The Path to a 50% Thermal Efficient Engine · PDF fileexhaust energy more than thermal...

28
1 The Path to a 50% Thermal Efficient Engine W. L. Easley, A. Kapic, and D. M. Milam DOE Contract DE-FC05-00OR22806 Team Leader: Gurpreet Singh Prog. Mgr.: Roland Gravel Tech. Mgr.: Carl Maronde August 23, 2005 DEER Conference

Transcript of The Path to a 50% Thermal Efficient Engine · PDF fileexhaust energy more than thermal...

  • 1

    The Path to a 50% Thermal Efficient Engine

    W. L. Easley, A. Kapic, and D. M. Milam

    DOE Contract DE-FC05-00OR22806Team Leader: Gurpreet Singh Prog. Mgr.: Roland GravelTech. Mgr.: Carl Maronde

    August 23, 2005DEER Conference

  • 2U.S. DOE

    Outline

    Objectives

    First Law Analysis of Fuel Energy Distribution

    Review of Analysis for 45% Brake Thermal Efficiency at 2007 Emissions Levels

    50% Brake Thermal Efficiency at 2010 Emissions Levels

    Summary and Conclusions

  • 3U.S. DOE

    Does improvement in fuel economy offset the cost and maintain durability?

    Diesel fueled engine capable of 2010 emissions levels (0.20 g/hp-hr NOx, 0.01 g/hp-hr PM) 50% thermal efficiency >500,000 miles with only minor maintenance Package must fit within class 8 truck

    DOE HTCD Program Objectives

    High Efficiency Building Blocks

    Test Hardware Calibrate Models System Simulation

    Real World BenefitSimulation

    Results of Past Research

    Program Phasing Phase 1: Analytical validation of 45% thermal efficiency at 2007 OHT emissions levels Phase 2: System simulation of 50% thermal efficiency at 2010 OHT emissions levels

    with focused component testing

  • 4U.S. DOE

    Control Volumes for First Law Analysis

    Fuel Energy

    Cylinder Heat Rej.

    Indicated Power

    Exhaust Energy

    Reciprocator

    CGI Heat Rejection

    Engine System

    FuelEnergy

    Engine Heat Rejection

    ExhaustEnergy

    ATAAC Heat Rejection

    Brake Power

    Exhaust Energy

    Fuel Energy

    Eng. Heat Rej.

    Aero Drag

    Rolling Res.Drivetrain

    Fan

    Accessories

    Excess Power

    On-Highway Truck

    ATAAC Heat Rej.

    CGI Heat Rej.

  • 5U.S. DOE

    0

    200

    400

    600

    800

    Fuel

    Ene

    rgy

    (kW

    )First Law Analysis

    45% Thermal Efficient Engine (class VIII truck, 1200 RPM, peak torque, fully loaded, 70 MPH)

    On-Highway Truck

    Excess Power (65.2 kW; 9.3 %)

    Exhaust Power(160 kW; 22.9 %)

    Engine Heat Rej.(73.7 kW; 10.5 %)

    ATAAC Heat Rej.(103.7 kW; 14.8 %)

    Aerodynamic Drag(171.7 kW; 24.6 %)

    Rolling Res. (45.9 kW; 6.6 %)

    CGIC HR (34.8 kW; 5.0 %)

    Reciprocator

    Exhaust Power(302.3 kW; 43.2 %)

    Heat Loss (58.9 kW; 8.4 %)

    Indicated Power(327.0 kW; 46.8 %)

    Pumping Power(11.0 kW; 1.6 %)

    Engine System

    ATAAC Heat Rej.(103.7 kW; 14.8 %)

    Engine Heat Rej.(73.7 kW; 10.5 %)

    Exhaust Power(160.0 kW; 22.9 %)

    Brake Power(315 kW; 45 %)

    CGIC HR (34.8 kW; 5.0 %)

    Friction Power(12.0 kW; 1.7 %)

  • 6U.S. DOE

    0

    200

    400

    600

    800

    Fuel

    Ene

    rgy

    (kW

    )First Law Analysis

    45% Thermal Efficient Engine (class VIII truck, 1200 RPM, peak torque, fully loaded, 70 MPH)

    On-Highway Truck

    Excess Power (65.2 kW; 9.3 %)

    Exhaust Power(160 kW; 22.9 %)

    Engine Heat Rej.(73.7 kW; 10.5 %)

    ATAAC Heat Rej.(103.7 kW; 14.8 %)

    Aerodynamic Drag(171.7 kW; 24.6 %)

    Rolling Res. (45.9 kW; 6.6 %)

    CGIC HR (34.8 kW; 5.0 %)

    Reciprocator

    Exhaust Power(302.3 kW; 43.2 %)

    Heat Loss (58.9 kW; 8.4 %)

    Indicated Power(327.0 kW; 46.8 %)

    Pumping Power(11.0 kW; 1.6 %)

    Engine System

    ATAAC Heat Rej.(103.7 kW; 14.8 %)

    Engine Heat Rej.(73.7 kW; 10.5 %)

    Exhaust Power(160.0 kW; 22.9 %)

    Brake Power(315 kW; 45 %)

    CGIC HR (34.8 kW; 5.0 %)

    Friction Power(12.0 kW; 1.7 %)

    Accessories (6.2 kW; 0.9%)

    Fan (11.0 kW; 1.6%)

    Drivetrain (15.0 kW; 2.1%)

  • 7U.S. DOE

    Phase 1: 2007 45% Thermal Efficiency

    Improved Port Design

    High Efficiency Air SystemReduced PRL Friction

    High Efficiency Compact Cooling

    System

    Combustion System

    Optimization

    2007 Capable System at 45%

    Thermal Efficiency

  • 8U.S. DOE

    Phase 2: 2010 50% Thermal Efficiency

    Reduced Heat RejectionTurbo-Compound

    NOxReduction

    Combustion System Optimization

    Improved Air System

    2007 Capable System at 45%

    Thermal Efficiency

  • 9U.S. DOE

    Phase 2: 2010 50% Thermal Efficiency

    Reduced Heat RejectionTurbo-Compound

    NOxReduction

    Improved Air System

    Combustion System Optimization

    2007 Capable System at 45%

    Thermal Efficiency

  • 10U.S. DOE

    NOx Reduction

    Industry is investigating several technologies for achieving 2010 system-out NOx levels HCCI High diluent

    concentration Urea SCR NOx Adsorber

    For engine systems employing aftertreatment, engine-out emissions level is determined by conversion efficiency

    0.00.51.01.52.02.53.03.54.04.55.0

    80 85 90 95 100NOx Aftertreatment Conversion Efficiency (%)

    Engi

    ne-O

    ut N

    Ox

    (g/h

    p-hr

    ) 1998 Emissions Levels

    2004 Emissions Levels

    2007 Emissions

    Levels

    Assuming 0.2 g/hp-hr System-Out NOx

    Conversion efficiencies above 90% possible

  • 11U.S. DOE

    -5-4-3-2-1012345

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    NOx (g/hp-hr)

    Ope

    ratin

    g C

    ost I

    ncre

    ase

    (%)

    Conversion of NOx requires additional operating cost in the form of urea, fuel for richening the exhaust stream, etc.

    At high conversion efficiencies system optimization more than compensates for operating cost penalty

    NOx Reduction

    Engine-Out Trade-Off

    Curve89% Conversion

    83% Conversion

    2007 Engine Baseline

  • 12U.S. DOE

    BaselineNOx

    Reduction

    0

    200

    400

    600

    800

    Fuel

    Ene

    rgy

    (kW

    )

    ATAACHeat Rej.

    EngineHeat Rej.

    ExhaustPower

    CGIC HR

    Friction Power

    699.2 kW45.0%

    697.0 kW45.2%

    BrakePower

    Fuel Energy Distribution

    Production Challenges long term degradation replenishment of reductant low temperature operation packaging cost

    Thermal Efficiency Increase to: 45.2 %

    NOx (g/hp-hr)

    PM

    (g/

    hp-

    hr)

    0.2 1.2System-Out Emissions

  • 13U.S. DOE

    Phase 2: 2010 50% Thermal Efficiency

    Reduced Heat RejectionTurbo-Compound

    Improved Air System

    NOxReduction

    Combustion System Optimization

    2007 Capable System at 45%

    Thermal Efficiency

  • 14U.S. DOE

    Improved Air System

    Series turbochargers must be used in order to provide the optimum boost levels

    High efficiency compressor, turbine, and bearing designs continue to improve air system component efficiencies

    Intercooling can further improve the efficiency of the system

    43

    44

    45

    46

    47

    48

    49

    65 70 75 80 85 90 95 100 105components (%)

    Ther

    mal

    Effi

    cien

    cy (%

    )

    ATAAC w/ 35 C outlet temp.

    ATAAC plus ATAIC w/ 35 Coutlet temp.

    Syst

    em T

    her

    mal

    Eff

    icie

    ncy

    (%

    ) Demonstrated on LE55 Engine

    In Production (used for 45%)

  • 15U.S. DOE

    0

    200

    400

    600

    800

    Fuel

    Ene

    rgy

    (kW

    )

    ATAACHeat Rej.

    EngineHeat Rej.

    ExhaustPower

    670.6 kW47.0%

    CGIC HR

    Friction Power

    699.2 kW45.0% 697.0 kW45.2%

    BrakePower

    ATAIC Heat Rej.

    Fuel Energy Distribution

    BaselineNOx

    ReductionImproved Air System

    Thermal Efficiency Increase to: 47.0 %

    43

    44

    45

    46

    47

    48

    49

    65 70 75 80 85 90 95 100 105components (%)

    Ther

    mal

    Effi

    cien

    cy (%

    )

    ATAAC w/ 35 C outlet temp.

    ATAAC plus ATAIC w/ 35 Coutlet temp.

    Production Challenges: packaging cost map width

    Sys

    tem

    Th

    erm

    al E

    ffic

    ien

    cy (

    %)

  • 16U.S. DOE

    Phase 2: 2010 50% Thermal Efficiency

    Reduced Heat RejectionTurbo-Compound

    Improved Air System

    NOxReduction

    Combustion System Optimization

    2007 Capable System at 45%

    Thermal Efficiency

  • 17U.S. DOE

    46.0

    46.5

    47.0

    47.5

    48.0

    165 170 175 180Total Heat Rejection (kW)

    Syst

    em T

    herm

    al E

    ffici

    ency

    (%)

    24.0

    24.5

    25.0

    25.5

    26.0

    Exhaust Energy (%)

    Thermal EfficiencyExhaust Energy

    Reduced Heat Rejection

    Reducing heat rejection: low thermal conductivity

    components, coatings, or designs selective cooling higher coolant temperatures

    Reduced heat rejection increases exhaust energy more than thermal efficiency

    Low Heat Rejection Components from ICC Program

    3.5 mm TBC on Piston 2.5 mm TBC on Head 18% Increase in Oil and

    Coolant Temperatures

  • 18U.S. DOE

    Fuel Energy Distribution

    Production Challenges: durability cost

    BaselineNOx

    AdsorberImproved Air System

    Reduced Heat

    Rejection

    0

    200

    400

    600

    800

    Fuel

    Ene

    rgy

    (kW

    )

    ATAACHeat Rej.

    EngineHeat Rej.

    ExhaustPower

    666.5 kW47.3%

    670.6 kW47.0%

    CGIC HR

    Friction Power

    699.2 kW45.0%

    697.0 kW45.2%

    BrakePower

    ATAIC Heat Rej.

    Thermal Efficiency Increase to: 47.3%

  • 19U.S. DOE

    Phase 2: 2010 50% Thermal Efficiency

    Reduced Heat RejectionTurbo-Compound

    Improved Air System

    NOxReduction

    Combustion System Optimization

    2007 Capable Sy