The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

20
The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill 1 , M. Pagani 1 , P. Bird 2 , C. Kreemer 3 , D. Monelli 4 , D. Jackson 2 , Y. Kagan 2 , R. Stein 5 , Powell Working Group 1 Global Earthquake Model Facility, Pavia 2 UCLA, Los Angeles, CA 3 U. Nevada, Reno, NV 4 Global Earthquake Model Facility, ETH, Zurich 5 United States Geological Survey,  Menlo Park, CA

description

The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Transcript of The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Page 1: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

The Potential for a Uniform, Testable, Global Seismic Hazard Model

Graeme. Weatherill1, M. Pagani1, P. Bird2, C. Kreemer3, D. Monelli4, D. Jackson2, Y. Kagan2, R. Stein5, Powell Working Group

1Global Earthquake Model Facility, Pavia2UCLA, Los Angeles, CA3U. Nevada, Reno, NV4Global Earthquake Model Facility, ETH, Zurich5United States Geological Survey,  Menlo Park, CA

Page 2: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

A Globally “Uniform” 

Seismic Hazard Model 

(GEM) Global Component Datasets

Testing & Evaluation

Spatially homogenous

Scientific Innovation

High Resolution (0.1˚ ×0.1˚)

Transparent & Replicable

Page 3: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Global Earthquake Activity Rate (GEAR) Model

‣ A hybrid strain/smoothed seismicity approach

Smoothed Seismicity

Global Strain

Earthquake Recurrence Model 

Smoothing Process

Depth/ Mechanism

Earthquake Recurrence Model

• Branches are not completely independent!

• Strain may help provide long term stationarity

Depth/ Mechanism Testing & 

Evaluation

Page 4: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Global Smoothed Seismicity Model

Global Seismicity Forecast (end‐2012) (Kagan & Jackson, 2010)

Page 5: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

From Strain Rate to Seismicity Rate – A Global “SHIFT”‣ Seismic Hazard inferred from Tectonics “SHIFT” (Bird & Liu, 2007; 

Bird et al. 2010)

‣ Seismic Moment Rate (M) from Strain Rate:

Incompressible: 

At the ground surface: 

Ordered: 

<cz> =  Coupled Depth (km)μ = Shear Modulus (GPa)

Coupled Seismogenic Volume

A

Page 6: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

From Strain Rate to Seismicity Rate – A Global “SHIFT”

‣ Model parameters specific to tectonic region class (Bird & Kagan, 2004):‒ Coupled seismogenic thickness (<cz>)‒ exponent (β)  & corner magnitude (mc)

Intraplate (IPL)

Continental Rift Boundary (CRB)

Continental Transform Fault (CTF) 

Continental Convergent Boundary (CCB)

Ocean Spreading Ridge (OSR)

Ocean Transform Fault (OTF)

Oceanic Convergent Boundary (OCB)

Subduction

Page 7: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Seismicity Rate from Strain Rate (SHIFT)

Page 8: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Hybrid (Strain + Smoothed Seismicity) Model

Weighted with Smoothed Seismicity (0.625) and Strain (0.375)  

Page 9: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

From GEAR to Global Hazard …

Seismic Hazard Input Model

Global Activity Rate Model

Source Geometry

Magnitude Scaling Relation

Depth Distribution

Focal Mechanism

Upper Bound Magnitude Ground Motion 

Prediction Equations (GMPE)

GMPE Logic Tree

Page 10: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Probability‐Based Upper Bound on Magnitude

Upper Bound Magnitude at Annual Probability of Exceedence ≥ 10‐6

Page 11: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Ground Motion Prediction Equations (GMPEs)

Active Shallow Crust

Subduction

Stable Continental 

Akkar & Bommer (2010)

Chiou & Youngs (2008)

Zhao et al. (2006)

Abrahamson et al. (2013)

Atkinson & Boore (2003)

Zhao et al. (2006)

Atkinson & Boore (2006)

Silva et al (2002)

Pezeshk et al. (2011)

Global Recommendations from GEM GMPE Global Component

Page 12: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Ground Motion Prediction Equations (GMPEs)

Active Shallow Crust

Subduction

Stable Continental 

Akkar & Bommer (2010)

Chiou & Youngs (2008)

Zhao et al. (2006)

Abrahamson et al. (2013)

Atkinson & Boore (2003)

Zhao et al. (2006)

Atkinson & Boore (2006)

Silva et al (2002)

Pezeshk et al. (2011)

Global Recommendations from GEM GMPE Global Component

Page 13: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Ground Motion Prediction Equations (GMPEs)

Active Shallow Crust

Subduction

Stable Continental 

Akkar & Bommer (2010)

Chiou & Youngs (2008)

Zhao et al. (2006)

Abrahamson et al. (2013)

Atkinson & Boore (2003)

Zhao et al. (2006)

Atkinson & Boore (2006)

Silva et al (2002)

Pezeshk et al. (2011)

Global Recommendations from GEM GMPE Global Component

Page 14: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

A Globally Uniform Seismic Hazard Map …

Peak Ground Acceleration (PGA) with a 10 % Probability of Being Exceeded in 50 years

Page 15: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

… and model!

Peak Ground Acceleration (PGA) with a 2 % Probability of Being Exceeded in 50 years

Page 16: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

… and model!

1‐second Spectral Acceleration with a 10 % Probability of Being Exceeded in 50 years

Page 17: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Where to develop? – Earthquake Catalogues

‣ Assimilate highest quality historical and instrumental catalogues‣ Account for completeness

ISC Reviewed Bulletin (M > 3)

Page 18: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Where to develop? – Subduction Sources

Faulted Earth/USGS Subduction Sources (Wallace et al., 2012)

Page 19: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Where to develop? ‐ Intraplate Regions

‣ Strain cannot resolve; catalogues too short!‣ Active research from the Powell Working Group 

Stable Continental Region Polygons (EPRI, 1994)Earthquakes from Schulte & Mooney (2005) 

Page 20: The Potential for a Uniform, Testable, Global Seismic Hazard Model Graeme. Weatherill

Moving From Global to Regional

‣ Experimental & Provisional

‣ Missing information available at regional scales:‒ Detailed information on fault geology and activity ‒ Time‐dependence ‒ Catalogues with lower completeness magnitudes

‣ To compare global and local, consistency is desirable:‒ Calculation Implementation‒ Testing & Evaluation