

Minimum and maximum envelope -- One STD envelope - Average

Injection treatment

Zone-MPC with 80 t 140 range: 80 to 140

[mg/dL]; Unannounced

Zone-MPC with range: 80 to 140 [mg/dL]; Announced

11Time [h]

Page 37: The Quest for the Artificial Pancreas

Looking Towards the Future:Looking Towards the Future:

S f t ISafety Issues

Human Variability

Page 38: The Quest for the Artificial Pancreas

Hypoglycemia Prediction• Intensive insulin therapy has an 

inherent risk of nocturnal hypoglycemia Begins alarming at

11:39 PM withHad been alarming since 2:39 AM when glucose was 63– No response to any alarm

– Threshold alarms are insufficient 

11:39 PM with glucose of 64 mg/dL.

AM when glucose was 63 mg/dL, lowest 50 mg/dL.

Prediction of pending hypoglycemic event & pump suspension 

Seizure

DirecNet

Dassau et al. 68th ADA meeting San Francisco CA, 06.08.08

Page 39: The Quest for the Artificial Pancreas

Hypoglycemic Predictive Algorithms[collaboration with Stanford, RPI]

SP: Statistical linear prediction: multiple empirical statistical models are used to

APSempirical, statistical models are used to estimate future blood glucose values and their error bounds

KF: Kalman filter to estimate glucose and its t f h (ROC) hi h th d

HIIR LPSP KF NLArate-of-change (ROC), which are then used to predict future glucose levels

HIIR: Hybrid Infinite Impulse Response filter that generates glucose predictions using Threshold g g p gprevious CGM data

NLA: Numerical logical algorithm that predicts by numerical estimation of the ROC and a set of logical expressions

VotingAlarm

of logical expressions

LP: Linear projection based on a short term linear extrapolation of the glucose trend

Alarm

Page 40: The Quest for the Artificial Pancreas

Results – Hypoglycemia Prediction

140

160

Calibrated SensorFreeStyle Measurements

120

dL)

KF AlarmSP AlarmHIIR AlarmNLA AlarmLinear Prediction Alarm(2/5) ~50 min, ~115 mg/dL

100

easu

rem

ent (

mg/

d

(5/5) ~35 min, ~100 mg/dL

(3/5) ~45 min, ~108 mg/dL

60

80

Me

10 11 12 1340

60

Time (24 hour)

Page 41: The Quest for the Artificial Pancreas

Variability in the Human Body: Stress Effects

Clinical evaluation of the effect of Prednisone[Bevier et al 2007][Bevier, et al., 2007]

Page 42: The Quest for the Artificial Pancreas

SummaryElectrochemical sensor GluMetrics fluorescent  sensorProgress has been made by several companies in developing fluorescent glucose sensors

Pieces of the Puzzle Are Coming Together

Promising technologies:– Enhanced model identification protocol

“…two independent and redundant sensor systems operating simultaneously….”K l ki A J “C W R ll Cl th L ” Di b t T h l d Th 11 S l 113 119 (2009)Enhanced model identification protocol 

– Programming Implementation (mpMPC)

– Safety Constraints (Insulin‐on‐Board)

Kowalski A J “Can We Really Close the Loop …”  Diabetes Technol. and Ther., 11 Suppl.  113‐119 (2009) 

Many challenges still remain:Many challenges still remain:– Patient model identification

– Reliable sensors & number of sensors

– Transport and site issuesTransport and site issues

– Patient variability (incl. stress, activity, etc.)

– Regulatory issues

Next– More clinical trials  4242

Page 43: The Quest for the Artificial Pancreas

Upcoming: JDRF MultiUpcoming: JDRF Multi‐‐Center Trial of Center Trial of ControlControl‐‐toto‐‐RangeRangegg

StanfordStanfordColoradoColoradoMayo ClinicMayo Clinic

MontpellierMontpellierPadovaPadova

StanfordStanfordSanta BarbaraSanta Barbara VirginiaVirginia

IsraelIsrael

All centers will use in silico testing and modular design of the control algorithm including: Hardware interface (the APS) developed in Santa Barbara; Safety Supervision Module 

developed at UVA / UCSB, and Range Correction Module developed in Padova.

Page 44: The Quest for the Artificial Pancreas

Acknowledgments

• Bob Parker [Pitt] • Camelia Owens [FDA] • Dr Cesar Palerm [Medtronic]• Dr. Cesar Palerm [Medtronic]• Dr. Eyal Dassau• Matt Percival• Rachel Gillis [Eastman]• Dr Youqing Wang [Beijing Univ ]• Dr. Youqing Wang [Beijing Univ.]• Rebecca Harvey• Dr. Benyamin Grosman• Christian Ellingsen

ll bCollaborators: Lois Jovanovic (Sansum), Howard Zisser (Sansum), Dale Seborg (UCSB)