The Materials Project: An Electronic Structure Database for Community-Based Materials Design

42
Anubhav Jain The Materials Project: An Electronic Structure Database for Community- Based Materials Design ICAMM, July 2014 Lawrence Berkeley Lab Berkeley, CA

description

Overview of Materials Project and High-throughput Battery Screening

Transcript of The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Page 1: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Anubhav Jain

The Materials Project: An Electronic Structure Database for Community-Based Materials Design

ICAMM, July 2014

Lawrence Berkeley Lab Berkeley, CA

Page 2: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

①  High-Throughput density functional theory + Li-ion battery cathodes

②  The Materials Project

③  Tools you can use

2  

Page 3: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

solar PV electric vehicles

other: waste heat recovery (thermoelectrics) hydrogen storage catalysts/fuel cells

Page 4: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

+   )};({)};({ trHdt

trdi ii Ψ=

Ψ ∧

!+  

Total energy Optimized structure Magnetic ground state Charge density Band structure / DOS

H = ∇i2

i=1

Ne

∑ + Vnuclear (ri)i=1

Ne

∑ + Veffective(ri)i=1

Ne

Page 5: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

¡  U.S. DOE budget for top 2 computers: 8 billion CPU-hours §  >16 million materials/year!

¡  Materials Project uses 10-20 million CPU-hours/year at NERSC supercomputing center §  GGA (+U) / PAW / VASP

5  

Page 6: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

6  

Application Researcher Search space Candidates Hit rate

Scintillators Klintenberg et al. 22,000 136 1/160

Curtarolo et al. 11,893 ? ?

Topological insulators Klintenberg et al. 60,000 17 1/3500

Curtarolo et al. 15,000 28 1/535

High TC superconductors Klintenberg et al. 60,000 139 1/430

Thermoelectrics – ICSD - Half Heusler systems - Half Heusler best ZT

Curtarolo et al. 2,500 80,000 80,000

20 75 18

1/125 1/1055 1/4400

1-photon water splitting Jacobsen et al. 19,000 20 1/950

2-photon water splitting Jacobsen et al. 19,000 12 1/1585

Transparent shields Jacobsen et al. 19,000 8 1/2375

Hg adsorbers Bligaard et al. 5,581 14 1/400

HER catalysts Greeley et al. 756 1 1/756*

Li ion battery cathodes Ceder et al. 20,000 4 1/5000*

Entries marked with * have experimentally verified all the candidates. Hit rates are optimistic because the search space is often restricted based on intuition.

See also Curtarolo et al., Nat. Mater. 12 (2013) 191–201.

Page 7: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

anode electrolyte cathode

Li+ discharge

e- discharge

e.g. graphitic carbon

e.g. LiPF6 / (EC/DMC)

e.g. LiCoO2 LiFePO4

7  

Page 8: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

anode electrolyte cathode

e- charge

e.g. graphitic carbon

e.g. LiPF6 / (EC/DMC)

e.g. LiCoO2 LiFePO4

Li+ charge

8  

Page 9: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

The cathode material must quickly absorb and release large quantities of Li without degrading

It must be cost-effective and safe It should be light, compact, and

highly absorbent (high voltage)

9  

Page 10: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Lia Mb (XYc)d Li ion source

electron donor / acceptor

structural framework / charge neutrality

examples: V4+/5+,Fe2+/3+

examples: O2-, (PO4)3-, (SiO4)4-

common cathodes: LiCoO2, LiMn2O4, LiFePO4 10  

Page 11: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

11  

GGA+U results

FV

cathodeLi

anodeLi

OCµµ −

=Li

avgOC xF

GV

Δ

Δ=

integrate  

Page 12: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

LiMn2O4

Li3K2FeO4

remove Li

remove Li

TOPOTACTIC

NON -TOPOTACTIC

12  

Page 13: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

13  

Li3Mn2O4 à

Li2O + LiMnO2 + MnO

MnO

Li2O

LiMnO2

Li3Mn2O4

-1.674 eV (-186 meV/atom)

“e above hull”= 186 meV/atom

Page 14: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Jain,  Hautier,  Ong,  Moore,  Fischer,  Persson,  Ceder,  Phys.  Rev.  B.  (2011)  

Page 15: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Hexagonal phase

low Li 529 meV high Li 723 meV

monoclinic phase

low Li 395 meV high Li 509 meV

•  525 meV means a micron-sized particle can be charged in 2 hours

•  Every 60 meV difference is actually 10X difference in diffusion coefficient Kim, Moore, Kang,

Hautier, Jain, Ceder J ECS (2011)

LiMnBO3  

Page 16: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Plain Oxides (9204)

Silicates (1857)

Phosphates (1609)

Borates (1035)

Carbonates (370)

Vanadates (1488)

Sulfates (330)

Nitrates(61)

No Oxygen (4153)

Li C

onta

inin

g C

ompo

unds

Com

pute

d

Jain, Hautier, Moore, Ong, Fischer, Mueller, Persson, Ceder Comp. Mat. Sci (2011)

16  

Page 17: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Chemistry Novelty Energy density vs. LiFePO4

% of theoretical capacity already achieved in the lab

Li9V3(P2O7)3(PO4)2 New 20% greater ~65%

Origin: V to Fe substitution in Li9Fe3(P2O7)3(PO4)2*

Remarks:

•  Structure has “layers” and “tunnels” •  Pyrophosphate-phosphate mixture •  Potential 2-electron material

Jain, Hautier, Moore, Kang, Lee, Chen, Twu, and Ceder Journal of The Electrochemical Society 159, A622–A633 (2012).

17  

Page 18: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

18  

Li2CO3 NH4H2PO4 V2O5

(1) precursors (2) grind (3) heat 300ºC 6 hours

(4) grind (5) heat 750ºC 24 hours

97% Ar, 3% H2

Jain, Hautier, Moore, Kang, Lee, Chen, Twu, and Ceder, Journal of The Electrochemical Society 159, (2012).

Page 19: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

C/35 at RT 2.0mg

3.0V – 4.7V

19  

Jain, Hautier, Moore, Kang, Lee, Chen, Twu, and Ceder, Journal of The Electrochemical Society 159, (2012).

Page 20: The Materials Project: An Electronic Structure Database for Community-Based Materials Design
Page 21: The Materials Project: An Electronic Structure Database for Community-Based Materials Design
Page 22: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Chen, Hautier, Jain, Moore, Kang, Doe et al. Chemistry of Materials

(2012)

Chen, Hautier, Ceder JACS (2012)

Hautier, Jain, Chen, Moore, Ong, Ceder

J. Materials Chemistry (2011)

A3MXO4YO3

22  

Page 23: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

①  High-Throughput density functional theory + Li-ion battery cathodes

②  The Materials Project

③  Tools you can use

23  

Page 24: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

24  

Page 25: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Compounds Total

Energies Optimized Structures

Band Structures

Elastic Tensor Defects

today ~50,000 ✔ ✔

~20,000

near – term

60,000 + (all ordered

ICSD) ✔ ✔ ✔

~1000

~100

medium – term

90,000 + (all of ICSD plus many

predictions)

✔ ✔ ✔ common

compounds common

compounds

Page 26: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

¡  Search/explore DFT data on materials

¡  Make interactive phase diagrams

¡  Make interactive Pourbaix diagrams (E-pH)

¡  Calculate reaction energies, compare w/expt

¡  Predict structures of new compositions

¡  Explore Li ion battery calculation data

¡  Edit crystals

Page 27: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

27  

Page 28: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

¡  Li ion battery anodes (5) ¡  Magnetism (3) ¡  Photoelectrochemistry (3) ¡  Thermoelectrics (1) ¡  Scintillators (1) ¡  Piezoelectrics (1) ¡  Other (9)

¡  …also a recent Astronomy arXiV on “Do cement

particles exist in space”: http://arxiv.org/abs/1404.7392

28  

Doeff, Cabana, Shirpour, Titanate Anodes for Sodium Ion Batteries, J. Inorg. Organomet. Polym. Mater. 24 (2013) 5–14.

Page 29: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

!

Materials Project team

Any materials researcher

Page 30: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

¡  Materials Project (www.materialsproject.org)

¡  AFLOWlib (www.aflowlib.org)

¡  OQMD (http://oqmd.org)

¡  Computational Materials Repository (https://cmr.fysik.dtu.dk/cmr/index.php)

¡  MaterialsHub (set of “apps”) (www.materialshub.org)

30  

Page 31: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Where are is Materials Project headed for the

future?

Page 32: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

¡  Big idea: use URLs to exchange data (REST API) ¡  Return type is JSON, a standard data format for

internet communications and data mining ¡  www.materialsproject.org/open

https://www.materialsproject.org/rest/v1/materials/Fe2O3/vasp/energy  

Preamble  

Identifier,  typically  a  formula  (Fe2O3),  id  (1234)  or  chemical  system  (Li-­‐Fe-­‐O)  

Data  type  (vasp,  exp,  etc.)  

Property  

Request  type  

Ong,  Richards,  Jain,  Hautier,  Kocher,  Cholia,  Gunter,  Chevrier,  Persson,  Ceder,  Comput.  Mater.  Sci.  (2013)  

32  

Page 33: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

33  

beta  test?  email  [email protected]    

Page 34: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

“I have this great dataset, but need help sharing it with the world”

Page 35: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

①  High-Throughput density functional theory + Li-ion battery cathodes

②  The Materials Project

③  Tools you can use

35  

Page 36: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

¡  Interactive Xtal editor §  Grab crystal data from

Materials Project §  Manipulate, e.g.

substitute elements §  Export as VASP/cif/etc. §  Batch processing

¡  Very easy to use ¡  Future: submit materials

Page 37: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

¡  All codes developed by Materials Project are available open source at: §  http://www.github.com/materialsproject

¡  They are written in Python §  pymatgen – materials + molecules analysis, input/

output file generation and parsing §  FireWorks – define and run workflows §  custodian – automatically correct errors during VASP

runs

Page 38: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

Ong, Richard, Jain, Hautier, Kocher, Scholia, Gunter, Chevrier, Persson, Ceder Comp. Mat. Sci (2013)

Page 39: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

from  pymatgen  import  MPRester  from  pymatgen.electronic_structure.plotter  import  BSPlotter    if  __name__  ==  "__main__":          MAPI_KEY  =  None    #  change  this  to  your  key          MP_ID  =  "mp-­‐19017"    #  compound  of  interest            mpr  =  MPRester(MAPI_KEY)    #  REST  connector            my_bs  =  mpr.get_bandstructure_by_material_id(MP_ID)          BSPlotter(my_bs).show()  

for  more  -­‐  http://gist.github.com/computron  http://gist.github.com/shyuep  

 

Page 40: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

from  pymatgen  import  MPRester  from  pymatgen.phasediagram.pdmaker  import  PhaseDiagram  from  pymatgen.phasediagram.plotter  import  PDPlotter      if  __name__  ==  "__main__":          MAPI_KEY  =  None    #  Change  this  to  your  key          system  =  ["Fe",  "P",  "O”]              mpr  =  MPRester(MAPI_KEY)    #  REST  connector              #  Create  phase  diagram!          entries  =  mpr.get_entries_in_chemsys(system)          pd  =  PhaseDiagram(entries)              #  Plot!          plotter  =  PDPlotter(pd,  show_unstable=False)          plotter.show()  

for  more  -­‐  http://gist.github.com/computron  http://gist.github.com/shyuep  

 

Page 41: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

¡  High-throughput is an interesting new method for materials design §  already several proven examples of success

¡  The Materials Project is an effort to help the community use DFT for design §  many new features and data on the way

¡  There are several programming tools offered

open-source by Materials Project to help §  http://www.github.com/materialsproject

Page 42: The Materials Project: An Electronic Structure Database for Community-Based Materials Design

¡  High-throughput batteries §  Gerbrand Ceder, Geoffroy Hautier, Charles Moore,

Hailong Chen, Byoungwoo Kang, Xiaohua Ma, Jae Chul Kim, Nancy Twu, Robert Doe, Kristin Persson (Bosch, Umicore)

¡  Materials Project §  Kristin Persson, Gerbrand Ceder, Shyue Ping Ong,

Geoffroy Hautier, Wei Chen, Stephen Dacek, William D. Richards, David Skinner, Dan Gunter, Shreyas Cholia, Miriam Brafman, NERSC staff (DOE, NSF, 2010 LBL LDRD)