The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the...

32
The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios Dedes and David Cerdeño JHEP09(2006)067, hep-ph/0607157 The Minimal Phantom Sector of the Standard Model

Transcript of The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the...

Page 1: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

The Minimal Phantom Sector of theStandard Model

Dirac Leptogenesis & Higgs Phenomenology

Tom Underwood

with Athanasios Dedes and David Cerdeño

JHEP09(2006)067, hep-ph/0607157

The Minimal Phantom Sector of the Standard Model

Page 2: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Clarification

Minimal Lepton Number Conserving Phantom Sector“Phantom” → singlet under the Standard Model gaugegroup SU(3)c×SU(2)L×U(1)YSimple model leading to interesting phenomenology:

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

The Minimal Phantom Sector of the Standard Model

Page 3: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Outline

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

The Minimal Phantom Sector of the Standard Model

Page 4: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Model building

Just 2 openings in the SM for renormalisable operatorscoupling SU(3)c×SU(2)L×U(1)Y singlet fields to SMfields[1]

Higgs mass term: H†H ?∗?

Lepton-Higgs Yukawa interaction: L̄ H̃ ?R

What would happen if we filled in the gaps?But, no evidence for B − L violation yet, so could try tobuild a B − L conserving modelWill try to be “natural” in the ’t Hooft and the aestheticsense - couplings either O(1) or strictly forbidden

[1] B. Patt and F. Wilczek, hep-ph/0605188

The Minimal Phantom Sector of the Standard Model

Page 5: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Model building

Just 2 openings in the SM for renormalisable operatorscoupling SU(3)c×SU(2)L×U(1)Y singlet fields to SMfields[1]

Higgs mass term: H†H ?∗?

Lepton-Higgs Yukawa interaction: L̄ H̃ ?R

What would happen if we filled in the gaps?But, no evidence for B − L violation yet, so could try tobuild a B − L conserving modelWill try to be “natural” in the ’t Hooft and the aestheticsense - couplings either O(1) or strictly forbidden

[1] B. Patt and F. Wilczek, hep-ph/0605188

The Minimal Phantom Sector of the Standard Model

Page 6: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Augment the SM with two SU(3)c×SU(2)L×U(1)Y singletfields

a complex scalar Φa Weyl fermion sR

−Llink =(hν lL · H̃ sR + H.c.

)− η H†H Φ∗Φ

H̃ = iσ2H∗,

hν and η will be O(1),sR carries lepton number L = 1.

But, this model is no good → neutrinos would have large,electroweak scale masses

The Minimal Phantom Sector of the Standard Model

Page 7: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Augment the SM with two SU(3)c×SU(2)L×U(1)Y singletfields

a complex scalar Φa Weyl fermion sR

−Llink =(hν lL · H̃ sR + H.c.

)− η H†H Φ∗Φ

H̃ = iσ2H∗,

hν and η will be O(1),sR carries lepton number L = 1.

But, this model is no good → neutrinos would have large,electroweak scale masses

The Minimal Phantom Sector of the Standard Model

Page 8: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Solution: Postulate the existence of a purely gauge singletsector; add νR and sL.

−Lp = hp Φ sL νR + M sL sR + H.c.

Forbid other terms by imposing a “phantom sector” globalU(1)D symmetry, such that only

νR → eiα νR , Φ → e−iα Φ

transform non-triviallyIf we require small Dirac neutrino masses this is thesimplest choice for the phantom sector

L = LSM + Llink + Lp

The Minimal Phantom Sector of the Standard Model

Page 9: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Small effective Dirac neutrino masses – Dirac See-Saw

Φ H

νLsRsLνR

Spontaneous breaking of both SU(2)L×U(1)Y and U(1)Dwill result in the effective Dirac mass terms

−L ⊃ ν ′L mν ν ′R + s′L mN s′R

assuming M � v and where

mν = −v σ hν M̂−1 hp mN = M̂

with σ ≡ 〈Φ〉 and v ≡ 〈H〉 = 175 GeV.

Essentially the Froggatt-Nielsen mechanism!C. D. Froggatt and H. B. Nielsen, NPB147(1979)277.

The Minimal Phantom Sector of the Standard Model

Page 10: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Small effective Dirac neutrino masses – Dirac See-Saw

Φ H

νLsRsLνR

Spontaneous breaking of both SU(2)L×U(1)Y and U(1)Dwill result in the effective Dirac mass terms

−L ⊃ ν ′L mν ν ′R + s′L mN s′R

assuming M � v and where

mν = −v σ hν M̂−1 hp mN = M̂

with σ ≡ 〈Φ〉 and v ≡ 〈H〉 = 175 GeV.

M. Roncadelli and D. Wyler, PLB133(1983)325

The Minimal Phantom Sector of the Standard Model

Page 11: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Outline

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

The Minimal Phantom Sector of the Standard Model

Page 12: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

We can measure the baryon asymmetry of the universe but dowe understand where it came from?

Sakharov’s famous conditionsBaryon number violationC and CP violationConditions out of thermal equilibrium

Leptogenesis is commonly cited as a possible explanationIn the SM, B + L violation occurs at high temperatures allowinga lepton asymmetry to be partially converted to a baryonasymmetry

In the Majorana see-saw, lepton number and CP are generallyviolated in the decays of the heavy Majorana neutrinos

These decays can occur out of thermal equilibrium

M. Fukugita and T. Yanagida, PLB174(1986)45

The Minimal Phantom Sector of the Standard Model

Page 13: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

This model exactly conserves B − L, so it seems we cannotcreate a lepton asymmetry in the same way.However

B + L violation in the SM does not directly affect righthanded gauge singlet particles

Small effective Yukawa couplings between the left and righthanded neutrinos could prevent asymmetries in this sectorfrom equilibrating

LνRcould “hide” from the rapid B + L violating processes

V. A. Kuzmin, hep-ph/9701269K. Dick, M. Lindner, M. Ratz and D. Wright, PRL84(2000)4039

see also: H. Murayama and A. Pierce, PRL89(2002)271601S. Abel and V. Page, JHEP0605(2006)024

B. Thomas and M. Toharia, PRD73(2006)063512

The Minimal Phantom Sector of the Standard Model

Page 14: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

This model exactly conserves B − L, so it seems we cannotcreate a lepton asymmetry in the same way.However

B + L violation in the SM does not directly affect righthanded gauge singlet particles

Small effective Yukawa couplings between the left and righthanded neutrinos could prevent asymmetries in this sectorfrom equilibrating

LνRcould “hide” from the rapid B + L violating processes

V. A. Kuzmin, hep-ph/9701269K. Dick, M. Lindner, M. Ratz and D. Wright, PRL84(2000)4039

see also: H. Murayama and A. Pierce, PRL89(2002)271601S. Abel and V. Page, JHEP0605(2006)024

B. Thomas and M. Toharia, PRD73(2006)063512

The Minimal Phantom Sector of the Standard Model

Page 15: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Generation of the LνR(LSM) asymmetry

Φ

νR k

Si

H

Ll

Si

S ≡ sL + sR

Heavy particle decay – similar to Majorana leptogenesisIn analogy with Davidson and Ibarra, the CP-asymmetry isbounded

|δR1| <∼1

16π

M1

v σ(mν3 −mν1)

The Minimal Phantom Sector of the Standard Model

Page 16: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Generation of the LνR(LSM) asymmetry

Φ

νR k

Si Si

νR k

Φ

Sj

Ll

H

S ≡ sL + sR

Heavy particle decay – similar to Majorana leptogenesisIn analogy with Davidson and Ibarra, the CP-asymmetry isbounded

|δR1| <∼1

16π

M1

v σ(mν3 −mν1)

The Minimal Phantom Sector of the Standard Model

Page 17: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

10-2

10-1

100

101

102

103

104

K

10-5

10-4

10-3

10-2

10-1

100

κ

thermal

non-thermal

BR = 1.98 or 0.02

large K fit

Leptogenesis efficiency, κ, versus K for thermal and zero initial abundance ofS1 (S̄1). Also shown is the efficiency for differing left-right branching ratios.

The Minimal Phantom Sector of the Standard Model

Page 18: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

108

109

1010

1011

1012

1013

1014

1015

1016

M1 (GeV)

10-6

10-5

10-4

10-3

10-2

10-1

100

(h h

) 11

~m = 5

eV

~m = 0.

05 eV

~m = 0.

005 e

V~m = 0.

5 eV

Area in the M1, (h†h)11 parameter space allowed by successfulbaryogenesis when (h†

νhν)11 = (hph†p)

11and σ = v = 175 GeV.

The Minimal Phantom Sector of the Standard Model

Page 19: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

If we take a ‘natural’ scenario with (h†νhν)11 = (hph

†p)11 ' 1

and m̃ = 0.05 eV (hierarchical light neutrinos) we can usethe bound on the CP-asymmetry and the observed baryonasymmetry to put a bound on σ

σ >∼ 0.1 GeV

If we require that S1 be produced thermally after inflationthere exists an approximate bound M1 <∼ TRH .Given the same reasonable assumptions, this implies anapproximate upper bound on σ

0.1 GeV <∼ σ <∼ 2 TeV

(TRH

1016 GeV

)

The Minimal Phantom Sector of the Standard Model

Page 20: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

If we take a ‘natural’ scenario with (h†νhν)11 = (hph

†p)11 ' 1

and m̃ = 0.05 eV (hierarchical light neutrinos) we can usethe bound on the CP-asymmetry and the observed baryonasymmetry to put a bound on σ

σ >∼ 0.1 GeV

If we require that S1 be produced thermally after inflationthere exists an approximate bound M1 <∼ TRH .Given the same reasonable assumptions, this implies anapproximate upper bound on σ

0.1 GeV <∼ σ <∼ 2 TeV

(TRH

1016 GeV

)

The Minimal Phantom Sector of the Standard Model

Page 21: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Outline

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

The Minimal Phantom Sector of the Standard Model

Page 22: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

The potential of the neutral scalars in the model reads

V = µ2HH∗H + µ2

ΦΦ∗Φ + λH(H∗H)2 + λΦ(Φ∗Φ)2 − ηH∗HΦ∗Φ

where H ≡ H0

After spontaneous breaking of U(1)D, Φ will develop anon-zero vev, and this through the η term would triggerelectroweak SU(2)L×U(1)Y symmetry breakingExpanding the fields around their minima

H = v +1√2(h + iG) , Φ = σ +

1√2(φ + iJ)

We havethe Goldstone bosons: G (eaten. . . ) and Jh and φ mix (due to the η term) and become two massiveHiggs bosons H1 and H2

The Minimal Phantom Sector of the Standard Model

Page 23: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

The potential of the neutral scalars in the model reads

V = µ2HH∗H + µ2

ΦΦ∗Φ + λH(H∗H)2 + λΦ(Φ∗Φ)2 − ηH∗HΦ∗Φ

where H ≡ H0

After spontaneous breaking of U(1)D, Φ will develop anon-zero vev, and this through the η term would triggerelectroweak SU(2)L×U(1)Y symmetry breakingExpanding the fields around their minima

H = v +1√2(h + iG) , Φ = σ +

1√2(φ + iJ)

We havethe Goldstone bosons: G (eaten. . . ) and Jh and φ mix (due to the η term) and become two massiveHiggs bosons H1 and H2

The Minimal Phantom Sector of the Standard Model

Page 24: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

(H1

H2

)= O

(hφ

)with O =

(cos θ sin θ− sin θ cos θ

)and the mixing angle

tan 2θ =ηvσ

λΦσ2 − λHv2

The limits v � σ and σ � v both lead to the SM with anisolated hidden sectorThese limits need an unnaturally small η, and wouldpresent problems with baryogenesis and small neutrinomasses.A ‘natural’ choice of parameters would be

λH ∼ λΦ ∼ η ∼ 1 , tan θ ∼ 1 , tanβ ≡ v/σ ∼ 1

The Minimal Phantom Sector of the Standard Model

Page 25: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

h = Oi1Hi – the couplings of the Higgs bosons Hi to SMfermions and gauge bosons will be reduced by a factor Oi1

(relative to the SM)Hi will also couple to the massless Goldstone pair JJ

For light Higgs masses <∼ 160 GeV, in the SM the H → bb̄decay mode dominates. Here we find a different picture:

Γ(H1 → JJ)Γ(H1 → bb)

=148

(mH1

mb

)2

tan2 β tan2 θ

Γ(H2 → JJ)Γ(H2 → bb)

=148

(mH2

mb

)2

tan2 β cot2 θ

In this model a ‘light’ Higgs boson will decay dominantlyinto invisible JJ as long as it is heavier than 60 GeV.

The Minimal Phantom Sector of the Standard Model

Page 26: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

69343326019187

Br(

H -

-->

any

thin

g)

MH1 [GeV]

MH2 [GeV]

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

69343326019187

Br(

H -

-->

any

thin

g)

MH1 [GeV]

MH2 [GeV]

JJbb

WWZZ

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600

40025015011050

MH2 [GeV]

MH1 [GeV]

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600

40025015011050

MH2 [GeV]

MH1 [GeV]

JJbb

WWZZ

tt

Dominant branching ratios of the two Higgs bosons H1 (left) and H2 (right)for the parameters θ = β = π/4, with couplings equal to one. The shadedarea is excluded by LEP.

The Minimal Phantom Sector of the Standard Model

Page 27: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

69343326019187

Br(

H -

-->

any

thin

g)

MH1 [GeV]

MH2 [GeV]

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

69343326019187

Br(

H -

-->

any

thin

g)

MH1 [GeV]

MH2 [GeV]

JJbb

WWZZ

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600

40025015011050

MH2 [GeV]

MH1 [GeV]

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600

40025015011050

MH2 [GeV]

MH1 [GeV]

JJbb

WWZZ

tt

LEP excludes a light invisible Higgs with a mass mH1 <∼ 110 GeV.

It therefore sets a lower bound on the heavier Higgs mH2 >∼ 191 GeV.

The Minimal Phantom Sector of the Standard Model

Page 28: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

There is a mass region

110 <∼ mH1 <∼ 160 GeV

where H1 decays to invisible JJ with Br(H1 → JJ) > 90%.How could this Higgs be found at the LHC?

S. G. Frederiksen, N. Johnson, G. L. Kane and J. Reid, PRD50(1994)4244R. M. Godbole, M. Guchait, K. Mazumdar, S. Moretti and D. P. Roy,PLB571(2003)184K. Belotsky, V. A. Khoze, A. D. Martin and M. G. Ryskin, EPJC36(2004)503H. Davoudiasl, T. Han and H. E. Logan, PRD71(2005)115007

Strategies:Z + H1

W -boson fusioncentral exclusive diffractive production

The Minimal Phantom Sector of the Standard Model

Page 29: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Dirac Neutrino MassesDirac LeptogenesisHiggs Phenomenology

Z(→ l+l−) + Hinv

using H. Davoudiasl, T. Han and H. E. Logan, PRD71(2005)115007

multiply S/√

B by 1/2 because of mixingassume LHC integrated luminosity of 30fb−1

Signal significance for discovering the invisible H1 is

mH1 = 120 GeV 4.9σ

mH1 = 140 GeV 3.6σ

mH1 = 160 GeV 2.7σ

Although this applies to θ = π/4, the situation is rathergeneric in this regionNote that for mH1 <∼ 140 GeV, the H1 → γγ channel maystill be usable.

The Minimal Phantom Sector of the Standard Model

Page 30: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Summary

Proposed a minimal, L conserving, phantom sector of theSM leading to

Viable Dirac neutrino massesSuccessful baryogenesis (through Dirac leptogenesis)Interesting ‘invisible’ Higgs phenomenology for the LHC

O(1) couplings, correct neutrino masses and baryogenesisseem to suggest an electroweak scale vev in the minimalphantom sector

Phantom U(1)D symmetry breaking at this scale wouldtrigger consistent electroweak symmetry breaking

The Minimal Phantom Sector of the Standard Model

Page 31: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

Other Astro/Cosmo Constraints

Hi couples to JJ as

−LJ ⊃(√

2GF )1/2

2tanβ Oi2 m2

HiHi JJ

After electroweak/U(1)D symmetry breaking the Js arekept in equilibrium via reactions of the sort JJ ↔ ff̄mediated by Hi

A GIM-like suppression exists for these interactions fromthe orthogonality condition

∑i Oi1Oi2 = 0

J falls out of equilibrium just before the QCD phasetransition and remains as an extra relativistic speciesthereafter

The Minimal Phantom Sector of the Standard Model

Page 32: The Minimal Phantom Sector of the Standard Model - Dirac ... · The Minimal Phantom Sector of the Standard Model Dirac Leptogenesis & Higgs Phenomenology Tom Underwood with Athanasios

BBN/CMB yield a bound on the effective number ofneutrino species Nν = 3.24± 1.2 (90% C.L.)Early decoupling of J implies TJ is much lower than Tν(

TJ

)4

=(

g∗(Tν)g∗(TD)

)4/3

<∼

(10.7560

)4/3

The increase in the effective number of light neutrinos, dueto J , at BBN ∆NJ

ν is then

∆NJν =

47

(TJ

)4

<∼ 0.06

The Minimal Phantom Sector of the Standard Model