The physics of galaxy formation

86
The physics of galaxy formation P. Monaco, University of Trieste & INAF-OATs PhD School of Astrophysics Francesco Lucchin June 2013

Transcript of The physics of galaxy formation

Page 1: The physics of galaxy formation

The physics of galaxy formation

P. Monaco, University of Trieste & INAF-OATs

PhD School of Astrophysics Francesco Lucchin

June 2013

Page 2: The physics of galaxy formation

LambdaCDM model

Cosmicmicrowavebackground

Large-scale structure

Inter-galactic medium

Galaxy clusters &

gravitational lensing

Distant supernovae

Page 3: The physics of galaxy formation

Cosmology

gravitational

collapse

Galaxies

“gastrophysics”

z=5.7 (t=1.0 Gyr)z=5.7 (t=1.0 Gyr)

z=1.4 (t=4.7 Gyr)z=1.4 (t=4.7 Gyr)

z=0 (t=13.6 Gyr)z=0 (t=13.6 Gyr)

Springel et al. 2006Springel et al. 2006

Dark matter

Page 4: The physics of galaxy formation

Theoretical tools(within the LambdaCDM cosmogony)

Semi-analytic models

N-body + hydrodynamical simulations

Halo Occupation Distribution models

Abundance matching models

Page 5: The physics of galaxy formation

The physics of galaxy formation

1. Dark matter

Page 6: The physics of galaxy formation
Page 7: The physics of galaxy formation

ρ(r )=ρc (z)const

cx(1+cx)2

c≡rhr s, x≡ r

rh, cx= r

r sρ(rh)=200ρc (z )

Density profile:Navarro, Frenk & White (1997, ApJ 490, 493)

Dark-matter halos

Page 8: The physics of galaxy formation

Mass function of DM halos

Warren et al. (2006, ApJ 646, 881)

Page 9: The physics of galaxy formation

Lacey & Cole (1993, MNRAS 262, 627)

Merger trees

Page 10: The physics of galaxy formation

●dynamical friction●tidal stripping●tidal shocks/harrassment●orbit decay (merging)●binary mergers

Page 11: The physics of galaxy formation

Dynamicalfriction

ddtvorb=

−4G 2 ln M sat host v orbv orbvorb

3

tmerge=1.17f dfln

orb

M host

M sat

Boylan-Kolchin, Ma & Quataert (2008, MNRAS, 383, 93)

Coulomb logarithm

Parameter Orbital parameter

Page 12: The physics of galaxy formation

The physics of galaxy formation

1. Dark matter

2. Shock heating and cooling

Page 13: The physics of galaxy formation

Gas infall into DM halos

vinfall∼V c=√GM /R

T igm∼103−104K

vinfall≫cs

=> shock heating to the virial T

Page 14: The physics of galaxy formation

Massive halos (>1012 Msun

):cooling is slower than infallgas is shock- heated at T

vir

and is in roughly hydrostatic equilibrium

Small halos (<1011 Msun

):cooling is faster than infallcold gas falls directly to the centrethe shock energy is quickly dissipated

White & Frenk (1991, ApJ 379, 52), Keres et al. (2005, MNRAS 363, 2), Dekel & Birnboim (2006, MNRAS 368, 2)

Shock heating and cold flows

t coolt dyn t coolt dyn

Page 15: The physics of galaxy formation

Galaxy clusters show such hot gas

Page 16: The physics of galaxy formation

Hot baryons in DM halos

NFW profile for the total mass

halo concentration

hydrostatic equilibrium

polytropic equation of state (γp~1.2)

solution for the density

=crit c

r / r s1r /r s2

c=r h/r s

dPg

dr=−G

g M r r 2

P g∝g p

g r =g0 [1−a1− ln 1r /r sr /r s ]

1/ p−1

a=aT g0 /T vir , p , cKomatsu & Seljak (2001, MNRAS 327, 1353)

Page 17: The physics of galaxy formation

Radiative cooling of an optically thin plasma: primordial composition

log T (K)

L=n ine , T

t cool=∣d lnTdt ∣

−1

=E th

L= 3nkT

2ne ni

Katz, Weinberg & Hernquist (1996, ApJS, 105, 19)

Assumptions:● collisional ionisation equilibrium● thermal distribution of e- and ions● no external ionising radiation

Page 18: The physics of galaxy formation

z=2, average density 1000 times average

Radiative cooling in presence of UV heating

Page 19: The physics of galaxy formation

Radiative cooling of an optically thin plasma: solar abundance ratios

Log T (K)

(1993, ApJS, 88, 253)

metal lines dominate cooling

Page 20: The physics of galaxy formation

The "classical" cooling model in SAMs

The cooling radius:

Bertschinger's (1989) self-similar solutions:

The "classical" cooling model (White & Frenk 1991):

Total cooling time of a mass element:

The classical model implies that:

r cool t : t cool r =t

M cool∝4g r cool r cool2 dr cool

dt

M cool=4 g rcool r cool2 drcool

dt

t total :T t total≪T t=0

t cool r =t total r

Page 21: The physics of galaxy formation

The physics of galaxy formation

1. Dark matter

2. Shock heating and cooling

3. Star formation

Page 22: The physics of galaxy formation

Star formation and Jeans mass

E tot = U+Ω = 32kT

M J

μm p

−GM J

2

R=0

M J∼15.4( T1 K )3/2

( n

1 cm−3 )−1 /2

M sun

Warm phase

Cold phase

Molecular phase

Page 23: The physics of galaxy formation

Cooling below 104 K

Maio et al. (2007, MNRAS 379, 963)

fraction of ions that are metals

Page 24: The physics of galaxy formation

Star formation

Kennicutt (1998, ApJ 498, 541)

Page 25: The physics of galaxy formation

DATA:

THINGS (VLA): 21 cm -> HI

BIMA-SONG + HERACLES: CO → H2

SINGS (Spitzer): 24 μm

GALEX: UV

24 μm + UV -> SFR

resolution: 750 pc, 5.2 km/s

Page 26: The physics of galaxy formation

atomic molecular

total

The Kennicutt relation(s) for spirals

Bigiel et al. (2008, AJ 136, 2846)

Page 27: The physics of galaxy formation
Page 28: The physics of galaxy formation

Two relations at high redshift?

Daddi et al. (2010, ApJ 714, L118)

Page 29: The physics of galaxy formation

The physics of galaxy formation

1. Dark matter

2. Shock heating and cooling

3. Star formation

4. Energetic feedback

Page 30: The physics of galaxy formation

Feedback sources

Supernova explosions

UV from massive stars

Star winds

AGN

1051 erg each >8 Msun

star + type Iaup to ~1050 erg

each >10 Msun

star

up to ~1050 erg each >10 M

sun star

up to ~1047 erg s-1 for ~107 yr

Page 31: The physics of galaxy formation

SuperNova Remnant (SNR)

(1) Free expansion

(2) Adiabatic stage

(3) Pressure-driven snowplow stage

(4) Momentum conserving stage

Page 32: The physics of galaxy formation

SN energy feedback

Energy is injected through blastwaves

The ISM is heated in the adiabatic stage

The ISM is cooled if the blast goes into the “snowplough” stage

McKee & Ostriker 1977Cioffi, McKee & Berschinger 1988Ostriker & McKee 1988

Page 33: The physics of galaxy formation

The efficiency of feedback

It is determined by the energy radiated away before the blast stops propagating.

Blasts stop by:

merging with the ISM

blowing out of the galaxy

merging with other blasts

v s=cs0

R s=H eff

Q bubbles=1

Page 34: The physics of galaxy formation

Feedback in DM halos

thermalenergy

kineticenergy

hot/cold gas metals

Page 35: The physics of galaxy formation

Feedback in DM halos

galactic fountain

outflow

Page 36: The physics of galaxy formation

Simple model of feedback

The properties of dwarf galaxies require that gas is efficiently removed from small halos.

Condition for removal:

Energy from (tII) SNe:

Star formation:

Critical Vc:

E inj=ϵ E aval≥M gasV c2

(Dekel & Silk 1986)

Eaval=E SN SN M star

M star=M gas / t ff

V c≈100km /sParameters: E

SN ( E

51), η

SN (IMF), ε, τ (computed)

Page 37: The physics of galaxy formation

A simple energetic argument

ϵE SN M star

M star , SN

=M outflow vSN2

vSN≃√ϵ 750 km /sif

M outflow=M star

Page 38: The physics of galaxy formation

The physics of galaxy formation

1. Dark matter

2. Shock heating and cooling

3. Star formation

4. Energetic feedback

5. Morphology

Page 39: The physics of galaxy formation
Page 40: The physics of galaxy formation

Angular momentum of halos

J = ∫V L

a3ax−a xcm ×v d3 x

J i= −a D ijk T jl I lk ∝ t1 /3M 5 /3

tidal tensor inertia tensorWhite (1984, ApJ 286, 38)

Page 41: The physics of galaxy formation

=∣E∣1 /2∣ J h∣

G M h5/2 ≃

V rot

V c

V c= GM h

r h

Spin parameter

Bett et al. (2007, MNRAS, 376 215)

Page 42: The physics of galaxy formation

Formation of discs

Dissipation of all random motions

Page 43: The physics of galaxy formation

The size of discs

Assuming that(1) a fraction m

d of the halo baryonic mass settles on the disc

(2) a fraction jd of the angular momentum is conserved

(3) the disc has an exponential profile(4) the disc has negligible mass

(5) the halo has a singular isothermal profile

Rd =G M h

3/2

2Vc∣E∣1/2 j dmd

Rd =1

2 j dmd r h

Mo, Mao & White (1998, MNRAS 295, 319)

r=0 exp − rRd

r∝r−2

Page 44: The physics of galaxy formation

Complications

(1) NFW halo

(2) disc mass not negligible

(3) adiabatic contraction of the DM halo

(4) central bulge

iterative solution!

GM r r=const

J d

M d

= j dmd J h

M h

J d = ∫0

rhV rot r rr 2 r dr

V rot2 =V dm

2 V d2V b

2

V d2=

G M d

Rd

y2 [ I 0 y K 0 y− I 1 y K 1 y ] , y= 12rRd

Page 45: The physics of galaxy formation

Galaxy mergers

Page 46: The physics of galaxy formation

Bar instabilityThin discs are unstable to bar formation, unless they are surrounded by a DM halo (Ostriker & Peebles 1973)

≡V d Rd

G M d

limit~1

limit :

Stability condition:

(Efstathiou et al. 1982, Christodoudou et al. 1995)

disc is unstable to m=2 modes

Page 47: The physics of galaxy formation

Disc instability

Bournaud et al. (2008, A&A 486, 741)

2r=2V d2

r 2 V d

r

dV d

dr if V d~V c then ~2

V c

r

Q r≡cs

G gas

Q1 : disc is unstable to axisymmetric modes

Toomre criterion for a gas disc

Page 48: The physics of galaxy formation

Bar instability(secular evolution)

Mergers

pseudo-bulges

bulges/ellipticals

Kormeny & Kennicutt (2004, ARA&A 42, 603)

Page 49: The physics of galaxy formation

Morphology at high redshift

Förster Schreiber, N. M., et al. 2009 ApJ, 706, 1364

Page 50: The physics of galaxy formation

Problems in galaxy formation

1. Massive galaxies are red and dead

Page 51: The physics of galaxy formation

A problem with cooling flowsin Galaxy Clusters

Peterson & Fabian (2006)

X-ray observations of galaxy clusters allow us to estimate density and temperature, and then cooling time, of the hot gas.

Some clusters should be sites of strong cooling flows

Page 52: The physics of galaxy formation

...from cooling flow clustersto cool core clusters...

De Grandi & Molendi (2002, ApJ 567, 163)

Page 53: The physics of galaxy formation

Massive (cD) elliptical galaxies reside at the centre of galaxy clusters

Page 54: The physics of galaxy formation

Brinchmann et al. (2004, MNRAS 351, 1151)

Why are massive galaxies red & dead? sp

eci

fic s

tar

form

atio

n ra

te

stellar mass

The mass deposited into the galaxy is 10-1 or 10-2 times that suggested by the cooling flow

Page 55: The physics of galaxy formation

Why are massive ellipticals so old?

(proxy for stellar mass)Nelan et al. (2005, ApJ 632, 137)

Page 56: The physics of galaxy formation

A possible answer: AGN feedback

(proxy for stellar mass)

Every elliptical galaxy hosts a super-massive black hole at its centre

These black holes may be reactivated by the cooling gas

Ferrarese & Merritt 2000Gebhardt et al. 2000

Page 57: The physics of galaxy formation

AGN feedback in action?

Page 58: The physics of galaxy formation

Problems in galaxy formation

1. Massive galaxies are red and dead

2. The stellar mass function cuts at ~1011 Msun

Page 59: The physics of galaxy formation

Benson et al. (2003, ApJ 599, 38)

The luminosity function

stellar feedback

cooling time + AGN feedback

Page 60: The physics of galaxy formation

Constraints from abundance matching

Moster et al. (2010, ApJ 710, 903)

stellar feedbackcooling time + AGN feedback

Page 61: The physics of galaxy formation

Problems in galaxy formation

1. Massive galaxies are red and dead

2. The stellar mass function cuts at ~1011 Msun

3. Galaxies show several “downsizing” trends

Page 62: The physics of galaxy formation

The many manifestations of downsizing: Fontanot et al. (2009, MNRAS 397, 1176)

archaeological DS more massive galaxies host older stellar populations

star formation DS:the mass of the typical SF galaxy grows with z

stellar mass DS:at z≲1 the number density of smaller galaxies evolves faster

chemical DS:the metallicity of smaller galaxies evolves faster

chemo-archaeological DS:more massive ellipticals have higher [α/Fe] ratios

AGN DS:the number density of fainter AGN peaks at lower z

Page 63: The physics of galaxy formation

Archaeological downsizing

Gallazzi et al. (2005, MNRAS 362, 41)

Page 64: The physics of galaxy formation

Downsizing in star formation

Cowie et al. (1996, AJ 112, 839)

Page 65: The physics of galaxy formation

Chemo-archaeological downsizing

Trager et al. (2000, AJ 120, 165); Matteucci (1994, A&A 288, 57)

Page 66: The physics of galaxy formation

Downsizing in metallicity

Maiolino et al. (2008, A&A 488, 463)

Page 67: The physics of galaxy formation

Downsizing in nuclear activity

Brandt & Hasinger (2005, ARA&A 43, 827)

Page 68: The physics of galaxy formation

comparison of three models:Garching-De LuciaMorganaSomerville 08

(assumed error on mass: 0.25 dex)with observational estimates of stellar mass functions by

Panter+ 07, SDSSCole+ 01, 2MASSBell+ 03, 2MASS+SDSSBorch+ 06, COMBO17 PerezGonzalez+ 08, SpitzerBundy+ 06, DEEP2Drory+ 04, MUNICSDrory+ 05, FDF+GOODSFontana+ 06, GOODS-MUSICPozzetti+ 07, VVDSMarchesini+ 08, 3 samples

Stellar mass function

Fontanot et al. (2009)

Page 69: The physics of galaxy formation

10

-10

.5

10

.5-1

1

11-

11.5

11.5

-12

in L

og M

*

Log

Ste

llar

mas

s de

nsity

(M

sun M

pc-3)

Downsizing in stellar mass

Page 70: The physics of galaxy formation

first best-fit model

second best-fit model

Redshift intervals:3.4 < z < 4.5 (B-drop)

4.5 < z < 5.5 (V-drop)

5.5 < z < 6.5 (i-drop)

Lyman-break galaxies in a SAM

B-drop

i-drop

V-drop

Lo Faro et al. (2009, A&A 399, 827)

Page 71: The physics of galaxy formation

“Excess” galaxies

absolute UV magnitude: MUV

~-18

star formation rate: SFR~10 Msun

yr-1

apparent magnitude: z850

~27

stellar mass: M*~108-109 M

sun@z~6 to 109-1010 M

sun@z~4

bimodal metallicity: Z~solar and Z~0.25 solarhosted in halos of: M

h~1011-1012 M

sun

with circular velocities: Vc~120-250 km/s

Important contributors to the IGM pollution

Waiting for ALMA and JWST!

Page 72: The physics of galaxy formation

Problems in galaxy formation

1. Massive galaxies are red and dead

2. The stellar mass function cuts at ~1011 Msun

3. Galaxies show several “downsizing” trends

4. Growth of average SFR with z (Daddi)

Page 73: The physics of galaxy formation

The evolution of star formation rates

Log

aver

age

SFR

of g

alax

ies

(Msu

n yr

-1)

Fontanot et al. (2009)

Page 74: The physics of galaxy formation

Problems in galaxy formation

1. Massive galaxies are red and dead

2. The stellar mass function cuts at ~1011 Msun

3. Galaxies show several “downsizing” trends

4. Growth of average SFR with z (Daddi)

5. Surprises from the cool side of galaxies

Page 75: The physics of galaxy formation

Somerville et al. (2012, MNRAS 423, 1992)

Page 76: The physics of galaxy formation

Sub-mm number counts with GALFORM

Baugh et al. (2005, MNRAS 356, 1191)

Page 77: The physics of galaxy formation

Sub-mm number counts with MORGANA

with a standard Salpeter IMF

Fontanot et al. (2007, MNRAS 382, 903)

Page 78: The physics of galaxy formation

Predicted evolution of Far-IR LF

Lacey et al. (2010, MNRAS 405, 2) Somerville et al. (2012, MNRAS 423, 1992)

Page 79: The physics of galaxy formation

Herschel-PEP Far-IR LF

Gruppioni et al. (2013, MNRAS 432, 23)

Page 80: The physics of galaxy formation

Problems in galaxy formation

1. Massive galaxies are red and dead

2. The stellar mass function cuts at ~1011 Msun

3. Galaxies show several “downsizing” trends

4. Growth of average SFR with z (Daddi)

5. Surprises from the cool side of galaxies

6. Angular momentum loss in hydro simulations

Page 81: The physics of galaxy formation

bottom-up formation of DM halo+

overcooling (White & Rees 1978, MNRAS 183, 341)

+segregation of cooled baryons

+dynamical friction and tidal stripping

=angular momentum loss

Page 82: The physics of galaxy formation
Page 83: The physics of galaxy formation

The Aquila comparison project

Scannapieco et al. (2012, MNRAS 423, 1726)

Page 84: The physics of galaxy formation
Page 85: The physics of galaxy formation

A successful simulation of spiral galaxy

Murante et al., in preparation

Page 86: The physics of galaxy formation