THE MELILlTES OF THE EJECTA A D LAVAS FROM THE …rruff.info/rdsmi/V38/RDSMI38_1387.pdf · THE...

14
lUNDICONTI Sodtld Jlallana dl Mlnual0914 e Ptlrologia. JI IJ): 1111. lJI1-/400 ComunlClU'Jone p",lIentata alia RIUl\lone della SIMP In Rende-l:etraro (CoMnuq II 27_10·198:2 THE MELILlTES OF THE EJECTA A D LAVAS FROM THE ALBAN HILLS (ROME, ITALY) MARCELLA FEDERICO, AmoNIo GIANFAGNA Islill.1I0 di Mineralogia e PClrografla ddl'Universitiio, Piazza Aldo .. ro. 00185 Roma RIASSUNTO, - 1.0 studio si prefigge: di approfon. dire le conoscenze sulla variabilita chimiCll del mi· nerale, anche in tifetimeJllo alia giacitura, e di definire le rclazioni fra chimismo e proprieta fisiche. Le meliliti «vukaniche,., che: presentano una notevole omogeneita chimica, sono carancrizzale da un piu elevato contenuto in Si e Fe e da un inferiore contenuto in Al nei confronti delle meliliti tinvenute nei proieni che mOSlrano viceversa una ampia vniabilitii. chimica. Delle melilili c:saminale: sono Slale determinate le roslanti ouiche e le Qimensioni della cella e1e· menlarc. L'analisi faltori,lle condotla ha permesso di rilevare correlazioni positive fra 11., contcnuti in Mg, (Na, Kj, Fe, Si e iodici di rifrazione e fra r. e rontenl.lli in AI e Ca. Sulla base di tali correla- l:ioni si 5000 evidenl:iati due trends. Delle note «peg Structures,., risconlrate nelle mdiliti c vulcaniche,. con maggiore frequenza, sono state definite le composizioni chimkhe e ne C: discussa I'interprelarionc. AIlSTlACT. - ThinY·lhrtt samples of melilites from the laV1l and ejecta from Alban Hills volcanic region have been examined with the aim of establishing the variabilit)' of the chemiall com- position also in conneaion with the various field situations and of investigating the rebtionship between chemistI)' and physical properties. The «volcanic,. mclilites, showing a natrow range of chemical compoo;ition, are characterized by higher Si and Fe contents and by a lower Al content as compared with melilites in ejected blocks, which in contrast show a wider compositional rnnge. Refractive indices and lattice paramelers have: been determined. On the basis of factor positive correlations between 11. value, Mg, (Na, K), Fe, Si coments and refractive indices and between c. value .nd AI. Ca contents have been found. Peg Structures, more frequent in .. volClmic ,. melilile5, Mve been investigated as for their chemical composition and (heir origin is discussed. Introduction Interest in melilite over a wide range of generic environments, both terrestrial and extra-terrestrial, has been reponed by many workers, and its important role in various mineralogical and petrographic problems has been highlighted by H.S. YODER (1973). As is commonly known, the first finding of melilite was made by FLEURtEU DE BEL- LEVUE (1790) in the lcucititic lava of Capo di Bove (Alban Hills) both in the ground- mass and in the cavities and cracks of the same lava. Later DAMOUR and DES CLOI- ZEAUX (1844), VON RATH (1866), ZAMBO- (1906), MILLQSEVTCH (1921), WA' SHINGTON (1927), SCHERILLO (193.5) and, more TILLEY and HENRY (1953) and TURI (1968) have examined not only the melilite of the above-mentioned localiry but also the melilite found in of va· rious kind, included in the well.known formations of .. Peperino di Albano., • Vil- la Senni ruffs ., .. Middle Aniene Valley poz· 7.olans. and .. Corrolle black pozzolans ... Although the melilile has been reported as one of the components of many from the «Welded scoriae .. formation of Colic Cimino (Marino) studied by BARRIERI et a!. (1970), FEDERICO (1976) and FEDERICO and GIANFAGNA (1980) its composition was not yet known. For this reason we proposed to srudy the mineral of this locality and, at same time, to re-examine all melilites of the Alban Hills, including the abundant material from the above·mentioned localities existing in the Museum of the Institute of Mineralogy and Petrography of Rome with the aim of establishing the range of variability of chemical composition and irs relations wirh optical properties and lattice paramerers. Occurrence The material examined here refers 10 rhe following occurrences: - meliJites found as crystals lining rhe

Transcript of THE MELILlTES OF THE EJECTA A D LAVAS FROM THE …rruff.info/rdsmi/V38/RDSMI38_1387.pdf · THE...

lUNDICONTI Sodtld Jlallana dl Mlnual0914 e Ptlrologia. JI IJ): 1111. lJI1-/400ComunlClU'Jone p",lIentata alia RIUl\lone della SIMP In Rende-l:etraro (CoMnuq II 27_10·198:2

THE MELILlTES OF THE EJECTA A D LAVASFROM THE ALBAN HILLS (ROME, ITALY)

MARCELLA FEDERICO, AmoNIo GIANFAGNAIslill.1I0 di Mineralogia e PClrografla ddl'Universitiio, Piazza Aldo ~I..ro. 00185 Roma

RIASSUNTO, - 1.0 studio si prefigge: di approfon.dire le conoscenze sulla variabilita chimiCll del mi·nerale, anche in tifetimeJllo alia giacitura, e didefinire le rclazioni fra chimismo e proprieta fisiche.

Le meliliti «vukaniche,., che: presentano unanotevole omogeneita chimica, sono carancrizzale daun piu elevato contenuto in Si e Fe e da uninferiore contenuto in Al nei confronti delle melilititinvenute nei proieni che mOSlrano viceversa unaampia vniabilitii. chimica.

Delle melilili c:saminale: sono Slale determinatele roslanti ouiche e le Qimensioni della cella e1e·menlarc. L'analisi faltori,lle condotla ha permessodi rilevare correlazioni positive fra 11., contcnuti inMg, (Na, Kj, Fe, Si e iodici di rifrazione e fra r.e rontenl.lli in AI e Ca. Sulla base di tali correla­l:ioni si 5000 evidenl:iati due trends.

Delle note «peg Structures,., risconlrate nellemdiliti c vulcaniche,. con maggiore frequenza, sonostate definite le composizioni chimkhe e ne C:discussa I'interprelarionc.

AIlSTlACT. - ThinY·lhrtt samples of melilites fromthe laV1l f1o~ and ejecta from Alban Hills volcanicregion have been examined with the aim ofestablishing the variabilit)' of the chemiall com­position also in conneaion with the various fieldsituations and of investigating the rebtionshipbetween chemistI)' and physical properties.

The «volcanic,. mclilites, showing a natrowrange of chemical compoo;ition, are characterized byhigher Si and Fe contents and by a lower Alcontent as compared with melilites in ejected blocks,which in contrast show a wider compositional rnnge.

Refractive indices and lattice paramelers have:been determined.

On the basis of factor anal~sis positive correlationsbetween 11. value, Mg, (Na, K), Fe, Si comentsand refractive indices and between c. value .nd AI.Ca contents have been found.

Peg Structures, more frequent in .. volClmic ,.melilile5, Mve been investigated as for theirchemical composition and (heir origin is discussed.

Introduction

Interest in melilite over a wide range ofgeneric environments, both terrestrial andextra-terrestrial, has been reponed by manyworkers, and its important role in various

mineralogical and petrographic problems hasbeen highlighted by H.S. YODER (1973).

As is commonly known, the first findingof melilite was made by FLEURtEU DE BEL­LEVUE (1790) in the lcucititic lava of Capodi Bove (Alban Hills) both in the ground­mass and in the cavities and cracks of thesame lava. Later DAMOUR and DES CLOI­ZEAUX (1844), VON RATH (1866), ZAMBO­~INT (1906), MILLQSEVTCH (1921), WA'SHINGTON (1927), SCHERILLO (193.5) and,more r~ently, TILLEY and HENRY (1953)and TURI (1968) have examined not onlythe melilite of the above-mentioned localirybut also the melilite found in ej~ra of va·rious kind, included in the well.knownformations of .. Peperino di Albano., • Vil­la Senni ruffs ., .. Middle Aniene Valley poz·7.olans. and .. Corrolle black pozzolans ...

Although the melilile has been reported asone of the components of many ei~ra fromthe «Welded scoriae .. formation of ColicCimino (Marino) studied by BARRIERI et a!.(1970), FEDERICO (1976) and FEDERICO andGIANFAGNA (1980) its composition was notyet known. For this reason we proposed tosrudy the mineral of this locality and, atsame time, to re-examine all melilites of theAlban Hills, including the abundant materialfrom the above·mentioned localities existingin the Museum of the Institute of Mineralogyand Petrography of Rome with the aim ofestablishing the range of variability ofchemical composition and irs relations wirhoptical properties and lattice paramerers.

Occurrence

The material examined here refers 10 rhefollowing occurrences:

- meliJites found as crystals lining rhe

1388 M. FEOERICO, A. GIANFAGNA

cavities of the Capo di Bove leucitite andthose comained in the groundmass of theleucititic lava (Aequo. Acetosa Row, km 8.5of the Via Laurentina);

- melilites in the ejecta embedded in thefollowing formations:a) «Peperino di AJbano» (localities: AI­

bano, Ariccia and Parco Chigi);

b) «Black pozzolans» (locality: Corcolle);cl • Welded scoriae» (locality: Colle Ci­

mino, Marino).

Melilite paragenesis is greatly varied; forthe sake of brevity, table I shows the mainmineralogical associations observed in blocks.As may be seen, melilite·kaliophilite andmclilite-kalsilite associations are very fre­quent, while the meli:ite-kalsilite-kaliophiliteassociation is only encountered in a singlecase. A detailed study of the Alban Hillskalsilite is in progress.

In the samples studied, the melilite variesin colour from almost colourless to yellowish,honey yellow, orange, brownish-red or brown,luster ranging from glassy to resinous. It isoften found in shon prismatic crystals with(lOO} and {OOI} dominant, both in thecavities of the ejccta (of which it alsosometimes represents a fundamental com­ponent) and of the leucititic lava.

Sam,)les studied and experimental pro­('ellure

In the: prt"SC'nt sludy dghtttfl samples of ITIC'­

liIile from e;ec;la and fifteen of melilite crystalslining the lava cavities were enmined.

Chemical analyses of mentioned samples wereobtained at the University of Manchesler using aCambridge Geoscan Mkroanalyser filled with aLink System quantilalivc energy dispersive syslem(E.D.S.) type 290 with ZAF·4/FLS quantitativesoftware. The electron !learn voltage was I' kVwith a 3 nA probe current.

Divalent iron was determined using the micro­analytic method replmed by RILEY and WILLlAMS

(19'9) on sample quanlities of approximately' mg.Stronlium has been determined by means of a

Jeol JXA.~A electron microprobe I'l fined witha W.D.5. system. Class C.5.E. of N.5.B. andme1i!jta whose: Sr COntenl was known (BnBlulet aI., 1972) have been used lIS slandards (Srcomenl ranging fmm 3~ 10 7400 ppm). ()pcratingcondilions: 20 kV, 30 nA.

Peg Slructure analyses were oblained using a

Jeol JXA.X)A microprobe Cl fined wilh a Linksystem quantitative energy system (ED.5.) Iype860 with ZAF4/F1.5 quantilative software. Theelectron beam vohage was n kV wilh 3 nA probecurrent.

Table 2 shows the a\'CT~ analyses III eachexamined melilite sample. Ferrous iron valuesreponed in the analyses are those: obrained ""jlhthe aoo..·e-mcnt'oned procedure.

Elaboration of the anslytical avenlge dara sup­plied the number of cations, calculated on the basisof 14 oxygens, shown in lable 2 and ploned indiagrams and the perttntages of end.members (0)reponed in table 4.

Refracti~ indices have been determined by theEmrnons double variation method, using phenyl.isothjocyanate and o-chloronaphtalene as immersionliquids.

Latti~ parametcrs were obtained using the least·squares refinement program elaborated by DE AN·CELlS Ct al. (1977). The values of spacings obtainedfrom X.ray diffraClometer data were CQrrected usingrellexions (Ill), (220), (311) and (400) of siliconused as an internal slandard.

Chemical composition

The data from the chemical analyses ofall studied samples will be separately con­sidered for melilites from both leucititic lavaand ejected blocks. Details on symbols andoccurrence are give in Appendix t.

M~lili/~s found ilS CryS/il/s lining CQvi/i~s ilndin groundmQJJ 0/ l~uci/ius

Two unpublished electron microprobeanalyses carried OUl on melilite found in thegroundmass of leucitite from Aequo. AcetosaRow were made available to us by R. TRIGILAand reported in table 2. The chemical com­position of the Acqua Acetosa and Capo cliBove leucitites is very similar, as shown byFORNASERI et 0.1. (1963).

As for the melilite lining the cavities ofthe Capo di Save lava flow DAMOUR andDES CLOIZEAUX (1844) and ZAMBONINI

( 1906) analyzed both the yellow and brown

(') Equipment $Cl up al the: Institute of Mine­ralogy and Pettoglaphy of Rome.

(0) In cakulaling the: end·member pcrttrnagessome calcium excess i~ frequently met. Thil« excess. calcium is usually interpteted as due 10lhe presence of some Ca·rich phases sud! asrankinite, merwinite, lamite, monticdlite in solidsolulion with melilite (YODU, 1973). Strontium has:been iocludec! with ClI1cium and potasSium withsodium in the rt!ClIlculalion.

THE MELlLlTES OF THE EJECTA AND LAVAS FROM THE ALBAN HILLS 1389

TABLE 1Observed mineralogical I1ssodl1tions in meliIite bearing eiecta from the Alban Hills

-,~ -- "~ --- --~I.ooullo, .,- ...1".... ..... CUll -,. Cell. C!ai_

I~' AI.-B Al.-I'"_...-~

rc-UI PC-IU PC-UJ rc-uo PC-OI' co-T _-.:I' a;-o. cc-. CC-1 CC-f;2 ce-u a:-Ll'_..~, • • • • • • • • • • • • • • • • • •- •.., • • • • • • • • •~~ • • • • • • • • • • • • • •~ • • • • • • • •.. • • • • • •.. • • •.. • • • • • •• • • • •~ •.. • • •~~ • • •" •..- • • •

varieties, while Washington (l927, an. 3;see also BUDDINGTON, 1922) examined avellowish.brown melilite. The most distincti­~e features of the composition of the melilitesanalyzed by DAMOUR and DES CLOIZEAUXand ZAMBONtNt is the unusual content inferric iron which reaches a value of 11.34percent, expressed as Fe-•.()3.

The chemical composition resulting fromforty-five microprobe analyses carried out onsix samples of yellow and nine of brownmelilile crystals from the Capo di Bove leu­citite, reported in table 2 as averaged ana­lyses, shows great homogeneity in bothvarieties. In all analyses the iron contentnever reaches the values indicated bymentioned Authors. In fact, for the brownmelilite the Fe~O.1 contents never exceed 6.3and FeO contents are below 0.6 percent,excepting one case in which its value reaches1.9 percent, while for the yellow melilite thehighest FeO value was around , percent;that of Fe::03 was always extremely low andonly in two cases were values of 2.4 and 2.7percent respectively found. Moreover for allexamined melilites the ratio (Na +K)/AIresults minor than I.

In the Na-melilite-gehlenite, Fe-gehleni­te-akermanite, Fe·akermanite diagram in

fig. 1 the composition of the examined melili·tes is shown including also the analyses in theIiteratute (a). An inspection of this figurec;hows that the representing points fall ina small area near the Na-melilite..-akermanitejoin while in the AI-Fe, Mn-Mg diagram(6g. 2) the greater part of dots clustersaround a point corresponding to 34, 21, 45percent respectively.

The analyses also confirm an enrichmentof iron at the expense of magnesium at therim (see fig. 3), as observed by SAHAMA(1967) in melilite phenocrysts of severalvolcanic rocks and of strontium at theexpense of calcium, as reported by FITTONand HUGHENS (1981) for melilite micrQ.phenocrysts of a nosean-leucite-nephelinitelava from Etinde, Cameroon.

Lastly, the melilite contained in the leu­C"itite from the Acqua Acctosa £Iow and inthe cavities of the Cape di Bove leucititeshow quile similar features with, in parti­cular, very high values of the number ofSi ions, never falling below 3.8 on thebasis of 14 oxygen atoms, and sometimesreaching 3.9.

(") Delails on occurrence .nd rd~ of lite­nuufC' lIJllllyses are given in Appendix 2_

1390 M. FEDERICO, A. GIANFAGNA

TABLE 2AIJ~rt1geJ chemical ana/yus and structural formulae 0/ meli/i/es from the Alban Hills

l~l~""!.JJ'I.M.:.M'I.•).!.S)'I.)I'J.I"I'))'J.I"J.l"I.• 'J.~'I.IJ'I.~'I.)I').11

«0,.It)II.•••.•' •• l••.ll •.~ ••)ll.l••." •.~ •.Ml.~ •. II •.~ •.1".",.",."

'",°1 \.1< .U .01 1.11 .)1 ,.n I." S.U •.•• ,." ,.U S,U '.n ".t '." '.00 ..

..0 .1. '.Il '.Ll ).)(1 ••,. 1.11 •• 11 .n .01 I." .M .16 .10 .11 .0.0 .11 '.'l:I(.)- .•Il1O '.21 •. " I." '0>' '.01 1.11 S." "lot 1.01 1." •• 11 ,... 1." lo') '.J] I.ll I.ll

c:oo I).» ".'1 )1.11 )I.U n.n l).n )4.)4 )01.6<1 l).n ...ll )1,," ll.Jl' )'.'1 H.'» U.... n.u )S.U

.:0 1." •.Ml.)(I""'.~I.)ll."I.• I.')l."I."I,"I.o.ol.I'l"'l.Hl.H

y .".n ,)I .Jl .)(1 ,XI .•' .1\ .1\ .1' .11 .•s .n .XI .n .n .M

_ .....ft.lI.II.'ID.".N.. .•• .n .• ." 1.11 .n I.U ." ..

-..1 1Ot.~ l<lD .... lOO.ft 100.10 100.~ IOO.n IlIll.U ".M .....14 lOO.~ loo.n 100.01 100." 100." IOl.U ""'... lDO.n

",,1_, ..1nl..... _ ... _10 et u _.

••"••••

).n: )."" )._ ).U: 1.'" ).It)

•. _ .no .MI .'JJ .'" .....1l1 .on .00) ••n .OH .Ofl

._ .141 .111 .IS! .•01 .f".~,

...~ ."1 ,._ ...1 .t,. ."1

1.361 ) •.,~ I.~" 1.)1t 3.0S~ I.":

•nl .011 ._ .S" .0" .O~l

.010 .017 .OU .011 .0'1 .Oll

.OU .O~) ....1 .... ~ ..... .0'"

.In .Il'

.It> .IN

.110 .....

.~,

.UI· .110

1.40/ I.)ll

•~ll .loOl

.Olt .on

.... , ....1

,.-•111

.nl

.~,

'.CIOl

).on.01'

.014

.0•

,.-•••.1".,.

I.ot'I.")

•"I

•0",.•,

.,.•JJI..,.1"l.n~

.~lJ

.0) •.•,

1.IM

.~

.'.

.OH,,­)."~

."1

.on.-

,.-

.111

3.01'..•.on.H'

).1)4

.~..

.Oll

1.0)

1. ~II

.OS'..,

..,

•••.UI.0.

.IS'3.01'

.H'

.0)'

•••

'.n~

.>l0..,.-

.m) ....•••

).9)4

•••.n'.~,

l.lOt1.0n

.on

.0.0

.. = number of averaged analyses; + = below detection limit; (.)= IOtal iron lIS FeD; Analyst: A. GIANFAGNA.

In terms of end-members. variations incomposition may be ~presented in the: yellowvariety by Na-melilite 23-30, gehlenite ~-6,

Fe-gehlenite (4) ().~, Fe-akermanite 13-21 andakermanite 44-55 percent and in the brownvariety by ~spectively 26-31, 4-7, 7-13, 0-8and 50-58 percent, as shown in table 4.

Melilites 0/ ejected blocksTwenty-eight analyses have been perfor­

med on nine samples ftom the «Peperinodi Albano » formation, ten analyses on threesamples (:;) from «Black pozzolans» andtwenty analyses on six samples from«Welded scoriae» formation. Averaged

(') According to NU.SE and MtDGLEY (l9.H), lhe:C'Omposilion of !he Fe-gehlenite member correspondsto c.4e>'AlSiO,. InStesd, according 10 vWousAuthots (SAHAMA, 1967; YODEJ., 1973; S£lF1!.I.T,1974; HUCKENHOLZ and OTT, 1978) it corresponds10 Ca.Fe"·SiQ,..

(0) One of the: samples previously INcHed (Tul.I,1968) has been kindly lupplied by B. TUll.

analytical data a~ reported in table 2.As may be seen from the diagram in

fig. 1 the variation of the chemical com­position is greater in melilite from the ejecta.The representing points are scattered overa large a~a in which also the melilites fromthe Capo di Bove leucitite are included. TheAI-Fe,Mn-Mg diagram (fig. 2) shows cleardistinction between the melilites of the lavasand those of the blocks. Actually, the com­positions of the samples CC-A, AR-K8 andAR-52 only overlap with those of the me­Iilites on the lavas while all the remainingmelilite samples in the blocks a~ distributedalong the Mg-AI join and generally showhigh AI contents.

Lastly, it should be noted that the numberof Si ions is far less than that calculated forthe melilite from the leucitites, correspondingto a mean value of 3.69.

In terms of end-members, variations incomposition may be represented by Na-me-

THE MELILITES OF THE EJECTA AND LAVAS FROM THE ALBAN HlLLS 1391

TABLE 2Averaged chemical analyses and structural formulae of meliJites from the Alban Hills

110, )6.1) 01.110 "'.U 01." )i." ".20 ".110 U." 00." )i.01 )1.1' 00.70 01." ..... 00." '1.14 n.'"

,.» ." ,.10 .M .to

...

'.ll

I."I.n.H

,."I.n..."

,.'" ••11 ..... '.n

'." '.:10 ... .Il

.... 1.U 1.11 I."

I.Jl 1.11

...l.n

.H

1.)11. "

."

•.'" 10.0> ".') \1.'" •.•." •• " ••11 ,.n •.•

1.01

."

.H

'.10

'.ll

,....,.",..,...

."

•• lI .... 11.11

,. Jl

I.n .... l .....

I.U .... , ....

."

..1.0)

...

..".•\.1.

,."••••~... 1I.11 n.10 16.... lO." 11.19 )).10 ".11 '0.11 16.JI It.)I 31.14 lO.'t ll.lS lJ.l1 n.lI lJ.lI n.1IO.,. '.U 1.00

.11 .\1

•JO .H

1.11

.".•J.ll

."

."

l.ll

.".• I."...n

I.".".H

I.U

."

."

I. )1

."

.n

I.Ot

.n..'.1)

.n..).11

."

."

1.11 1.17

.11 .lol

I." .IS • >1 ••."

•••.n.•

T..... \0'.01 100.11 11 100.10 ., 1OlI.U \ , ' n 1ll1.1. I '" ' 10 JJ \01." 110.\0 Illl." 1OlI.n

,,<I..., ..1...10... _ ,M 110,10 sf \0 ..,......

.0>' .0's

.n,

.OH.,...",.".1.On.­.N'

..-

."

...1.U..­

.011

,.m.141 .tOl

•1" .11'.,to .0U

.Oll..., \ .....l.'n 1._.....H'.- -...... .031

.lS1

.111

.,,'

.011

.­] .'01.­

.Ol'

S••JO

.-.oll

.lSl

.sn.­.•,•Il•

S.l".-~.

1.'1l

.m,

\ ••t>

.17'.."'.08

•.m.,n.-

1.'"

.010

l. Sll

.Ill

.M'.-

.N'l.nl.m

•••...,.-.­..­.•n

••H

.n,

1......,•••."..",.OU

,.~

1."".-.-

1.'".OH..'.on.­.0u

'.111

1.....-

l.,n

.­.-

1.0U

."".,,.

.OH

.,",.~

.'n

••H

1.JlJ

I.'".011

.01•

.Oll

.ns..­.-.OH

.611 .701

•011 .lTI

.10' .lXll..,, •.", .111

1.loCIl S.'1ll

.SlI .lll

.-

1.1t! 1••"I. 'SI.­.,".",.010

..­S.Ul

."'.m,.",

J."t

.u.I.U'.,.....

,.~

.011

.M'

""..•,•

• = number of Iveraged Inllyses; + = below delection limit; (.)=totll iron lIS FeO. Analyst: A. GIANPAGNA.

No-mel AI

Mg

o•j",

t "!ilJ°-",. -• 0

.. .,:....it; • •\:..•

Pe. MnAk. Pe~:" Ak

"•

\·f"'" 0" ." .o

.-.,.....• * ~.•. ",.'

Geh. plf':'Geh

_,- ---'> 0,,. '

Fig. 1. - Md-Hilt compcKltlons in lerms of .. end.members,.. Symbols u in the Appendixes.

Fig. 2. - MeliIite samples ploued in Al-Fe, Mn­Mg diagram. Symbols .u in the Appmdius.

1392 M. FEDERICO, A. GIANFAGNA

Mg

AI

FIg J. - Variations of the AI: Fe: Mg ratiofrom the core (black fymhoff) to the rim (openfymboff) of selected melilite cry5ta!s.

Fig. 4. - Peg structures in lava melilite, brownvariety. Lenght of the bar 0.05 mm.

M = brown me1i1ite from Capo di Bove (CB-861);a, b, c = analyses of three different spots of ap<g.

lilite 12-38, gehlenite 1-34, Fe-gehlenite 1-14,Fe-akermanite 1-11 nnd akermanite 37-60percent, as shown in table 4.

Peg structures

Under the microscope, the well-known pegstructures with their usual appearence, so-

TABLE 3Electroll microprobe analyses of some pointsof a peg compared with microprobe analysis

of the host melilile

metimes more or less lens-shaped, in themelilites from both the ejecta and leudtitelava flows are displayed, as can be seen infig 4.

The microprobe analyses of some pointsof a lens-shaped peg are shown in table 3and compared with the analysis of the hostmelilite. A remarkable progressive loweringof the Ca and Mg values may be seen,countered by an equal progressive enrichmentd Si, Al and Fe. In the present investigationon the peg structures, points whose com­position could be referred to nepheline orkalsilite are not found.

As for the interpretation of these struc­tures various hypotheses have been formu­lated: according to NURSE and MIDGLEY(1953) they are due to an exsolution of asecond phase, while YODER (1973) suggeststhat they record volume change resultingfrom polymorphic inversion. Later EL Go­RESY and YODER (1974) reported in somepegs the presence of ~_hree phases: a Ba-richkalsilite, nepheline and a Si02-rich mineralwhich represents the major part. They con­sider kalsilite and nepheline as the productof exsolution of a high temperature akerma­nite rich in Na-melilite and K-melilite andthe SiO~-rich phase as an alteration productof the melilite. As shown by SAHAMA (1976),the formation of a single peg implies theremoval of Ca and Mg, the introduction of

•5S.9) 61.)S

10.52 Il.lS

6.11 ,.~

1.9S l.40

,.~ o.n

1l.00 l.n

6.96 6.26

6.81 6. 73

6.69 6.66

6.19

81.8<'1 88.1S

6.S)

l.12

6.91

6.n

,.~

Silo 26

n.n

,5;°2 41.99

A110) 1.19

,~ S.I'... 1.96... ,.~

,~ )S.41

.°2°2.15

", 0.21

T'02 0.11

C<IOl

~ ,00.98

THE MELlLlTES OF THE EJECTA AND LAVAS FROM THE ALBAN HILLS 1393

TABLE 4Chemical composl/lOns expressed '" terms of end-members, optical cons/ants and lal/ice

parame/us of melili/n from ,h, A/ban Hills

,- .- <-~ ~,. ~". r. -viol_ P. _""__•.

w < w·, .-...-It 11.1_ IJ.U '.M _.U U.U I."U I."" 0.0lt1l I.IH ~ 0.001 ).OU ~ 0.00......... 14." I)." 1.11 1.0/ "." I . .,,, '.1"1 0.0011 I.n. : 0.00' ).01'6 : 0.0lt1

M~ S ... ,." '.M 10.1$ ".01 '.ntl. 1.1'" 0.00>1 I.n' ~ 0._ 1.0H ~ 0._

M_M n." l." n." 0.'1 ".1/ 1.llll 1.1") ..- 1.1" : 0.001 '.011 ~ 0.001

K-lll ll.n n." I." _.n n.)l I.IUt 1.1'" O.OOU 1.11) : 0.001 1.0>1 : 0.001

K'IH l>.ll n.II ).11 •. t! ".91 ,.- 1.llll 0._' 1.1" : 0.001 '.on ~ 0.001

rc_1)1 ll.ll 10.1l '.M '.n "... 1.13/' ,.- O.OOU I.n) : o ...n '.01' ~ 0.001

rc-U' 14." ••• ,." ,.. 10.01 1.13" 1.1311 O.OltH 1.1.) ~ 0.001 1.01l : 0.001

rc-UI I .... lI.n ,." ).n 'l.n 1._' 1.1'" O.Olt1O l.n. : 0.001 1.014 : 0.001

~. 11.11 11." '.M '.It ".a 1."'1 I .•lll ..- l.lll ~ 0 ....2 1.0)) ~ 0.001

~ n .•l Il.n .." .." I'." ,.- 1."'0 0 ....10 1.111 ~ 0....2 1.0/' ~ 0.001

Co-lI. n." '.ll '.11 '.M ••.n 1.1111 1 . .,11 o.oolt l.llt ~ 0 ....2 1.0]0 ~ 0.001•.. ".M I.,' 1." ,." ... ,. 1."10 1 . .,:10 ..- l.nl:o....1 1.0ll ~ 0.001.-. n.n 11. 11 I." 11.). 11." 1."11 I.U" ..- l.IU ~ 0.00. '.018 ~ O.C';II

.-, 21.SI 1'.'1 '.1/ 1.10 11.11 1.•llO 1.64/0 0._0 1.110 ~ 0.001 ).011 : 0 ....1

<x-U n." '.11 '.M 1.'6 "." 1.6111 I.nn ,.'- '.1)1 ~ 0.00) '.0)0 : 0.001

<x-U 11.1' 1.11 '.n '.M 'I." 1. ..1I 1."16 0 ....1l 1.111 ~ 0.001 '.0/1 : 0.001.-u ".OJ 11." ).01 ).)1 '1. " I.UlI 1.6)0) 0.00.1 '.106: 0.001 '.on ~ 0.001

c.-<;n 16.11 '.1/ 0.1$ :10.11 11.11 I."ll I.UU 0._' I.IH ~ 0.001 '.on: 0 ....1

,~. lJ.Il .." ••• n.)' ".'1 I.'" ~ 0.001 '.on ~ 0.001

C.-<;U I'.U '.M .." Il." ".11 1.1" : 0.001 ,.on ~ 0.001

,~. 11.1' 1.11 0.11 11. I' ".M l.ltl ~ 0 ....1 1.0>0 : 0 ....1

,~ 21.n ... '.M 1l.11 '1." 1.1" ~ 0 ....1 '.021 ~ 0.001

,~. It.'' _.11 '.M 11.11 .,.Sl I.ltl ~ 0._ S.Oll ~ 0 ....1

C"IlI lO." ,.., lI.n 1.11 ".M I.nl ~ 0.00) 1.0n ~ 0 ....1

C....I 11." 1.0/ ,.)1 .." "." l.In : 0.00' 1.01' ~ 0._

c...71 JI.Ol '.11 .." I.U lI.U 1.111: 0.001 '.on ~ 0.001

c...n ll.N '.n '.91 I.t! JO.U 1.17) : 0.0Dl 1.0H ~ 0.001

C"P, 11.01 '." t.1l 1.11 )6.)1 1•.,72 1.lllS 0._1 I.'" : 0.001 1.011 ~ 0.001

,.~ ••• '.0) 10.n 0.0) ".H I."': 0.001 1.01. : 0.001

C...) 11." •.It .." I." n.n 1.11. : 0.001 '.OJ!) ~ 0.00'

C.... 11.10 '." n.1O 1.17 ».M l.ll' : 0 ....1 ~.0J!) : 0.001

~., 1'.10 '." ••12 o.n SS.I' I.'" ~ 0._ •.021: 0._

K and a probably passive enrichment of Si,AI and Fe. This Author concludes that thepeg structures may teptesent the fitst phaseof an alteration process latet involving thewhole crystal, and referable to a complexmctasomatic process during which somepoints may reach the composition of nc­phelinc and kalsilite or both, without neces­sarily involving cxsolution processes.

In this contcxt the above mentionedprogressive enrichment of Si, AI and Feobserved in the melilile pegs from the: AlbanHills may well represent the beginning ofa large scale alteration process involving thewhole crystal, which has already beendescribed as originating the material indicatedas opal pseudomorph afler m~lili/e observedboth in ejecta and in leucitites of the AlbanHills (FEDERICO and GIANFAGNA, 1980).

Relationship hetween chemical compo­silion, refructive indices and lallieeparameters

Table 4 shows thc refractive indices ofall melilite samples coming from the ejecta;for the melilite from Capa di Bove leucititethe refractive indices of two samples onlywere measured, respe<'tive1y for the yellowand brown varieties, because of their greatchemical homogeneity. The optical sign wasnegative, except for the CO-T sample fromCorcolle, which has been previously reportedto be isotropic (TURf, 1968), and the bi­rifrangence ranging between 0.0009 and0.0090.

A comparison of the: refractive indiceswith the chemical composition as reported

1394 M. FEDERICO, A. GIANFAGNA

C,Fig. 5. - Relationship of 4. versus C4 of meliliteSlImples. Symbols as in Appendix 1.

however, no iron-containing melilites wereexamined.

HUCKENHOLZ and OTT (1978) showedthat the replacement of AI by Fe8+ ingehlenite-Fe-gehlenite solid solutions in­volves a double increase on ao with respectto Co. Fig. 5 shows ao values referring tothe melilites found in the blocks, generallyricher in aluminium and with low Fe3

+

content, confirming the above results alsofor natural products.

In order to obtain a more complete andquantitative evaluation of the relationshipbetween chemical and physycal data, factoranalysis according to J. FRANE and M. HILL(1974, 1976) has been applied to thechemical composition, expressed in terms

in the same table shows that Fe-gehlenite (G)appears to have a great influence on theraising of refractive indices, while the in­fluence of the Fe-akermanite is less: this isparticularly true for samples CB-G53 andCB-G75, representing respectively yellowand brown melilites from Capo di Boveleucitite, whose Na-melilite (1) and akerma­nite contents are comparable. In fact,CB-B75 sample, whose refractive indices areamong the highest measured, has mean per­centages of Fe-gehlenite, gehlenite and Fe­akermanite of 9.8, 4.6 and 1.1 respectively,while very low values are found in CB-G53sample, whose percentages correspond to 1.0,5.6 and 20.6 respectively.

Lauice parameters of examined melilites,reported in table 4, are shown in fig. 5 inwhich two areas may be identified, one,perfectly defined, occupied by the yellowvariety and the other in which nearly all thebrown melilites On lavas are contained. Thisarea comprises also a few melilites found inthe ejecta. Since analyses indicated that theyellow and brown melilites are very similar,only being different owing to the reversedFe\!' /Fes• ratio, we should conclude thatthe higher ao values characterizing the yellowmelilites are related to the presence of theFe2

+ cation and thus to the percentage ofFe-akermanite, whose lattice parameters, ac­cording to SEIFERT (1974), are ao=7.900 (2),Co = 5.002 (3) A.

As far as it is known (KIMATA, 1980),the ao value is effectively influenced by theiron radius of the divalent cations, whileincrease in the Co parameter depends signi­ficantly on the ion radius of the trivalentcations, both occupying the tetrahedricsites in the structure. In KIMATA'S paper,

(0) The refractive indices are not known for thismember since the values supplied by NURSE andMIDGLEY (1953) refer to a synthetized productwhose composilion, according 10 HUCKENHOLZ andOTT (1978), does not correspond to that reportedby the above Authors. In the products synthetizedby HUCKENHOLZ and OTT the solid solulion ofFe-gehlc:nite in gehlenite reaches a maximum valueof 37.5 percent under (l:~rtain p. T conditions.

(T) Na.melilite refractive indices reported byNURSE and MtDGLEY (1953) actually refer 10 aproduct interpreted as a mixture of nepheline andpseudowollastonite as reported by YOOER (1973).The maximum content of Na-melilile in melilite isabout 39 percent by weight (EL GoRESY and YODER,1974).

G,

7.790

7.780_

7.770

7.760

7.750 _

7.740

• •U

••

5.020

o,

THE MELILITES OF THE E]ECTA AND LAVAS FROM THE ALBAN HILLS 1395

TABLE 5Variance explained and cumulative proportionof total variance for first set of selected

variables

TABLE 7

Matrix of factor loadings lor studied sampleson the first three factor axes

'ACl'OR

TABLE 6Correlations among variables and factors

Table 5 shows the variance explained andthe cumulative proportion of total variancefor the 6rst set. Thtee « factors» accountingfor 86 percent of the information are re­potted in table 6. On the basis of these

of both (Na, K), Ca, Mg, Fe2 +, Fell +, Al andSi cations and end-member percentages, lat­tice parameters and refractive indices ofstudied melilite samples.

As 6rst set of variables cation numbersand ao, Co values (9 variables) have beenselected, as second set percentages of end­membets and refractive indices (E, w values)(9 variables) have been selected and as thirdset cation numbers, lattice parameters andrefractive indices (11 variables).

,u= ..~ ..~.. -.86J -.438 .~

" • .8S9 .~ .281

,. -.all .~ -.)11

" • .116 .~ .~

~ • .617 -.H2 .~

~., .~ .9S6 .~

" .~ -.910 .~

1.2• .l81 .~ .9l1

,.J. .~ .JlI -.80S.. ).J61 2.610 ~.1l8

SA,II'LZS

.u-J9 -J.98J -1.)06 .~

.u-140 .219 -.489 -.IJ4

AA-" . 619 -.OS4 .610

AII-S2 -.Sll 1.066 -1. S24

PC-i21 -3.101 -. US .121

PC-i26 -.SH .290 . 110

PC-ill .910 -.912 .00'

!'C-134 .661 -.019 - .181

PC-4L6 .I2J -.111 .019

,~. -1.)(13 -1.599 .213

,~. -.1'18 -l.SlS -.1011

Co-~16 -1.211 1.116 -.In

~-. -.OH 2.241 -.214

CC-. -.S10 .3S$ .124

CC-X -.109 -1.01S -.833

CC-X2 -.612 .126 -.1S4

CC-Ll .b"S -.429 -.MS

CC-Ll -1.911 I.lft8 .)H

CI-CS) .6~6 .Sll 2. L8'

CI-C6l 1.14) -.SIS I. SIb

C&-C16 .IS1 .819 1.060

CI-Gal .692 .348 L. 91S

,~. • ~62 -.016 1.210

C&-C98 .0" l.OI) I . 611

CI-nl -.OJS .8~0 -.9H

Cl-Ill .lO) -.161 -~.)11

CI-.'I 1.""" -.>1) -.<>lo8

CI-IH •• AA .,. -.696

CI-I7S .IH -.012 -1.20'

C..... ,B .11$ -.Oll -\.,18'i

C.-Ill) 1.061 -.429 -.91)

C....184 .4'1 .6)S -.989

CB-I81 .'96 .IS8 -l.llS

« factors» positive correlations between ••value 'nd (Na, K), Fe2 ' , Si contents 'ndbetween co value 'nd AI, e,. Fes- contentsare found. Table 7 gives the matrix of factorloadings 10< 33 samples on the 6rst threefactor axes which have been rotated ,,-carding to the varimax procedure. Inspection

V.ulMlC~

_.Pll.OPOk.

~XPU.I$D or 'l'ClT"~ V"'iAIIC~

4.046 .,.2.JII .7lJ

I. JSI .$63

.18'1 .nl

.,y .980

.101 .nl.'AA .,..01S ..~.~ ..~•

1396 M. FEDERICa, A. GIANFAGNA

F2 F3

~ •, , •• •• ~ •• • •.~ • • 0 0 m• 0•It> • F1 • 0 Fl•0 -, -, • , -, 0-'

~ • e ,.'"' • • ~• ~ •

Q -, • •.,0 ••

-, -,0 ~

Fig. 6. - Plots of factor loodings on the three varimax factor axes. Symbols as in Appendix 1.

of fig. 6, where the factor loadings two axes;It a time are plotted, allows to point outthe different behaviour of lava melilitesfrom the mOst part of ejccta melilites. Infactor 1 vs. factor .3 diagram a trend appearsfrom ejecta melilites, characterized by greaterAl content and higher Co value (least factor1 value), to lava melilites, characterized bygreater Si content and higher ao value(highest factor 1 value).

The parallel analysis carried out on thesecond set, either selecting cation numbers

TABLE 8Variance explained and cumulative proportionof total variance for third set of selected

variables

and refractive indices as variables or end­member percentages and refractive indicesas variables, allows a less clear definition offactor loading trends.

From the third set the variance explainedand the cumulative proportion of total va­riance are reported in table 8. The first four« factors» accounting for 94 percent of theinformation are found in table 9. On thebasis of these « factors» positive correlationsbetween 0 0 values, Mg, Si, (Na, K), Fe con­tents and refractive indices as well as Co

TABLE 9

Correlations among variablesand factors

,~.

,

u

VARIANCl CUMUL. PKOPOR.I'.llPLAull:D Of roYAL VARlAlOC!

"'.n4 .)65

"''.e41 .644 ..1•• 28 .806 .,1.011 ' .U9

~.'••8. .%' '".126 .985

".08~ .992 W

.054 .99J •

.018 .999 fo l •

.01' ,.~ ro"'

.~ ,.~

,

•u

.,. .~ .~ .~

.659 .~ -.no -.)59

-.805 .~ .)4) .~

-.7J6 -.5'10 .~ .~

.~ .910 .~ .~

.~ -.961 .~ .~

.639 .745 .~ .~

.~ .~ .,u .~

.~ -.)85 .866 .~

.~ .•45 .•w -.1S1

.~ .~ - ••19 .,~

).172 l.IH <'15) 1.244

THE MELlLlTES OF THE EjECTA AND LAVAS FROM TIlE ALBAN HILLS 1397

F2 F3

9 .' •

o.,

•.,

.,o

, Fl

o.,

0' ~

.,

, Fl

Fig. 7. - PIOIS of factor loadings on the fow varimax factor axes. Symbols as in Appendix 1.

value Al and Ca contents are found. Table 10gives the matrix of factor loading on the

TABLE 10

Ma/rix 01 lac/or /oadings for studied samp/uon the 6rs/ lour axes

Conclusion

A brief treaunent of the present know­ledge of the Alban Hills ejecta may be asuitable introduction to the conclusion.

From both older (LACROIX, 1893. 1917;WASHINGTON, 1927) and more recent studies(FORNASERI, 1951; FORNASERI et al., 1963;

FEDERICO, 1976) the ejecta embedded mthe various formations of the Alban Hillsmay generaUy be classified in twO groups.Some of them, due to their structureand mineralogical composition, are closelyrelated 10 the leucititic magma itself, ofwhich they represent the intratelluric crystal­lisation product. Others show characteristicsprocesses within the framework of meta­morphism between the leucititic magmaand the basement rocks which are com­posed of units of Mesozoic pelagic sequen-

first four axes which have been rotated ac­cording to the varimax procedure.

From factor 1 vs. factor 3 diagram infig. 7 twO trends are found. The first IS

characterized by a continuous decrease ofc~ value and AI content and the second oneby a cominuous decre3se of refractive indicesand Fes · coment. As indicated above yeUowand brown varieties of lava melilites havea very similar composition but their differentFe2-/Fes • can account for the anomalouslocation of the latter .

.~,

-.HO

.361

".1110

-.291

.OIS

.u.I.JSO

-.In

..~.n'.JU

-.m..~

".In

-.421

.~

-.911

.1n

-.HO

-.4S1

.I$l

.101

.,~

-.HI

2.016

-.112

-.162

-.'U

-.1 ....

-.221

1.120

-.~

-1.11'

.\21

.'n

.1l4

.19)

.,.

.n'

-.ns

-.3:1

2.0n

".]49

-.S02

-L .262

-2.)01-.SJ9

.H'

.n'

.]11

. Ji'

.,"

.'U-.H'

-.~

-.2"-.2:2

-.lU

1.0U

-1.194

-I.SII

.'21

I'C-I:J.I

I'C-UI

CO-U6

CC-.

~..

Ca-<:$l

C'-lIS

1398 M. FEDERICO, A. GIANFAGNA

ces, represented essentially by limesto·nes, overlain by neogenic and post-orogeniccomplexes, composed mainly of shales andpelitic units, present on the depressed partsof the basement. Although from the studyof sedimentary inclusions in tuffs there isno direct proof of the existence of Triassicterms, there are several indirect indicationsof the existence in the series of such termsreferable to evaporitic episodes (FUNICIELLOand PAROTTO, 1978).

In this work the melilites found on thelava as well as those contained in the ejectedblocks have been examined. It was possibleto establish the limited range of compositionin terms od Fe/Mg ratio of the meliliteslining the cavities or rontained in the ground­mass of the leueitite, u·hich may be consi­dered as « volc~mic ». This term, put forwardby SAIIAMA (1967), is used for mc1ilitesoriginating from mllgmatic consolidationincluding thereto the late action of thefluid phases and excluding every interactionprocess between the magma and the wallrocks.

The chemical characteristics distinguishingthe « volcanic. melilitcs are represented bya high number of Si, Fe:- and Fe"- cstionsup to 3.907, 0.393, 0.471 atoms respectivelyon the basis of 14 oxygens.

In contrast to the restricted compositionalvariation of the « volcanic» melilites, a largevariation in the chemical composition as awhole of the ejecta melilites has been foundwhose main feature is represented by agenerally high number of AI cations, some­times reaching 1.699 on 14 oxygens, forthe typically metasomatic melilites. As csnbe seen in the AI-Fe, Mn-Mg diagram infig. 2 most of the samples plot near theMg-AI join. Only a few of them fall in thearea occupied by the «volcanic .. melilites,namely the CCA, AR-K8 and AR-nsamples. The blocks containing melilite ofsuch a composition may be interpreted asproducts of intratelluric crystallization eitherof the leucititic magma itself or of somederived melts due to a limited assimilationof the wall rocks.

At present these results seem 10 outlinea certain correlation between the nature ofthe blocks and chemical-physical features ofthe melilite. However for want of a detailed

petrogenetic study of the ejecla melilitecannot be considered a genetic tracer froma petrografic point of view.

The relation between chemical compo­sition in terms of end-members and refractiveindices shows the great influence on theraising of the refractive indices of the Fe­gehlenite.

Well-defined areas may be identified inthe 0" vs. c" graph, respectively for theyellow «volcanic» melilite - containinglarge amountS of Fe!' - and the brownvariety in which, on the contrar}', Fe!'prevails.

Factor analysis has shown positive cor·relation between a.. value, Mg, Si, (Na, K),Fe contentS and refractive indices as wellas Co value and AI, Ca contents.

Peg structures, sometime lens-shaped, areoften observed in Alban Hills melilitcs.Electron microprobe analyses allowed tofoUow the process which, starting from me­lilites, by progressive leaching out Ca andMg, leads to an essentially silica-rich finalproduct, which may be idemified, althoughon a different scale, with the pseudomorphicopal after melilite already reported in aprevious work (FEDERlco and GIANFAGNA,1980). The peg structures would thereforeseem to represent the initial stage of apeculiar transformation process involvinggradually, in extreme cases, the wholecrystal with complete alteration of its com­position.

The paragenesis of melilite in the meta·somatic ejecta is greatly varied. It may bebetter understood if we consider the in­teractions between the leucititic magma- itself having some of the characteristicsof a melilitic magma - and the countryrocks of the basement. YODER (1973) fullydiscussed the possibility of the reactionbetween diopside and calcite to form aker­manite. The formation of gehlenitic moleculesimplies the presence of the necessaryamount of aluminium. which could be madeavailable by the day minerals of the highestterms of the sedimentary series as describedabove. Desilicization of the leucititic magmafully justifies the formation of kalsilitic mo­lecules and the observed associations of me·lilite and kalsilite and/or kaliophilite. In themost significant of these associations (e.g.

THE MELILITES OF THE EJECTA AND LAVAS FROM THE ALBAN HILLS 1399

.-.1.1 "901)

".."__ .....'.1.....~.

.....ll'. U.'"fl".,. ... ...., (l'n)

:rod 0"')

...,..,,10 ...._ ••'lo,.....1_·......,.. " .,--..,~......,....c

di + 3 ks + 4 fo + CO2 + H 203 phlog + CaCOs .

ApPENDIX 2

Symbols, occurrence and referencesof literature analyses:

This retrograde reaction, which impliestransformation of the products formedthrough the previously described process,in presence of excess of diopside, may havetaken place during a late phase of the meta­somatic process.

Acknowledgements. - The authors are indebtedto Prof. ]. ZUSSMAN for permission to use thedectron microprobe in the Department of Geology,University of Manchester, to Mr. T. HOPKINS forhis advise on microprobe techniques, to Dr. C. AURl­SICCHIO for performing the dectron microprobe:analyses on peg structures and Sr determinations.They also wish to thank Prof. R. TRIGILA whomade available two unpublished analyses, Pro£.M. BARBIERI who provided standard melilite samplesand Prof. M. FULCHIGNONI fot helpful discussionupon factor·analysis results.

Research supported by contribution of Ministerodella Pubblica Istruzione and Centro di Studio perla Mineralogia e Petrologia delle Formazioni Igneedel CN.R., Roma.

••

almost all the samples (excluding the ejectafrom the «Corcolle black pozzolans» inwhich it has not yet been observed) may beascribed to the combined action, in differentproportions, of water and CO~ on thediopside-kalsilite-forsterite association, asshown by YODER (1973) according to theequation:

·..,....* --., .. , ............_ ...1••, ......, .. " .,_- .l..........._1•• U"')

* ..I .......1",·--"010<' .....lo..-

.....,... ",,'I',·

...........t ..

01 t! t.' .."u"......."..-....I'l"

Co..." •

P.... c",.,

..,1..1.

.......

• c....., ,01'" ...too, eo...1 __

ApPENDIX 1

Symbols, locality and occurrence of thesamples examined tu this work:

CCLl and CCl2 samples}, it is worthnoting that the melilite in equilibrium withthe kalsilite is rich in the Na-melilitemember.

The formation of melilite in the meta­somatic blocks may be represented, for anhypothetical transitional situation betweenpelitic terms and carbonaceous facies, by achemical reaction somehow taking intoaccount the composition observed for themelilites. Such a reaction may be expres­.!'ed by:

where the most common minerals observedin association with melilite may easily berecognized.

The occurrence of lIbundant phlogopite in

3 Ic + di + ne + kaol + 5 do + 3 cc(2 ak + 2 geh + srn) + ks + 2 fo +

+ 4H,O + lJCO,

(I; ..._n

• u-,'"0 ..-"·.....o re·mCl re_".() Ye_m

e PC-'"Q PC-'"o~.~~ ."."'.11 a:-.

11 a:-'.«g a:-u

1.01 a:-u

!l a:_L2

REFERENCES

BUSIER! M., FEDERICO M. & TOLOMEO L. (1970) ­Contributi afla conO$cenZ/l ddla calio/illite in re­latione a recenti ritrovamenti nella Regione vul-

canica dei CoUi Albani. Per. Minera1., 39,323-341.

BARBIERt M., PENTA A. & TOLOMEO L. (1972) •

1400 M. FEDERICO. A. GIANfAGNA

G~ochimic. dd/a slrQfU:io in tJlcu,,~ provinci~

~8usiw dtll'ltali. m"idionak Pa. MinertI.. 41,209-240.

BUDDINCTO... A.F. (1922) • On some na(ural lintsyntlmic meJiliftJ. Amer. J. xi., 5th Ser., J,35-87.

OAMOUJ. M. " DES CLOIZEAUX M. (l84}) . Me­moire sur la reut/ion de 1. mtiililt et de la bum.boldtili/t en une seult et mime tlpeu. Compl.Rend., 17, 1245-1246.

DE A."CELlS G., FARINATO R. 8< LoIlETO L. (1977) ­TIx crystal lalliet' cmlSttmU refinement: tI least­SqUlIftS procdure /or fix dir«t or tM reciprocidCQU. Rend. Sot. Ir.!. l-.lineraI. Peuol., H, )-14.

EL Gon:SY A... YODE.l H.5. Jr. (1974) - Natur,]IlfJd ryntlHtic mefi/iu fompositions. CamegieInst. Wash. Year Book, H, 359-371.

FEDEJ.ICO M. (1976) - On 11 Jea/silitoliU from tlHAlbtlfl Hiffs, 111I1J. Pa. Mineal., 45, '-IL

FEDEJ.ICO M. " GIASfACNA A. (1980) - Ca, AI andFt" b~aring opal pseudomorph afler m~liIiU inthe e;eCfa and lavas of Ihe Alban Hills, fMy.Per. Mineral., 49, 149-1.'7.

Flnos ).G. a. HUGHES D.J. (1981) - Strontianmeliliu in a nephelinite lava from Elinde, ClI·mnoon. Min. Mag., 44, 261-264.

FLEUI.IEU DE BELU:VUE (1800) - Mrmoir~ sur lestristllux mkroscopiqurs rt ~" p4rticulirr sur IIIsbneUne, fa mHilile, '" pseudosommi/e et lr seletromano. Joom. Phys. 01. el Hisl. Nat., -'I, 4-'6.

FOlNASEJ.1 M. (19-'1) . RicncM prtrog,rapcbe suiVulcano uriak 1 proirtti indusi nri tup. Per.Mineral.. 2<l, 211·235.

FORSASEll M., ScHEI.ILLO A. a. VEr-1'R1GLlA U.(1963) - La Rrgionr vulcanica dri Coffi Albani.C.N.R., Roma.

FRANE ).W. 81 HILL M. (1974) • AnnotaUd com­puler oulput for factoral analysis using profenor}arvik's smoking queslionnair~. Technical ReportN. 8, Health Seiences CompUling Facility, UCLA.

FUNE ).W.... HILL M. (1976) . FMtor a"lllysisas a tool /or dll'" anlllysis. Commun. Slalin..1beor. Meth., M, 487-S06.

FUNIClELLO R. a. PAROTTO M. (1978) • llsubslflltosrdimentarro ndl'aua d~i Colli Albtlni: consi­d~arioni grodinamicbt- ~ p4fnJgeograpcM sutmarginr tirrenko deU'Apprnnino Centrllle. Geo­logica Rom., 17, 233·287.

HUCUNliOLZ H.G.... Orr W.O. (1978)· Syntbuis,stabilily III/d mumi"ium.iron substitution ill gebft."ite·ferrigrblrnite solid soluli01l1. N. Jb. Miner.Mh., H. 12, 521·536.

KIMATA M. (1980) . Crystal cbrmislry of CIl·meli­lius on X.ray di6rtUlion Ilnd in/"red absorbtionproperlin N. Jb. Miner. Abh., 1J9, 43·'8.

LACROlX A. (1893) - us enclaves drs rochrs vo1­caniques. Macon.

UCROIX A. (1917) . us formrs grtnurs du magmaIrucilique du Volcan Laziale. C. R. Ace. Se.Parigi, 165.

M1LLOSEV10I F. (1921) . Studi sui mintrllli delurio. 1..4 melili/r drgli illdusi nel prpnino. AliiR. Ace. Lincei, serie ", 30, 80-84.

NUJSE R.W. a. MIDGLEY H.G. (1953) - Sludirs ontbr mrlilitr solid solulions. J. Iron Stoel Inst.London, 174, 121-131.

RILEY J.P.... WILLlAMS H.P. (I959) - The microana­lysis 0/ sificaU and carbonau minerals. t. De­Urminalion of ftrrous iron. Mikrochim. Acta, 4,516-'24.

SAHAMA TH. G. (1967) • Iron content of meJilitt.C. R. Soc. Geol. Fin!., 39, 17-28.

SAHAMA TII. G. (1976) . Composition 01 clina­pyronnr and mtliliu in tM Nyi"aonl.o RtKks.Carnqie Inst. Wash. Year Book, 7.5, .585-591.

SctI£J.ILLO A. (1935) . Inclusi "rile pouoiant deltaMdi. V,r//e driI'Anit"t. Per. t.lineral., 6, 169-178.

SEIF£J.T F_ (1974) . The ioi" .1e"manir~ftrrOllker­

maniU. Camegie Insl. Wash. Year Book, 73,436440.

TILLEY C.E.... HE.·ny N.F.M. (1953) . utiumitt,a new mintral from Albano, utium, ftaly. Min.Mag., 30, 39-45.

TURI B. (1968) • T~rrf! rart t "iobio in unaperovskite dei Calli Albani. Rend. Ace. Lincei,serie VIII, 44, 801·811.

VOM RATH G. (1866) . Mintrlllogisch-geognostithrFragmentt QUI flalitn. kit. Deut. Gee!. Gesel!.,18, 487-642.

WASHINGTON H.S. (19271 • Tbr it.litt /oclllity ofVilla Senni. Amer. J. Sci. 'lh Ser., 14, 173-198.

YODEl. HS. Jr. (1973) - Meli/ite stability (IJIdp4ral.rnesis. ForlSChr. Miner., .50, 140-173.

ZA.\UIO."IINt F. (1906) • Urber ~i"e KrysllJlfisitrUScb/aclee der Stigerbulle bri HtJtsttdt, nebst&m~rleungt1l ubrr die cbrmiscM Zusammr,,~

Itt:ung drs Mriilitb. kilo I. Kryst., 41, 226-2>4.