The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces...

43
The L-E (Torque) Dynamical Model: 1 1 1 n n n i i ij j kj k j i i j k j D qq C qqq hq b q Inert ial Force s Coriolis & Centrifu gal Forces Gravitati onal Forces Frictio nal Forces
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    223
  • download

    1

Transcript of The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces...

Page 1: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

The L-E (Torque) Dynamical Model:

1 1 1

n n ni

i ij j kj k j i ij k j

D q q C q q q h q b q

Inertial Forces

Coriolis & Centrifugal

Forces

Gravitational Forces Frictional

Forces

Page 2: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Lets Apply the Technique --

Z0

Y0

Cm1

X0

X1

Z1

X2

Y2

Y1

Cm2

Z2

Lets do it for a 2-Link “Manipulator”

Link 1 has a Mass of m1; Link 2 a mass of m2

Page 3: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Before Starting lets define a L-E Algorithm:

Step 1 Apply D-H Algorithm to build Ai matrices and find Fi the “link frame”

Step 2 Set T00=I; i=1; D(q)=0

Step 3 Find ci the Homogenous coordinate of the center of mass of link I WRT Fi

Step 4 Set Fc as the translation of Frame F1 to Cm of i Compute Inertia Tensor Di about Cm wrt Fc

Step 5 Compute: zi-1(q); T0i; ci

bar(q); Di(q)

Page 4: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Before Starting lets define a L-E Algorithm:

Step 6 Compute Special Case of Ji(q)

Step 7Partition Ji and compute D(q) = D(q) + {ATmKA + BTDKB}

Step 8 Set i = i+1 go to step 3 else (i=n+1) set i=1 & continue

Step 9 Compute Ci(q); hi(q) and frictioni

Step 10 Formulate Torquei equation

Step 11 Advance “i” go to step 9 until i>n

Page 5: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

We Start with Ai’s

1 1 1 1

1 1 1 11

2 2 2 2

2 2 2 22

0

0

0 0 1 0

0 0 0 1

0

0

0 0 1 0

0 0 0 1

C S l C

S C l SA

C S l C

S C l SA

Not Exactly D-H Legal (unless there is more to the robot than these 2 links!)

Page 6: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

So Let’s find 0T2

0T2 = A1*A2

1 2 1 2 1 2 1 2 2 1 2 2 1 2 1 1

1 2 1 2 1 2 1 2 2 1 2 2 1 2 1 102

12 12 2 12 1 1

12 12 2 12 1 102

0

0

0 0 1 0

0 0 0 1

:

0

0

0 0 1 0

0 0 0 1

CC S S C S S C l C C l S S l C

S C C S S S C C l S C l C S l ST

simplified

C S l C l C

S C l S l ST

Page 7: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

I’ll Compute Similar Terms back – to – back rather than by the Algorithm

1 01

1

1 1

1 1 1 1

1 1 1 101

1 11

1 1 1 11 1 1

1 1 1 1

20

0

1

01 0 0 0

00 1 0 0

0 0 1 00 0 1 0

0 0 0 1

22000

200 0 1 0 01

K

K

c H T c

l

c c

C S l C

S C l SH T

l Cl

C S l Cl S

c S C l S

Page 8: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

C2(bar) Computation:

2 02

2

2 2

12 12 2 12 1 1

12 12 2 12 1 102

2

12 12 2 12 1 12

12 12 2 12 1 1

20

0

1

01 0 0 0

00 1 0 0

0 0 1 00 0 1 0

0 0 0 1

200000 0 1 01

K

K

c H T c

l

c c

C S l C l C

S C l S l SH T

llC S l C l C

c S C l S l S

2 121 1

2 121 1

2

20

l CC

l Sl S

Page 9: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Finding D1

Consider each link a thin cylinder

These are Inertial Tensors with respect to a Fc aligned with the link Frames at the Cm

21 1

1

21 1

22 2

2

22 2

0 0 0

0 012

0 012

0 0 0

0 012

0 012

m lD

m l

m lD

m l

Page 10: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Continuing for Link 1

0 01 1 1 1

1 1 1 121 1

1 1 1 1 1

21 1

[ ]

0 0 00 0

0 0 0 012

0 0 1 0 0 10 0

12

TD R D R

C S C Sm l

D S C S C

m l

Page 11: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Simplifying:

2 22 1 1 1 11 1 1

2 221 1 1 1

1 1 1 1

21 1

21 1 12

21 11 1 1 1

012 12

012 12

0 012

0

012

0 0 1

m l m lS S C

m l m lD S C C

m l

S S Cm l

D S C C

Page 12: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Continuing for Link 2

0 02 2 2 2

12 12 12 1222 2

2 12 12 12 12

22 2

212 12 122

22 22 12 12 12

[ ]

0 0 00 0

0 0 0 012

0 0 1 0 0 10 0

12

0

012

0 0 1

TD R D R

C S C Sm l

D S C S C

m l

S S Cm l

D S C C

Page 13: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Now lets compute the Jacobians

1

1 1

0

1 1

11 1 1

01

0

0

20

02

0 0

cJ q

Z

l S

c l CZ c

q

Page 14: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Finishing J1

1 1

1 1

1

02

020 0

0 0

0 0

1 0

l S

l C

J

Note the 2 column is all zeros – even though Joint 2 is revolute – this is the special case!

Page 15: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Jumping into J2

2 2

2 1 2

0 1

22

01

22

1 12

:

0

0

0

c cJ q q

Z Z

here

cZ c

q

cZ c d

q

This is 4th column of A1

Page 16: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Continuing:

22

01

2 12 2 121 1 1 1

2 12 2 121 1 1 1

0

0

0

2 20 0

0 02 2

1 00 0

cZ c

q

l C l Sl C l S

l S l Cl S l C

Page 17: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

And Again:

2 121 1

1 122 12

1 1 1 12

2 12

2 12

20

02

1 00

2

20

l Cl C

l Cc l S

l S l Sq

l S

l C

Page 18: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Summarizing, J2 is:

2 12 2 121 1

2 12 2 121 1

2

2 2

2 20 0

0 0

0 0

1 1

l S l Sl S

l C l Cl C

J

Page 19: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Developing the D(q) Contributions

D(q)I = (Ai)TmiAi + (Bi)TDiBi

Ai is the “Upper half” of the Ji matrix

Bi is the “Lower Half” of the Ji matrix

Di is the Inertial Tensor of Linki defined in the Base space

Page 20: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Building D1

D(q)1 = (A1)Tm1A1 + (B1)TD1B1

Here: 1 1

1 1 1

1

02

020 0

0 0

0 0

1 0

l S

l CA

B

Page 21: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Looking at the 1st Term (Linear Velocity term)

1 1 1 1

1 1 1 11

1 1

1 1 1 11 1

1

2 2 2 2 21 1 1 1 1

1 1

21 1

0 02 2

1 : 0 02 20 1 0 1

02

002 2

20 0 1

0 1

0 0440 00 0

1 01

4

T

st

l S l S

l C l CTerm m

l S

l S l Cl C

m

l S l C lm m

m l

0 0

Page 22: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Looking at the 2nd Term (Angular Velocity term)

Recall that D1 is:

Then:

21 1 12

21 11 1 1 1

0

012

0 0 1

S S Cm l

D S C C

21 1 12

21 11 1 1

21 1

0 0 00 0 1

2 : 0 0 00 0 012

0 0 1 1 0

1 0

0 012

nd

S S Cm l

Term S C C

m l

Page 23: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Putting the 2 terms together, D(q)1 is:

2 2

1 1 1 11

21 1

1 0 1 0

0 0 0 04 12

1 0

0 03

m l m lD q

m l

Page 24: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Building the Full Manipulator D(q)

D(q)man = D(q)1 + D(q)2

Where– D(q)2 = (A2)Tm2A2 + (B2)TD2B2

And recalling (from J2):

2 12 2 121 1

2 2 12 2 121 1

2

2 2

2 20 0

0 0

0 0

1 1

l S l Sl S

l C l CA l C

B

Page 25: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Building the 1st D(q)2 Term:

2 22

2 12 2 121 1

2 12 2 121 1 1 1

2 12 2 122 1 1

2 12 2 12

2 222 2 1 2 21 1 2 2

2 2 22 1 2 2 2

2 20

2 22 2

00 02 2

4 4 2

4 2 4

Tm A A

l S l Sl S

l S l Cl S l C

l C l Cm l C

l S l C

l l l l Cl l l C

ml l l C l

Page 26: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

How about term (1,1) details!

2 12 2 12 2 12 2 121 1 1 1 1 1 1 11,1

2 2 2 22 2 2 22 12 1 2 12 1 2 12 1 2 12 11 1 1 1

22 2 2 2 2212 12 1 1 1 1 2 12 1

2 2 2 2

2 24 2 4 2

4

l S l S l C l Cterm l S l S l C l C

l S l l S S l C l l C Cl S l C

lS C l S C l l S S C

12 1

2221 1 2 1 2 1 2 1 1 2 1 2 1

22 2 221 1 2 1 2 1 1 2 1 2 1 1 2

2221 1 2 2

4

4

4

C

ll l l S C C S S C C S S C

ll l l S C C S S C C C S S

ll l l C

similar reasoning for the other terms in the matrix

Page 27: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Building the 2rd D(q)2 Term:

Recall D2:

Then:

212 12 122

22 22 12 12 12

0

012

0 0 1

S S Cm l

D S C C

212 12 122

1 1 22 22 12 12 12

22 2

0 0 00 0 1

0 0 00 0 112

0 0 1 1 1

1 1

1 112

TS S C

m lB D B S C C

m l

Page 28: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Combining the 3 Terms to construct the Full D(q) term:

2 222 2 1 2 2

2 21 1 2 21 1 2 2

2 2 22 1 2 2 2

2 2 2 2 221 1 2 2 2 2 1 2 2 2 2

2 1 1 2 2 2

2 2 22 1 2 2 2 2 2

2 2

1 0 1 14 4 20 0 1 13 12

4 2 4

3 4 12 4 2 12

4 2 12 4

Man

l l l l Cl l l C

m l m lD q m

l l l C l

m l l m l l l l C m lm l l l C m

l l l C m l lm m

22 2

12

m l

Page 29: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Simplifying then D(q) is:

2 2 221 1 2 2 2 1 2 2 2 2

2 1 2 1 2 2

2 22 1 2 2 2 2 2 2

3 3 2 3

2 3 3

man

m l m l m l l C m lm l m l l C

D qm l l C m l m l

NOTE: D(q)man is Square in the number of Joints!

Page 30: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

This Completes the Fundamental Steps:

Now we compute the Velocity Coupling Matrix and Gravitation terms:

,( ) ,( )

3

1

1( ) ( ) ( )

2

( )

ikj man ij man kj

k i

nj

i k j kik j i

C q D q D qq q

h g m A q

Page 31: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

For the 1st Link

11 12 11 12

1 1 1 11

11 12 21 22

2 2 1 1

1

2

man

here i = 1; j = 1 or 2; k = 1 or 2

we take 'terms' from D(q)

kj

D D D D

q q q qC

D D D D

q q q q

Page 32: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Plugging ‘n Chugging

From Earlier:

THUS:

2 2 221 1 2 2 2 1 2 2 2 2

2 1 2 1 2 2

2 22 1 2 2 2 2 2 2

3 3 2 3

2 3 3

man

m l m l m l l C m lm l m l l C

D qm l l C m l m l

2 2 2 2 22 21 1 2 2 2 1 2 2 2 2 1 1 2 2 2 1

2 1 2 1 2 2 2 1 2 1 2 2

1 1 11

2 2 221 1 2 2 2 1 2 2 2 2

2 1 2 1 2 2

2 2

3 3 2 3 3 3

1

2

3 3 2 3

kj

m l m l m l l C m l m l m l m l lm l m l l C m l m l l C

q q qC

m l m l m l l C m lm l m l l C

q q

22 2 2 2

1

222 22 1 2 2 2 2

1 1

2 3

32 3

C m l

q

m lm l l C m l

q q

Page 33: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

P & C cont:

1

1 2 2 21 2 2 2

1 2 2 2

0 00 01

0 022

0 0

11 2

kjC l l m Sl l m S

l l m S

Page 34: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Finding h1:

Given: gravity vector points in –Y0 direction (remembering the model!)

gk =(0, -g0, 0)T

g0 is gravitational constant

In the ‘h’ model Akij is extracted from the

relevant Jacobian matrix Here:

3 2

1 11 1

( )jk j k

k j

h g m A q

Page 35: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Continuing:

2

1 21 2 21 0 1 12 2 12

1

1 1 2 121 0 1 2 1 1

1 2 2 120 2 1 1

2 2

2 2

jj

j

h g m A g m A m A

l C l Ch g m m l C

m m l Cg m l C

looking back to jacobians and substituting:

Note: Only k = 2 has a value for gk which is g0!

Page 36: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Stepping to Link 2

22

2

21 22 11 12

1 1 2 2

21 22 21 22

2 2 2 2

1 2 2 2

1( ) ( )

2

1

2

1 1

2 41

04

kj j jkk

C D q D qq q

D D D D

q q q q

D D D D

q q q q

l l m S

Page 37: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Computing h2

3 2

2 21 2

2 0 2 2 122 0 2 22 ( ) 2

jk j k

k j

h g m A

g m l Ch g m A q

Page 38: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Building “Torque” Models for each Link

In General:

1 1 1

n n ni

i ij j kj k j i ij k j

D q q C q q q h q b q

Page 39: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

For Link 1:

The 1st terms:

2nd Terms:

1 11 1 12 21

2 221 2 2 1 2 2

2 1 2 1 2 2 1 2 23 3 3 2

n

j jj

D q q D q D q

m l l l l Cm l m l l C q m q

2 21 1 2 1 1 1 2

11 1 21 1 2 12 2 1 22 21 1

22 1 2 21 2 2 2 2 1 2

22

2 1 2 2 2 1

( )

0 02

2

jk k jk j

C q q q C q C q q C q q C q

m l l Sl l m S q q q

qm l l S q q

Page 40: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Writing the Complete Link 1 Model

2 221 2 2 1 2 2

1 2 1 2 1 2 2 1 2 2

22 1 2 2 12

2 1 2 2 2 1 0 2 1 1 1 1

3 3 3 2

( )2 2 2

m l l l l Cm l m l l C q m q

q m m l Cm l l S q q g m l C b q

Page 41: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

And, Finally, For Link 2:

22 2 2 2 2

1 1 1

n n n

j j kj k jj k j

D q q C q q q h q b q

Page 42: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Ist 2 terms:

1st Terms:

2nd Terms:

2 21 1 22 21

2 22 1 2 2 2 2

2 1 23 2 3

n

j jj

D q q D q D q

l l l C m lm q q

22 1 2 2 2 1 2 2 2 1 2 21 1 2 1 2

22 1 2 21

02 2 2

2

m l l S m l l S m l l Sq q q q q

m l l Sq

Page 43: The L-E (Torque) Dynamical Model: Inertial Forces Coriolis & Centrifugal Forces Gravitational Forces Frictional Forces.

Finalizing Link 2 Torque Model:

2 222 1 2 2 2 2 2 1 2 2

2 2 1 2 1

0 2 2 122 2

3 2 3 2

( )2

l l l C m l m l l Sm q q q

g m l Cb q