The pathophysiology of type 2 diabetes

55
The pathophysiology of type 2 diabetes Jean GIRARD Institut Cochin Paris

description

The pathophysiology of type 2 diabetes. Jean GIRARD Institut Cochin Paris. Genetic factors. Insulin-resistance. Hyperinsulinemia. Acquired factors. Compensation. Normal glucose tolerance. Acquired factors. Genetic factors. Gluco-lipotoxicity. ß-cell deficiency. - PowerPoint PPT Presentation

Transcript of The pathophysiology of type 2 diabetes

Page 1: The pathophysiology of type 2 diabetes

The pathophysiology of type 2 diabetes

Jean GIRARDInstitut Cochin

Paris

Page 2: The pathophysiology of type 2 diabetes

Genetic factors

Insulin-resistanceAcquired

factors

Hyperinsulinemia

ß-cell deficiency

CompensationNormal glucose tolerance

Gluco-lipotoxicity

Acquired factors

Type 2 diabetes

Insulin-resistanceGlucose production

Insulin secretion

Genetic factors

Page 3: The pathophysiology of type 2 diabetes

Causes of hyperglycemia in type 2 diabetes

MuscleGlucose

Liver

Pancreas

InsulinGlucagon

Page 4: The pathophysiology of type 2 diabetes

5

0

10

50

0

100

hours

0 1 2 3

90

80

70

60

100

The euglycemic clamp

Plasma glucose (md/dl)

Exogenous glucose (mg/min/kg)

Plasma insulin (mU/ml)

Page 5: The pathophysiology of type 2 diabetes

Insulin resistance in type 2 diabetes

Hepatic glucose production

Peripheral glucose utilisation

Plasma insulin (µU/ml)

T2D

T2DControl

Control

0 50 100 0 100 200

Page 6: The pathophysiology of type 2 diabetes

Glucose uptake(mg/min/kg)

Glycogen synthesisGlycolysis

Oxidation

3

2

0

1

Control Type 2 diabetes

Insulin-stimulated glucose uptake and glycogen synthesis are reduced in Type 2 diabetes

Page 7: The pathophysiology of type 2 diabetes

Non-oxidative glucose metabolisme in skeletal muscle

Glucose

Glucose

Glucose-6-P

GlycogenPyruvate

Glucose transport

Hexokinase II

Glycogen synthaseGlycolysis

Page 8: The pathophysiology of type 2 diabetes

Effect of insulin on glucose transport in skeletal muscleof type 2 diabetes

3-O-methylglucose transport(mmol/h/ml cell water)

2.5

2.0

1.5

1.0

0.5

0

Type 2 diabetes

Control

0 100 1000200 400

Insulin (U/ml)

Page 9: The pathophysiology of type 2 diabetes

Control

Type 2 diabetes

10

5

15

0

0 20 40 60 80 100 120 Minutes

Glycogen synthesis in skeletal muscles during a hyperglycemic hyperinsulinemic clamp

Glycogen concentrationin gastrocnemius (mmol/kg)

20

Page 10: The pathophysiology of type 2 diabetes

Skeletal muscles are responsible for the decreased whole body insulin-stimulated glucose uptake

Glucose transport is the rate-limiting step of insulin-stimulated glucose metabolism

in skeletal muscle

Insulin-stimulated skeletal muscle glycogen metabolism is reduced in type 2 diabetes

Conclusions

Page 11: The pathophysiology of type 2 diabetes

Insulin

Binding AutophosphorylationTyrosine kinase activity

Tyr Tyr

ATP

Tyr-P

IRS IRS-Tyr-P

Metabolic effects

Extracellular

Intracellular

Tyr-PP-TyrP-Tyr

Page 12: The pathophysiology of type 2 diabetes

Glucose transportGlycogen synthesis

Inhibition of glucose production

IRS-1P-Tyr

Tyr-P Tyr-P Tyr-P

Tyr-P

Insuline

Tyr-P

p85

PDK-1

p110

Protéine kinase CProtéine kinase B

PI 3 kinase

Metabolic effects

Tyr-P

Page 13: The pathophysiology of type 2 diabetes

IRS-1 tyrosine phosphorylation in human skeletal muscle

Control Type 2 diabetes

Clamp

Basal8

4

0

% of basal values

Page 14: The pathophysiology of type 2 diabetes

IRS-1 associated PI 3 kinase in human skeletal muscle

Control Type 2 diabetes

Clamp

Basal500

250

0

% of basal values

Page 15: The pathophysiology of type 2 diabetes

Defects in insulin-signaling pathways in Type 2 diabetes

The insulin receptor number is reduced by 20%, but this is compensated by hyperinsulinemia

The tyrosine phosphorylation of IRS-1 and the activation of PI 3 kinase are decreased in Type 2 diabetes

Increased activity of tyrosine phosphatases ?

Serine phosphorylation of IRSs ?

Page 16: The pathophysiology of type 2 diabetes

Factors responsible for the decrease in insulin signaling in Type 2 diabetes

Defect

Insulin receptor number

Tyrosine kinase activity

Glucose transport

Factors responsible

Increased plasma insulin

Serine Phosphorylation of IRS

Hyperglycemia, decreased Glut4 translocation

Page 17: The pathophysiology of type 2 diabetes

InsulinHyperglycemia

IRS-1Tyr-P

Tyr-P Tyr-PTyr-P

Ser-P

Tyr-P

Glucose transport

Protein Kinase C

Decreased association with PI 3 Kinase

Page 18: The pathophysiology of type 2 diabetes

The hexosamine pathway

Glycolysis

Glucose

Glucose-6-P

Fructose-6-P

Glutamine:fructose-6-Pamidotransferase

Glucosamine-6-P

Pyruvate

N-acetyl-glucosamine-6-P

UDP-N-acetyl-glucosamine

Glutamine Glutamate

Page 19: The pathophysiology of type 2 diabetes

Glucose

Pyruvate

N-acétyl-Glucosamine-6-P

UDP-N-Acétyl-glucosamine

G-6-P

Glycoprotéines

Glucosamine-6-PF-6-P

GFA

Glucose

GlycogèneG-1-P

Possible role of metabolites of the hexosamine pathwayin insulin resistance due to chronic hyperglycemia

GFA = Glutamine:fructose-6-P amidotransferase

Page 20: The pathophysiology of type 2 diabetes

10 100 1000

G-6-P (M)

100

50

0

Glycogen synthase activity% of total

Insulin

Insulin + glucosamine

The O-GlcNac glycosylation of glycogen synthase results in reduced activation in response to insulin

Page 21: The pathophysiology of type 2 diabetes

Insulin resistance in type 2 diabetes

Adipose tissue lipolysis

Plasma insulin (µU/ml)

T2D

Control

0 100

100

0

30

Page 22: The pathophysiology of type 2 diabetes

Type 2 diabetics have high plasma FFA all along the day

Plasma FFA(mol/l)

Type 2 diabetes

Control

Hours

8 10 12 14 16 18 20

800

0

200

400

600

Page 23: The pathophysiology of type 2 diabetes

Fatty acid-induced insulin resistance :Randle’s hypothesis 1963

FFA

Fatty acyl-CoA

Acetyl-CoANADH

Mitochondria

Citrate

Glucose

G-6-P

Pyruvate

Glucose

PFK

HK

PDH

Page 24: The pathophysiology of type 2 diabetes

Potential steps controlling muscle glucose metabolism in response to FFA

Glucose Glucose G-6-P Glycogen

Glucose transport Hexokinase Glycogen synthase

Metabolite levels during the clamp

Control ControlFFA FFA

Arbitraryunits

100

0

50

Control FFA

Page 25: The pathophysiology of type 2 diabetes

Fatty acid-induced insulin resistance : Shulman 1999

FFA

Fatty acyl-CoA

Protein kinase C

IRS-SerP

PI 3 Kinase

Glucose transport

Insulin

Page 26: The pathophysiology of type 2 diabetes

Adipose tissue of type 2 diabetics

Insulin resistance

RésistineTNF IL-6AdiponectineVisfatine

Insulin sensitivity

Page 27: The pathophysiology of type 2 diabetes

Insulin TNF

IRS-1Tyr-P

Tyr-P Tyr-P Tyr-P

Ser-P

Tyr-P

Biological effects

Sphingomyelinase

Ceramides

Protein Kinase CPTPase

Decreased association with PI 3 Kinase

Page 28: The pathophysiology of type 2 diabetes

TNF, IL-6

IRS-Ser P

PI 3 Kinase

Glucose transportMetabolic effects

Insulin

Cytokine-induced insulinoresistance

IKKß

JNK = Jun kinase

JNK

SOCS

IKKß = Inhibitor of kappa B kinase ß SOCS =Suppressor of cytokine signaling

Page 29: The pathophysiology of type 2 diabetes

IRS-Ser P

PI 3 Kinase

Effets métaboliquesde l’insuline

Insuline

L’insulinorésistance induite par les cytokines

IKKß

IKKß = Inhibitor of kappa B kinase ß

Salicilate TNF, IL-6

Page 30: The pathophysiology of type 2 diabetes

Postabsorptive glucose concentration is related to hepatic glucose production in type 2 diabetes

Hepatic glucose production(mg/min/h)

Postabsorptive glucose concentration (mg/min/h)

100 200 300 4000

4

3

2

1

0

Page 31: The pathophysiology of type 2 diabetes

Gluconeogenesis is responsible for increased hepatic Glucose production in type 2 diabetes

Hepatic glucose production(mg/min/kg)

4

3

2

1

0

ControlType 2 diabetes

Gluconeogenesis

Glycogenolysis

Page 32: The pathophysiology of type 2 diabetes

Factors responsible for increased hepatic glucose production in Type 2 diabetes

1- Liver insulin resistance

2- Increased plasma glucagon levels

3- Increased plasma FFA levels

Page 33: The pathophysiology of type 2 diabetes

Insulin resistance in type 2 diabetes

Hepatic glucose production(mg/min/kg)

Plasma insulin (µU/ml)

T2D

Control

0 100

4

0

50

2

Page 34: The pathophysiology of type 2 diabetes

Plasma glucagon(pg/ml) Type 2 diabetes

Control

200

0

50

100

150

Hours

8 10 12 14 16 18 20

Type 2 diabetics have high plasma glucagon despite hyperglycemia

Page 35: The pathophysiology of type 2 diabetes

•Increased mass of A cells

•Increased ratio A cells/B cells

•Hyperglucagonemia despite hyperglycemia

•Increased secretion in response to amino-acids

•Secretion of glucagon is less inhibited in response to glucose

•The impairement of glucagon secretion precedes the appearance of type 2 diabetes

Glucagon in type 2 diabetes

Page 36: The pathophysiology of type 2 diabetes

•Insulin resistance of A cells ?No: The impairement of A cells is not corrected by appropriate insulin-therapy

• Chronic hyperglycemia desensitizes A cell ?Possible : glucagon secretion is corrected by

normalization of glycemia in response to phlorizine

•Mechanisms responsible for glucose « blindness » of A cells ?

Factors responsible for hyperglucagonemia in Type 2 diabetes

Page 37: The pathophysiology of type 2 diabetes

Consequences of chronic hyperglucagonemia on hepatic glucose production in type 2 diabetes

Increased transcription of genes coding for gluconeogenic enzymes : for exemple PEPCK

Glucose production mainly due to gluconeogenesis

Gluconeogenesis is less sensitive than glycogenolysis to the inhibition by insulin : Insulin resistance

The absence of inhibition of glucagon secretion in the postprandial state induced glucose intolerance due to the non-suppression of hepatic glucose production

Page 38: The pathophysiology of type 2 diabetes

0 10 20 30 40 50

0

1

2

3

4

5

6

Glucogeogenesis

Glycogenolysis

Portal insulin (mU/ml)

GlycogenolysisGluconeogenesis

(mg/min/kg)

Basal

Glycogenolysis is very sensitive whereas gluconeogenesis is insensitive to an

increase in portal insulin

Page 39: The pathophysiology of type 2 diabetes

0

100

200

300

-60 0 60 120 180 240 360

Minutes

400

0

1

2

3

4

Exogenous glucose appearance(mg/min/kg)

Plasma glucose (mg/dl)

Type 2 diabetes

Type 2 diabetes

ControlControl

-60 0 60 120 180 240 360

Minutes

Glucose Glucose

Glucose intolerance after oral glucose administration In type 2 diabetes

Page 40: The pathophysiology of type 2 diabetes

Glucose utilization

(mg/min/kg)

0

2

4

6

-60 0 60 120 180 240 360

Control

Minutes

8

Type 2 diabetes

Hepatic glucose production

(µmol/min/kg)

0

1.0

2.0

3.0

4.0

-60 0 60 120 180 240 360

Minutes

Type 2 diabetes

Control

GlucoseGlucose

Glucose intolerance after oral glucose administration is due to non-suppression of hepatic glucose production

Page 41: The pathophysiology of type 2 diabetes

Plasma insulin (µU/ml)

0

25

50

75

100

-60 0 60 120 180 240 360

ControlType 2 diabetes

Minutes

Plasma glucagon (pg/ml)

0

50

100

150

200

-60 0 60 120 180 240 360

Minutes

Type 2 diabetes

Control

GlucoseGlucose

Glucose intolerance after oral glucose administration is due to non-suppression of plasma glucagon and to the

absence of early insulin secretion

Page 42: The pathophysiology of type 2 diabetes

0

100

200

300

-60 0 60 120 180 240 360

GLP-1

Type 2 diabetes

Plasma glucose

Minutes

400

(mg/dl)

Glucose

What could be expected from an inhibition of glucagon secretion in type 2 diabetes ?

0

1.0

2.0

3.0

4.0

-60 0 60 120 180 240 360

GLP-1

Hepatic glucose production

(µmol/min/Kg)

Minutes

GlucoseGLP-1 GLP-1

Type 2 diabetes

Page 43: The pathophysiology of type 2 diabetes

0

100

200

300

-60 0 60 120 180 240 360

Répaglinide

Type 2 diabetes

Plasma glucose

Minutes

400

(mg/dl)

Glucose

Répaglinide

What could be expected from restoring the first phase of insulin secretion, in type 2 diabetes ?

Hepatic glucose production(µmol/min/kg)

0

1.0

2.0

3.0

4.0

-60 0 60 120 180 240 360

Minutes

Type 2 diabetes

Répaglinide

Glucose

Répaglinide

Page 44: The pathophysiology of type 2 diabetes

Type 2 diabetics have high plasma FFA

Plasma FFA(mol/l)

Type 2 diabetes

Control

Hours

8 10 12 14 16 18 20

800

0

200

400

600

Page 45: The pathophysiology of type 2 diabetes

Visceral fat and insulin resistance

% visceral fat

InsulinSensitivitymmol/min/kg)

100

20

20 504030

Page 46: The pathophysiology of type 2 diabetes

Hepatic fatty acid oxidation provides co-factors

essential for gluconeogenesis

Fatty acid oxidation

Pyruvate OAA PEP 3-PGA 1,3-DPG GAP Glucose

ATPGTP NADHATP

ATP Acetyl-CoA ATP NADH

Page 47: The pathophysiology of type 2 diabetes

Role of Free Fatty Acids in Hyperglycemia

MuscleLiver

Adipose tissue

FFA

Hyperglycemia

Gluconeogenesis Glucose utilization

Page 48: The pathophysiology of type 2 diabetes

Glucose-induced insulin secretion is decreasedin chronically hyperglycemic Type 2 diabetic patients

Mean plasma insulin during the OGTT (U/ml)

80 100 120 140 160 180

Fasting plasma insulin (mU/ml)

100

80

60

40

20

0

Fasting plasma glucose levels (mg/dl)

Page 49: The pathophysiology of type 2 diabetes

Compensation of insulin-resistance by pancreatic ß-cells

Increased insulin secretion

Increased ß-cell mass

Replication of pre-existing ß-cells, neogenesis of ß-cells

Alteration of proliferation or survival of ß-cells

Page 50: The pathophysiology of type 2 diabetes

Functional defect– Pulsatility– First phase– Glucose-induced insulin secretion

Pancreatic ß cells from type 2 diabetic patients

Decrease in ß-cell mass– Genetic factors (HNF1, HNF4, Kir6.2, TCF7L2, Mitochondrial genes)

– Environmental factors (Gluco-lipotoxicity, physical inactivity)

Page 51: The pathophysiology of type 2 diabetes

Fatty acid metabolism in pancreatic ß-cells

Fatty acids

Acyl-CoA

Fatty acids

Acyl-CoA

Glucose

Normal ß-cell ß-cell from T2D

TGTG

MitochondriaMitochondria

Glucose

Page 52: The pathophysiology of type 2 diabetes

Cytotoxic effects of fatty acids in ß-cell from type 2 diabetic patients

Fatty acids

Acyl-CoA

TG TG

Apoptosis

Glucose

Normal ß-cell ß-cell from T2D

MitochondriaMitochondria

Fatty acids

Acyl-CoA

NO, Ceramides, ROS

Page 53: The pathophysiology of type 2 diabetes

Liver

Hyperglycemia

Pancreas

Adipose tissue

FFA

Muscle

Insulin Fatty acid oxidation

Gluconeogenesis

Fatty acid oxidation

Glucose uptake

Page 54: The pathophysiology of type 2 diabetes
Page 55: The pathophysiology of type 2 diabetes

Thiazolidinediones and Sulfonylurea prevent cytotoxic effects of fatty acids on pancreatic

ß-cells of type 2 diabetic patients

ß-cell from treated T2D

TG

Apoptosis

Glucose

ß-cell from T2D

Mitochondria

Fatty acids

Acyl-CoA

NO, Ceramides, ROS

TG

Apoptosis

Glucose

Mito

Fatty acids

Acyl-CoA

NO, Ceramides, ROS

SFU

TZD