THE LTLS INTEGRATED MODEL · Trent at Dunham (28022) Observed flow (m3/s) Model flow (m3/s) River...

28
THE LTLS INTEGRATED MODEL Vicky Bell , Pam Naden, Helen Davies + LTLS modelling team (Ed Tipping, Shibu Muhammed, Jess Davies, Ulli Dragosits, John Quinton, Marianne Stuart, Andy Whitmore, Ed Carnell, Sam Tomlinson, Lei Wang, Lianhai Wu, Rachel Helliwell) Semi-Natural Terrestrial Model (N14CP)

Transcript of THE LTLS INTEGRATED MODEL · Trent at Dunham (28022) Observed flow (m3/s) Model flow (m3/s) River...

THE LTLS INTEGRATED MODEL

Vicky Bell, Pam Naden, Helen Davies + LTLS modelling team (Ed Tipping, Shibu Muhammed, Jess Davies,

Ulli Dragosits, John Quinton, Marianne Stuart, Andy Whitmore, Ed Carnell, Sam Tomlinson, Lei Wang, Lianhai Wu, Rachel Helliwell)

Semi-Natural Terrestrial Model (N14CP)

LTLS: Integrated Model (IM)

Low flow

High flow

Hydrological model behind IM incorporates basic

properties of:

• soil

• land cover

• topography

Nutrient leaching

Fluxes from river model

Atmospheric deposition

Lakes

Groundwater delay

ErosionNutrient runoff from Semi-natural, Crops and Improved grass

Sewage

Typical hydrological output can be daily/monthly/...LTLS output can be daily/monthly/... And compared to obs. from HMS

Integrated Model Processes

Runoff Production of water & macronutrients

5km grid, HWSD soil

Kinematic wave routing

Of water, dissolved andparticulate nutrients

+ sediment loss to floodplain

Erosion

• Particulate nutrients• Varying crop LAI• Annual grids of

land-use and grazing

Groundwater chemistry and delays

Delays in nutrient transport from 1 to100 years

Lake model

Tipping et al., STOTEN, 2016

Riverine processes

• Denitrification • Organic matter decomposition • Oxidation of ammonia• Degassing• pH• Chlorophyll growth

Sewage

Addition of sewage effluent and septic tanks

Daily flow hydrographs: 1985

0

200

400

600

800

1 92 183 274 365Fl

ow

(m

^3/s

)

Thames at Teddington (39001)

0

500

1000

1 92 183 274 365

Flo

w (

m^3

/s)

Tweed at Norham (21009)

0

200

400

600

1 92 183 274 365

Flo

w (

m^3

/s)

Trent at Dunham (28022)

Observed flow (m3/s)Model flow (m3/s)

River variables modelled

flux accounting through the river system

Dissolved load (g) Particulate load (g) Other

DIC inorganic carbon Fine sediment pH

DOC organic carbon POC labile and non-labile Oxygen (mg/L)

DO14C PO14C Algae (mg/L)

NO3-N & NH4-N Water Temperature (⁰C)

DON organic nitrogen PON

TDP total phosphorus POP

PADS particle-adsorbed P

Ca, SO4-S, Si

CO2 & (N2 + N2O) GASES

Sources of Nitrate: terrestrial inputs and fluxes (Tonnes)

1995 totals

Semi-natural Arable+ Improved Grass Sewage

Terrestrial model Input of N

Modelled river fluxes

Harmonised Monitoring site (HMS) observations are from 1974 – 2010Observed sewage from WWTW

Annual N and P fluxes (vs) observed

N.B. Harmonised Monitoring Sites are monitoring orthophosphate not TDP

TDP flux (Tonnes/year)

Observed

Nitrate flux (Tonnes/year)

Observed

Mo

del

led

Nitrate flux (Tonnes/yr) for selected HMS catchments

Thames

ModelObserved

Harmonised Monitoring site (HMS) observations are compared to LTLS model estimatesHMS Observations are from 1974 – 2010, observed sewage (1990 – 2005)

Dissolved P flux (Tonnes/yr) for selected HMS catchments

Thames

Harmonised Monitoring site (HMS) observations are compared to LTLS model estimatesHMS Observations are from 1974 – 2010, observed sewage (1990 – 2005)

ModelObserved

Exploring change since 1800…

National simulations from 1800 – 2010

Driven by - climate model hindcasts (1800 –1960)

- observed weather (1961-2010)

We apply historical changes in land-cover, fertiliser and sewage

FertiliserapplicationRates (kg/ha)

Wheat N Improved Grass N Wheat P Improved Grass P

Urban

UK land use change (%)

Semi-natural

Improved GrassArable

Conifer

Effect of groundwater delay

Wang et al. (2012)

Environ Geochem Health 35:667–681.

• Multi-year ‘storage’ of nitrate in the

unsaturated and saturated zones

• For most UK catchments the effect of the groundwater delay is negligible

No delayWith delay

History of nutrients from sewage in the IM

Estimating nutrient emissions

Population * Emission factor

1801 201119511911 Population per

5km grid square

0 - 9

10 - 99

100 - 999

1000 – 9999

≥10,000

contains National Statistics

data under the Open

Government License v.3.0

© Crown copyright and

database right 2012.

Past based on

protein intake

Past based on

constant for diet

plus detergent P

Estimating nutrients in effluent

Emissions * connection to sewer * (1 - loss on treatment)

Raw Primary Secondary Tertiary P stripping

DIN 0.75 0.4 0.4 0.4 0.4

DIP 0.67 0.67 0.42 0.35 0.16

Nitrate aspropn DIN

0 0.3 0.9 0.9 0.9

Proportion left after sewage treatment

History of nutrients from sewage in the IM

0

5

10

15

20

25

30

35

1800 1825 1850 1875 1900 1925 1950 1975 2000

phosphoru

s f

lux

(kt/yr)

P from septic tanks

organic P

dissolved inorganic P

primary treatmentraw sewage secondary + tertiaryAssumed

treatment

0

20

40

60

80

100

120

1800 1825 1850 1875 1900 1925 1950 1975 2000

nitro

gen f

lux

(kt/yr)

N from septic tanks

organic nitrogen

nitrate

ammonium

Naden et al., STOTEN, 2016

1830 1890 1950

Historical-current LTLS IM run (1800-2010)

River nitrate fluxes for selected catchments (T/Yr)

HMS Observations are from 1974 – 2010 Longer historical records for Frome, Thames and Tweed Population-based sewage estimates

ModelHMS Observed

Historical-current LTLS IM run (1800-2010)

River Phosphorus fluxes for selected catchments (T/yr)

HMS Observations are from 1974 – 2010 Longer historical records for Frome and Tweed Population-based sewage estimates

ModelHMS Observed

0

1

2

3

1830 1900 1940 1960 1980 2000

0

1

2

3

1830 1900 1940 1960 1980 2000

0

1

2

3

1830 1900 1940 1960 1980 2000

UK Nutrient Sources: 1800 to 2000

• Nitrogen inputs to England dominated by improved grass in early 19thC, and arable and sewage in late 20thC

Source:ArableSewageSemi-naturalImproved grass

Total Dissolved Nitrogen (T/km2/yr)Scotland

Northern Ireland

Wales

0

1

2

3

1830 1900 1940 1960 1980 2000

England

0

1

2

3

4

5

1830 1900 1940 1960 1980 2000

0

1

2

3

4

5

1830 1900 1940 1960 1980 2000

0

1

2

3

4

5

1830 1900 1940 1960 1980 2000

0

1

2

3

4

5

1830 1900 1940 1960 1980 2000

UK Nutrient Sources: 1800 to 2000

• Minimal arable sources• High dissolved carbon

inputs to Scotland arising from peat

Source:ArableSewageSemi-naturalImproved grass

Total Dissolved Carbon (organic + inorganic) (T/km2/yr)

Scotland

Northern Ireland

WalesEngland

0

0.05

0.1

0.15

0.2

1830 1900 1940 1960 1980 2000

0

0.05

0.1

0.15

0.2

1830 1900 1940 1960 1980 2000

0

0.05

0.1

0.15

0.2

1830 1900 1940 1960 1980 20000

0.05

0.1

0.15

0.2

1830 1900 1940 1960 1980 2000

UK Nutrient Sources: 1800 to 2000

• TDP inputs heavily dependent on sewage and its treatment

Source:ArableSewageSemi-naturalImproved grass

Total Dissolved Phosphorus (T/km2/yr)Scotland

Northern Ireland

Wales England

Future sewage scenarios

P1: population projections from Office of National Statistics to

2089; extended in proportion to UN projections to 2100

emission and treatment factors held constant

P2: population as above; P stripping applied everywhere

Future scenario results

Population

million

Nitrogen emissions

kT/yr

Nitrate*sewage

flux

kT/yr

Pemissions

kT/yr

P sewage

flux

kT/yr

P sewage

flux with stripping

kT/yr

2010 63 263 91 44 13 7

2030 72 299 103 50 15 8

2050 78 325 112 54 17 8

2100 92 283 132 63 20 10

Influent to be treated at WWTWs

Effluent flux to river/sea

NB. Phosphate dosing not included in P calculations.

*ammonium flux 10kT/yr rising to 15 kT/yr

UK Fluxes into the sea: 1800-2010 + future sewage scenarios

0

50000

100000

150000

200000

250000

300000

1820 1920 2020

Year

NO3-N load

0

500000

1000000

1500000

2000000

2500000

1800 1900 2000 2100

Year

Sediment load

0

10000

20000

30000

40000

50000

1800 1900 2000 2100

Year

TDP load

UK Fluxes (Tonnes/year)Historical-currentP1 Population increaseP2 Population increase

+ P-stripping everywhere

0

200000

400000

600000

800000

1000000

1800 1900 2000 2100

Year

DOC load

2010

Historical development of eutrophication in rivers

Water Framework Directive standards for annual mean P in rivers:o Good ecological status is 40 to 120 μg/litre (UKTAG, 2012)

TDP (μg/litre)0 – 100100 – 10001000 – 1000010000 - 370000

1800 1900 1940 2010

TDP (μg/litre)0 – 100>100

23 μg/l 66 μg/l 179 μg/l 366 μg/l

Thank you… questions welcome

0

100

200

300

400

1830 1900 1940 1960 1980 2000

0

100

200

300

400

1830 1900 1940 1960 1980 2000

0

100

200

300

400

1830 1900 1940 1960 1980 2000

0

100

200

300

400

1830 1900 1940 1960 1980 2000

UK Nutrient Sources: 1800 to 2000

• Nitrogen inputs to England dominated by improved grass in early 19thC, and arable and sewage in late 20thC

Source:ArableSewageSemi-naturalImproved grass

Total Dissolved Nitrogen (kT/yr)Scotland

Northern Ireland

Wales

England

UK Nutrient Sources: 1800 to 2000

• Minimal arable sources• High dissolved carbon

inputs to Scotland arising from peat

Source:ArableSewageSemi-naturalImproved grass

Total Dissolved Carbon (organic + inorganic) (Kt/yr)

Scotland

Northern Ireland

Wales

England

0

100

200

300

400

1830 1900 1940 1960 1980 2000

0

100

200

300

400

1830 1900 1940 1960 1980 2000

0

100

200

300

400

1830 1900 1940 1960 1980 2000

0

100

200

300

400

1830 1900 1940 1960 1980 2000

0

10

20

30

1830 1900 1940 1960 1980 2000

0

10

20

30

1830 1900 1940 1960 1980 2000

0

10

20

30

1830 1900 1940 1960 1980 2000

UK Nutrient Sources: 1800 to 2000

• TDP inputs heavily dependent on sewage and its treatment

Source:ArableSewageSemi-naturalImproved grass

Total Dissolved Phosphorus (Kt/yr)Scotland

Northern Ireland

Wales

England

0

10

20

30

1830 1900 1940 1960 1980 2000