The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan...

53
The Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves, J. G–F, M. C. Gonzalez–Garcia, Tilman Plehn and Michael Rauch arXiv:1207.1344, 1211.4580, 1304.1151, 1505.05516 Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 1 / 19

Transcript of The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan...

Page 1: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

The Higgs Legacy of the LHC Run I

Juan González Fraile

Universität Heidelberg

Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves, J. G–F,M. C. Gonzalez–Garcia, Tilman Plehn and Michael Rauch

arXiv:1207.1344, 1211.4580, 1304.1151, 1505.05516

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 1 / 19

Page 2: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Outline

How to access the EWSB mechanism?

• Run I: the Higgs boson was discovered→ a particle directly related to the EWSB.

Many studies of the Higgs properties have been performed: that could be afterall one ofthe fastest track to understand the origin of the EWSB.

� Is there a preferred framework to study the Higgs interactions?

� How can we exploit all available data?

• Run II: Kick off!

Outline

• ∆-framework for Higgs interactions.• Effective Lagrangian approach for the Higgs.• Adding distributions: pT , ∆φjj and off-shell–m4`.

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 2 / 19

Page 3: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Outline

How to access the EWSB mechanism?

• Run I: the Higgs boson was discovered→ a particle directly related to the EWSB.

Many studies of the Higgs properties have been performed: that could be afterall one ofthe fastest track to understand the origin of the EWSB.

� Is there a preferred framework to study the Higgs interactions?

� How can we exploit all available data?

• Run II: Kick off!

Outline

• ∆-framework for Higgs interactions.• Effective Lagrangian approach for the Higgs.• Adding distributions: pT , ∆φjj and off-shell–m4`.

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 2 / 19

Page 4: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Outline

How to access the EWSB mechanism?

• Run I: the Higgs boson was discovered→ a particle directly related to the EWSB.

Many studies of the Higgs properties have been performed: that could be afterall one ofthe fastest track to understand the origin of the EWSB.

� Is there a preferred framework to study the Higgs interactions?

� How can we exploit all available data?

• Run II: Kick off!

Outline

• ∆-framework for Higgs interactions.• Effective Lagrangian approach for the Higgs.• Adding distributions: pT , ∆φjj and off-shell–m4`.

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 2 / 19

Page 5: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Outline

How to access the EWSB mechanism?

• Run I: the Higgs boson was discovered→ a particle directly related to the EWSB.

Many studies of the Higgs properties have been performed: that could be afterall one ofthe fastest track to understand the origin of the EWSB.

� Is there a preferred framework to study the Higgs interactions?

� How can we exploit all available data?

• Run II: Kick off!

Outline

• ∆-framework for Higgs interactions.• Effective Lagrangian approach for the Higgs.• Adding distributions: pT , ∆φjj and off-shell–m4`.

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 2 / 19

Page 6: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

∆–framework: rate–based analysis

∆–framework: rate–based analysis

Study the Higgs interactions using as a parametrization the SM operators with free couplings:

gx = gSMx (1 + ∆x)

gγ = gSMγ (1 + ∆SM

γ + ∆γ) ≡ gSMγ (1 + ∆SM+NP

γ )

gg = gSMg (1 + ∆SM

g + ∆g) ≡ gSMg (1 + ∆SM+NP

g ) ,

Thus, the Lagrangian is:

L = LSM + ∆W gmWH WµWµ + ∆Zg

2cwmZH ZµZµ −

∑τ,b,t

∆fmf

vH(fRfL + h.c.

)+ ∆gFG

H

vGµνG

µν + ∆γFAH

vAµνA

µν + invisible decays ,

Can be linked to extended Higgs sectors, 2HDM, Higgs Portals etc→ see 1308.1979

Can also be almost directly linked to the LO non–linear Effective Lagrangian→ see 1504.01707

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 3 / 19

Page 7: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Analysis Framework

SFITTER

• For the analyses based on event rates (159 measurements):

Modes ATLAS CMSH →WW 1412.2641 1312.1129H → ZZ 1408.5191 1312.5353H → γγ 1408.7084 1407.0558H → τ τ 1501.04943 1401.5041H → bb 1409.6212 1310.3687H → Zγ ATLAS-CONF-2013-009 1307.5515H → invisible 1402.3244, ATLAS-CONF-2015-004 1404.1344

1502.01518, 1504.04324, CMS-PAS-HIG-14-038ttH production 1408.7084,1409.3122 1407.0558,1408.1682

1502.02485kinematic distributions 1409.6212,1407.4222off-shell rate ATLAS-COM-CONF-2014-052 1405.3455

• Correlated experimental uncertainties• Default: Box shaped theoretical uncertainties• Default: Uncorrelated production theoretical uncertainties

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 4 / 19

Page 8: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

∆–framework: results

∆–framework: results� 68% CL error bars:

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

BRinv

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

�Well understood correlations:

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆(-2 ln L) 0

2

4

6

8

10

12

14

16

� Everything consistent with the SM (what a surprise...)

� ∆–framework is well aligned with experimental measurements. Suitable for testingdifferent analysis details→ 1505.05516

Correlated vs. Uncorrelated theoretical uncertaintiesBox-shaped vs. Gaussian theoretical uncertaintiesPassarino estimates, N3LO for gluon fusion.

� ∆–framework only suitable for event -rate analysis.

How could we add the information from kinematic distributions?→ Effective Lagrangian!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 5 / 19

Page 9: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

∆–framework: results

∆–framework: results� 68% CL error bars:

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

BRinv

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

�Well understood correlations:

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆(-2 ln L) 0

2

4

6

8

10

12

14

16

� Everything consistent with the SM (what a surprise...)

� ∆–framework is well aligned with experimental measurements. Suitable for testingdifferent analysis details→ 1505.05516

Correlated vs. Uncorrelated theoretical uncertaintiesBox-shaped vs. Gaussian theoretical uncertaintiesPassarino estimates, N3LO for gluon fusion.

� ∆–framework only suitable for event -rate analysis.

How could we add the information from kinematic distributions?→ Effective Lagrangian!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 5 / 19

Page 10: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

∆–framework: results

∆–framework: results� 68% CL error bars:

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

BRinv

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

data

�Well understood correlations:

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆(-2 ln L) 0

2

4

6

8

10

12

14

16

� Everything consistent with the SM (what a surprise...)

� ∆–framework is well aligned with experimental measurements. Suitable for testingdifferent analysis details→ 1505.05516

Correlated vs. Uncorrelated theoretical uncertaintiesBox-shaped vs. Gaussian theoretical uncertaintiesPassarino estimates, N3LO for gluon fusion.

� ∆–framework only suitable for event -rate analysis.

How could we add the information from kinematic distributions?→ Effective Lagrangian!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 5 / 19

Page 11: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian Approach

Effective Lagrangian ApproachCommon idea ∼ O(30) years: SM success (lack of unexpected) motivates model independentparametrization for NP→ Leff

Based on symmetries and particle content at low energy:

Leff = LSM0 +

∞∑m=1

∑n

f(4+m)n

ΛmO(4+m)n

First flavor, then LEP/2 and EWPD, TGV, also Higgs at LEP and Tevatron

Apply it to the Higgs sector!1207.1344

Alternative to the ∆ setup:

• Correlations between different sectors: EWPD, TGV and now Higgs!→ 1304.1151(Higgs-TGV)

• Correlations between different Higgs couplings→ analysis gets convoluted• New Lorentz structures: potential to break/increase sensitivity with kinematics!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 6 / 19

Page 12: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian Approach

Effective Lagrangian ApproachCommon idea ∼ O(30) years: SM success (lack of unexpected) motivates model independentparametrization for NP→ Leff

Based on symmetries and particle content at low energy:

Leff = LSM0 +

∞∑m=1

∑n

f(4+m)n

ΛmO(4+m)n

First flavor, then LEP/2 and EWPD, TGV, also Higgs at LEP and Tevatron

Apply it to the Higgs sector!1207.1344

Alternative to the ∆ setup:

• Correlations between different sectors: EWPD, TGV and now Higgs!→ 1304.1151(Higgs-TGV)

• Correlations between different Higgs couplings→ analysis gets convoluted• New Lorentz structures: potential to break/increase sensitivity with kinematics!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 6 / 19

Page 13: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian Approach

Effective Lagrangian ApproachCommon idea ∼ O(30) years: SM success (lack of unexpected) motivates model independentparametrization for NP→ Leff

Based on symmetries and particle content at low energy:

Leff = LSM0 +

∞∑m=1

∑n

f(4+m)n

ΛmO(4+m)n

First flavor, then LEP/2 and EWPD, TGV, also Higgs at LEP and Tevatron

Apply it to the Higgs sector!1207.1344

Alternative to the ∆ setup:

• Correlations between different sectors: EWPD, TGV and now Higgs!

→ 1304.1151(Higgs-TGV)

• Correlations between different Higgs couplings→ analysis gets convoluted• New Lorentz structures: potential to break/increase sensitivity with kinematics!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 6 / 19

Page 14: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian Approach

Effective Lagrangian ApproachCommon idea ∼ O(30) years: SM success (lack of unexpected) motivates model independentparametrization for NP→ Leff

Based on symmetries and particle content at low energy:

Leff = LSM0 +

∞∑m=1

∑n

f(4+m)n

ΛmO(4+m)n

First flavor, then LEP/2 and EWPD, TGV, also Higgs at LEP and Tevatron

Apply it to the Higgs sector!1207.1344

Alternative to the ∆ setup:

• Correlations between different sectors: EWPD, TGV and now Higgs!→ 1304.1151(Higgs-TGV)

• Correlations between different Higgs couplings→ analysis gets convoluted

• New Lorentz structures: potential to break/increase sensitivity with kinematics!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 6 / 19

Page 15: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian Approach

Effective Lagrangian ApproachCommon idea ∼ O(30) years: SM success (lack of unexpected) motivates model independentparametrization for NP→ Leff

Based on symmetries and particle content at low energy:

Leff = LSM0 +

∞∑m=1

∑n

f(4+m)n

ΛmO(4+m)n

First flavor, then LEP/2 and EWPD, TGV, also Higgs at LEP and Tevatron

Apply it to the Higgs sector!1207.1344

Alternative to the ∆ setup:

• Correlations between different sectors: EWPD, TGV and now Higgs!→ 1304.1151(Higgs-TGV)

• Correlations between different Higgs couplings→ analysis gets convoluted• New Lorentz structures: potential to break/increase sensitivity with kinematics!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 6 / 19

Page 16: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian: the linear realizationBottom-up model-independent effective Lagrangian approach:

Leff = LSM0 +

∑n

fn

Λ2On

Particle content (SU(2)L doublet), Symmetries (SM, lepton, baryon, CP)

Choice of basis (not for today): EOM, huge variety of data (DATA–DRIVEN), focus measurable atLHC:1

OGG = Φ†Φ GaµνGaµν , OWW = Φ†WµνWµνΦ, OBB = Φ†BµνBµνΦ,

OΦ,2 = 12∂µ(Φ†Φ

)∂µ(Φ†Φ

), OW = (DµΦ)†Wµν(DνΦ), OB = (DµΦ)†Bµν(DνΦ),

OeΦ,33 = (Φ†Φ)(L3ΦeR,3), OuΦ,33 = (Φ†Φ)(Q3ΦuR,3), OdΦ,33 = (Φ†Φ)(Q3ΦdR,3) ,

Thus, 9 parameters for Higgs interactions:

fGG

Λ2,fWW

Λ2,fBB

Λ2,fφ,2

Λ2,fW

Λ2,fB

Λ2,fτ

Λ2,fb

Λ2,ft

Λ2

Let’s see them in unitary gauge

1DµΦ =

(∂µ + i 1

2g′Bµ + ig σa

2Waµ

)Φ, Bµν = i g

′2Bµν , Wµν = i g

2σaWa

µν

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 7 / 19

Page 17: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian: the linear realizationBottom-up model-independent effective Lagrangian approach:

Leff = LSM0 +

∑n

fn

Λ2On

Particle content (SU(2)L doublet), Symmetries (SM, lepton, baryon, CP)

Choice of basis (not for today): EOM, huge variety of data (DATA–DRIVEN), focus measurable atLHC:

1

OGG = Φ†Φ GaµνGaµν , OWW = Φ†WµνWµνΦ, OBB = Φ†BµνBµνΦ,

OΦ,2 = 12∂µ(Φ†Φ

)∂µ(Φ†Φ

), OW = (DµΦ)†Wµν(DνΦ), OB = (DµΦ)†Bµν(DνΦ),

OeΦ,33 = (Φ†Φ)(L3ΦeR,3), OuΦ,33 = (Φ†Φ)(Q3ΦuR,3), OdΦ,33 = (Φ†Φ)(Q3ΦdR,3) ,

Thus, 9 parameters for Higgs interactions:

fGG

Λ2,fWW

Λ2,fBB

Λ2,fφ,2

Λ2,fW

Λ2,fB

Λ2,fτ

Λ2,fb

Λ2,ft

Λ2

Let’s see them in unitary gauge

1DµΦ =

(∂µ + i 1

2g′Bµ + ig σa

2Waµ

)Φ, Bµν = i g

′2Bµν , Wµν = i g

2σaWa

µν

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 7 / 19

Page 18: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian: the linear realizationBottom-up model-independent effective Lagrangian approach:

Leff = LSM0 +

∑n

fn

Λ2On

Particle content (SU(2)L doublet), Symmetries (SM, lepton, baryon, CP)

Choice of basis (not for today): EOM, huge variety of data (DATA–DRIVEN), focus measurable atLHC:1

OGG = Φ†Φ GaµνGaµν , OWW = Φ†WµνWµνΦ, OBB = Φ†BµνBµνΦ,

OΦ,2 = 12∂µ(Φ†Φ

)∂µ(Φ†Φ

), OW = (DµΦ)†Wµν(DνΦ), OB = (DµΦ)†Bµν(DνΦ),

OeΦ,33 = (Φ†Φ)(L3ΦeR,3), OuΦ,33 = (Φ†Φ)(Q3ΦuR,3), OdΦ,33 = (Φ†Φ)(Q3ΦdR,3) ,

Thus, 9 parameters for Higgs interactions:

fGG

Λ2,fWW

Λ2,fBB

Λ2,fφ,2

Λ2,fW

Λ2,fB

Λ2,fτ

Λ2,fb

Λ2,ft

Λ2

Let’s see them in unitary gauge

1DµΦ =

(∂µ + i 1

2g′Bµ + ig σa

2Waµ

)Φ, Bµν = i g

′2Bµν , Wµν = i g

2σaWa

µν

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 7 / 19

Page 19: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian: the linear realizationBottom-up model-independent effective Lagrangian approach:

Leff = LSM0 +

∑n

fn

Λ2On

Particle content (SU(2)L doublet), Symmetries (SM, lepton, baryon, CP)

Choice of basis (not for today): EOM, huge variety of data (DATA–DRIVEN), focus measurable atLHC:1

OGG = Φ†Φ GaµνGaµν , OWW = Φ†WµνWµνΦ, OBB = Φ†BµνBµνΦ,

OΦ,2 = 12∂µ(Φ†Φ

)∂µ(Φ†Φ

), OW = (DµΦ)†Wµν(DνΦ), OB = (DµΦ)†Bµν(DνΦ),

OeΦ,33 = (Φ†Φ)(L3ΦeR,3), OuΦ,33 = (Φ†Φ)(Q3ΦuR,3), OdΦ,33 = (Φ†Φ)(Q3ΦdR,3) ,

Thus, 9 parameters for Higgs interactions:

fGG

Λ2,fWW

Λ2,fBB

Λ2,fφ,2

Λ2,fW

Λ2,fB

Λ2,fτ

Λ2,fb

Λ2,ft

Λ2

Let’s see them in unitary gauge1DµΦ =

(∂µ + i 1

2g′Bµ + ig σa

2Waµ

)Φ, Bµν = i g

′2Bµν , Wµν = i g

2σaWa

µν

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 7 / 19

Page 20: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian for Higgs Interactions

LHVVeff = gHgg HG

aµνG

aµν+ gHγγ HAµνA

µν+ g

(1)HZγ

AµνZµ∂νH + g

(2)HZγ

HAµνZµν

+ g(1)HZZ

ZµνZµ∂νH + g

(2)HZZ

HZµνZµν

+ g(3)HZZ

HZµZµ

+ +g(1)HWW

(W

+µνW

−µ∂νH + h.c.

)+ g

(2)HWW

HW+µνW

−µν+ g

(3)HWW

HW+µ W

−µ

LHffeff

= gfHij

fLfRH + h.c.

gHgg = −αs

fGGv

Λ2, gHγγ = −

(g2vs2

2Λ2

)fWW + fBB

2,

g(1)HZγ

=

(g2v

2Λ2

)s(fW − fB)

2c, g

(2)HZγ

=

(g2v

2Λ2

)s[2s2fBB − 2c2fWW ]

2c,

g(1)HZZ

=

(g2v

2Λ2

)c2fW + s2fB

2c2, g

(2)HZZ

= −(g2v

2Λ2

)s4fBB + c4fWW

2c2,

g(1)HWW

=

(g2v

2Λ2

)fW

2, g

(2)HWW

= −(g2v

2Λ2

)fWW ,

gfHij

= −mfi

v

(1−

v2

√2Λ2

ff

), g

Φ,2Hxx

= gSMHxx

(1−

v2

2

fΦ,2

Λ2

)

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 8 / 19

Page 21: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian for Higgs Interactions

LHVVeff = gHgg HG

aµνG

aµν+ gHγγ HAµνA

µν+ g

(1)HZγ

AµνZµ∂νH + g

(2)HZγ

HAµνZµν

+ g(1)HZZ

ZµνZµ∂νH + g

(2)HZZ

HZµνZµν

+ g(3)HZZ

HZµZµ

+ +g(1)HWW

(W

+µνW

−µ∂νH + h.c.

)+ g

(2)HWW

HW+µνW

−µν+ g

(3)HWW

HW+µ W

−µ

LHffeff

= gfHij

fLfRH + h.c.

gHgg = −αs

fGGv

Λ2, gHγγ = −

(g2vs2

2Λ2

)fWW + fBB

2,

g(1)HZγ

=

(g2v

2Λ2

)s(fW − fB)

2c, g

(2)HZγ

=

(g2v

2Λ2

)s[2s2fBB − 2c2fWW ]

2c,

g(1)HZZ

=

(g2v

2Λ2

)c2fW + s2fB

2c2, g

(2)HZZ

= −(g2v

2Λ2

)s4fBB + c4fWW

2c2,

g(1)HWW

=

(g2v

2Λ2

)fW

2, g

(2)HWW

= −(g2v

2Λ2

)fWW ,

gfHij

= −mfi

v

(1−

v2

√2Λ2

ff

), g

Φ,2Hxx

= gSMHxx

(1−

v2

2

fΦ,2

Λ2

)

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 8 / 19

Page 22: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian for Higgs Interactions

LHVVeff = gHgg HG

aµνG

aµν+ gHγγ HAµνA

µν+ g

(1)HZγ

AµνZµ∂νH + g

(2)HZγ

HAµνZµν

+ g(1)HZZ

ZµνZµ∂νH + g

(2)HZZ

HZµνZµν

+ g(3)HZZ

HZµZµ

+ +g(1)HWW

(W

+µνW

−µ∂νH + h.c.

)+ g

(2)HWW

HW+µνW

−µν+ g

(3)HWW

HW+µ W

−µ

LHffeff

= gfHij

fLfRH + h.c.

gHgg = −αs

fGGv

Λ2, gHγγ = −

(g2vs2

2Λ2

)fWW + fBB

2,

g(1)HZγ

=

(g2v

2Λ2

)s(fW − fB)

2c, g

(2)HZγ

=

(g2v

2Λ2

)s[2s2fBB − 2c2fWW ]

2c,

g(1)HZZ

=

(g2v

2Λ2

)c2fW + s2fB

2c2, g

(2)HZZ

= −(g2v

2Λ2

)s4fBB + c4fWW

2c2,

g(1)HWW

=

(g2v

2Λ2

)fW

2, g

(2)HWW

= −(g2v

2Λ2

)fWW ,

gfHij

= −mfi

v

(1−

v2

√2Λ2

ff

), g

Φ,2Hxx

= gSMHxx

(1−

v2

2

fΦ,2

Λ2

)

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 8 / 19

Page 23: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian for Higgs Interactions

LHVVeff = gHgg HG

aµνG

aµν+ gHγγ HAµνA

µν+ g

(1)HZγ

AµνZµ∂νH + g

(2)HZγ

HAµνZµν

+ g(1)HZZ

ZµνZµ∂νH + g

(2)HZZ

HZµνZµν

+ g(3)HZZ

HZµZµ

+ +g(1)HWW

(W

+µνW

−µ∂νH + h.c.

)+ g

(2)HWW

HW+µνW

−µν+ g

(3)HWW

HW+µ W

−µ

LHffeff

= gfHij

fLfRH + h.c.

gHgg = −αs

fGGv

Λ2, gHγγ = −

(g2vs2

2Λ2

)fWW + fBB

2,

g(1)HZγ

=

(g2v

2Λ2

)s(fW − fB)

2c, g

(2)HZγ

=

(g2v

2Λ2

)s[2s2fBB − 2c2fWW ]

2c,

g(1)HZZ

=

(g2v

2Λ2

)c2fW + s2fB

2c2, g

(2)HZZ

= −(g2v

2Λ2

)s4fBB + c4fWW

2c2,

g(1)HWW

=

(g2v

2Λ2

)fW

2, g

(2)HWW

= −(g2v

2Λ2

)fWW ,

gfHij

= −mfi

v

(1−

v2

√2Λ2

ff

), g

Φ,2Hxx

= gSMHxx

(1−

v2

2

fΦ,2

Λ2

)

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 8 / 19

Page 24: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian for Higgs Interactions

LHVVeff = gHgg HG

aµνG

aµν+ gHγγ HAµνA

µν+ g

(1)HZγ

AµνZµ∂νH + g

(2)HZγ

HAµνZµν

+ g(1)HZZ

ZµνZµ∂νH + g

(2)HZZ

HZµνZµν

+ g(3)HZZ

HZµZµ

+ +g(1)HWW

(W

+µνW

−µ∂νH + h.c.

)+ g

(2)HWW

HW+µνW

−µν+ g

(3)HWW

HW+µ W

−µ

LHffeff

= gfHij

fLfRH + h.c.

gHgg = −αs

fGGv

Λ2, gHγγ = −

(g2vs2

2Λ2

)fWW + fBB

2,

g(1)HZγ

=

(g2v

2Λ2

)s(fW − fB)

2c, g

(2)HZγ

=

(g2v

2Λ2

)s[2s2fBB − 2c2fWW ]

2c,

g(1)HZZ

=

(g2v

2Λ2

)c2fW + s2fB

2c2, g

(2)HZZ

= −(g2v

2Λ2

)s4fBB + c4fWW

2c2,

g(1)HWW

=

(g2v

2Λ2

)fW

2, g

(2)HWW

= −(g2v

2Λ2

)fWW ,

gfHij

= −mfi

v

(1−

v2

√2Λ2

ff

), g

Φ,2Hxx

= gSMHxx

(1−

v2

2

fΦ,2

Λ2

)

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 8 / 19

Page 25: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian for Higgs Interactions

LHVVeff = gHgg HG

aµνG

aµν+ gHγγ HAµνA

µν+ g

(1)HZγ

AµνZµ∂νH + g

(2)HZγ

HAµνZµν

+ g(1)HZZ

ZµνZµ∂νH + g

(2)HZZ

HZµνZµν

+ g(3)HZZ

HZµZµ

+ +g(1)HWW

(W

+µνW

−µ∂νH + h.c.

)+ g

(2)HWW

HW+µνW

−µν+ g

(3)HWW

HW+µ W

−µ

LHffeff

= gfHij

fLfRH + h.c.

gHgg = −αs

fGGv

Λ2, gHγγ = −

(g2vs2

2Λ2

)fWW + fBB

2,

g(1)HZγ

=

(g2v

2Λ2

)s(fW − fB)

2c, g

(2)HZγ

=

(g2v

2Λ2

)s[2s2fBB − 2c2fWW ]

2c,

g(1)HZZ

=

(g2v

2Λ2

)c2fW + s2fB

2c2, g

(2)HZZ

= −(g2v

2Λ2

)s4fBB + c4fWW

2c2,

g(1)HWW

=

(g2v

2Λ2

)fW

2, g

(2)HWW

= −(g2v

2Λ2

)fWW ,

gfHij

= −mfi

v

(1−

v2

√2Λ2

ff

), g

Φ,2Hxx

= gSMHxx

(1−

v2

2

fΦ,2

Λ2

)

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 8 / 19

Page 26: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Effective Lagrangian for Higgs Interactions

Effective Lagrangian for Higgs Interactions

LHVVeff = gHgg HG

aµνG

aµν+ gHγγ HAµνA

µν+ g

(1)HZγ

AµνZµ∂νH + g

(2)HZγ

HAµνZµν

+ g(1)HZZ

ZµνZµ∂νH + g

(2)HZZ

HZµνZµν

+ g(3)HZZ

HZµZµ

+ +g(1)HWW

(W

+µνW

−µ∂νH + h.c.

)+ g

(2)HWW

HW+µνW

−µν+ g

(3)HWW

HW+µ W

−µ

LHffeff

= gfHij

fLfRH + h.c.

gHgg = −αs

fGGv

Λ2, gHγγ = −

(g2vs2

2Λ2

)fWW + fBB

2,

g(1)HZγ

=

(g2v

2Λ2

)s(fW − fB)

2c, g

(2)HZγ

=

(g2v

2Λ2

)s[2s2fBB − 2c2fWW ]

2c,

g(1)HZZ

=

(g2v

2Λ2

)c2fW + s2fB

2c2, g

(2)HZZ

= −(g2v

2Λ2

)s4fBB + c4fWW

2c2,

g(1)HWW

=

(g2v

2Λ2

)fW

2, g

(2)HWW

= −(g2v

2Λ2

)fWW ,

gfHij

= −mfi

v

(1−

v2

√2Λ2

ff

), g

Φ,2Hxx

= gSMHxx

(1−

v2

2

fΦ,2

Λ2

)

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 8 / 19

Page 27: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Rate–based results

A variety of correlations

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

2-d correlations with 68%, 90%, 95% and 99%CL allowed regions in the planes fWW × fBB ,fW × fB , and fB × fBB (TeV−2× TeV−2).

Lorentz structures not exploited so far...

Add kinematic distributions!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 9 / 19

Page 28: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Rate–based results

A variety of correlations

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

2-d correlations with 68%, 90%, 95% and 99%CL allowed regions in the planes fWW × fBB ,fW × fB , and fB × fBB (TeV−2× TeV−2).

Lorentz structures not exploited so far...

Add kinematic distributions!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 9 / 19

Page 29: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

pVT in associated production

0

100

200

300

400

500

600

700

800

0 25 50 75 100 125 150 175 200 225 250

pT

V(GeV)

Ev

ents

/bin

SM

(SM Higgs) x 30(f

B/Λ

2=-20 TeV

-2) x 30

0leptons

0 50 100 150 200 2500

200

400

600

800

102

103

0 25 50 75 100 125 150 175 200 225 250

pT

V(GeV)

Ev

ents

/bin

SM

(SM Higgs) x 80

(fWW

/Λ2=-f

BB/Λ

2=20TeV

-2) x 80

1lepton

0 50 100 150 200 250

103

102

102

103

0 25 50 75 100 125 150 175 200 225 250

pT

V(GeV)

Even

ts/b

in

SM(SM Higgs) x 70

(fW

/Λ2 =20TeV

-2) x 70

2leptons

0 50 100 150 200 250

103

102

ATLAS H → bb (1409.6212)

pVT is sensitive to maximum energy flow ofthe event

Background rapidly decreases, whileenhancement for dimension-6 operators

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 10 / 19

Page 30: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

pVT implementation

Simulation with usual tools: FeynRules, MadGraph5, Pythia, PGS4/DELPHES

102

103

0 25 50 75 100 125 150 175 200 225 250

pT

V(GeV)

Ev

ents

/bin

SM(SM Higgs) x 70

(fW

/Λ2 =20TeV

-2) x 70

2leptons

0 50 100 150 200 250

103

102

• Distributions for cut–based cross check

� Less precise� Shifted central measurement

MVA–8 TeV: µ = 0.65± 0.4Cut–based–8TeV: µ = 1.23± 0.6

Thus, combination is not straightforward.• Optimal:

� fix normalization from MVA� define asymmetries

Ai =bini+1 − binibini+1 + bini

.

Added to the likelihood functionpropagating the uncertainties

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 11 / 19

Page 31: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

pVT implementation

Simulation with usual tools: FeynRules, MadGraph5, Pythia, PGS4/DELPHES

102

103

0 25 50 75 100 125 150 175 200 225 250

pT

V(GeV)

Ev

ents

/bin

SM(SM Higgs) x 70

(fW

/Λ2 =20TeV

-2) x 70

2leptons

0 50 100 150 200 250

103

102

• Distributions for cut–based cross check

� Less precise� Shifted central measurement

MVA–8 TeV: µ = 0.65± 0.4Cut–based–8TeV: µ = 1.23± 0.6

Thus, combination is not straightforward.

• Optimal:� fix normalization from MVA� define asymmetries

Ai =bini+1 − binibini+1 + bini

.

Added to the likelihood functionpropagating the uncertainties

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 11 / 19

Page 32: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

pVT implementation

Simulation with usual tools: FeynRules, MadGraph5, Pythia, PGS4/DELPHES

102

103

0 25 50 75 100 125 150 175 200 225 250

pT

V(GeV)

Ev

ents

/bin

SM(SM Higgs) x 70

(fW

/Λ2 =20TeV

-2) x 70

2leptons

0 50 100 150 200 250

103

102

• Distributions for cut–based cross check

� Less precise� Shifted central measurement

MVA–8 TeV: µ = 0.65± 0.4Cut–based–8TeV: µ = 1.23± 0.6

Thus, combination is not straightforward.• Optimal:

� fix normalization from MVA

� define asymmetries

Ai =bini+1 − binibini+1 + bini

.

Added to the likelihood functionpropagating the uncertainties

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 11 / 19

Page 33: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

pVT implementation

Simulation with usual tools: FeynRules, MadGraph5, Pythia, PGS4/DELPHES

102

103

0 25 50 75 100 125 150 175 200 225 250

pT

V(GeV)

Ev

ents

/bin

SM(SM Higgs) x 70

(fW

/Λ2 =20TeV

-2) x 70

2leptons

0 50 100 150 200 250

103

102

• Distributions for cut–based cross check

� Less precise� Shifted central measurement

MVA–8 TeV: µ = 0.65± 0.4Cut–based–8TeV: µ = 1.23± 0.6

Thus, combination is not straightforward.• Optimal:

� fix normalization from MVA� define asymmetries

Ai =bini+1 − binibini+1 + bini

.

Added to the likelihood functionpropagating the uncertainties

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 11 / 19

Page 34: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

∆Φjj in weak boson fusion

20

30

40

50

60

70

80

90

100

0 1.0472 2.0944 3.1416

∆Φjj

Even

ts/b

in

SM Higgs

fWW

/Λ2=-f

BB/Λ

2=20TeV

-2

fWW

/Λ2=-f

BB/Λ

2=-20TeV

-2

γγ jj

0 π/3 2π/3 π10

102

ATLAS H → γγ differential study (1407.4222)

20

30

40

50

60

70

80

90

100

0 1.0472 2.0944 3.1416

∆Φjj

Even

ts/b

in

SM Higgs

fWW

/Λ2=-f

BB/Λ

2=20TeV

-2

fWW

/Λ2=-f

BB/Λ

2=-20TeV

-2

γγ jj

0 π/3 2π/3 π10

102

ATLAS H → γγ differential study (1407.4222)

• Dimension-6 contributions peak at 0or π.

• Keep in mind

�WBF better for WW and ττ ,� No WFB specific cuts: both GGFand VH mess up

Thus, power dramatically diminished.• Combination: again, fix normalization

and define sensitive asymmetries:

A1 =(σ < π

3) + (σ > 2π

3)− (π

3< σ < 2π

3)

(σ < π3

) + (σ > 2π3

) + (π3< σ < 2π

3),

A2 =(σ > 2π

3)− (σ < π

3)

(σ > 2π3

) + (σ < π3

)

A3 =(σ > 5π

6)− ( 2π

3< σ < 5π

6)

(σ > 5π6

) + ( 2π3< σ < 5π

6).

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 12 / 19

Page 35: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

∆Φjj in weak boson fusion

20

30

40

50

60

70

80

90

100

0 1.0472 2.0944 3.1416

∆Φjj

Even

ts/b

in

SM Higgs

fWW

/Λ2=-f

BB/Λ

2=20TeV

-2

fWW

/Λ2=-f

BB/Λ

2=-20TeV

-2

γγ jj

0 π/3 2π/3 π10

102

ATLAS H → γγ differential study (1407.4222)

• Dimension-6 contributions peak at 0or π.

• Keep in mind

�WBF better for WW and ττ ,� No WFB specific cuts: both GGFand VH mess up

Thus, power dramatically diminished.• Combination: again, fix normalization

and define sensitive asymmetries:

A1 =(σ < π

3) + (σ > 2π

3)− (π

3< σ < 2π

3)

(σ < π3

) + (σ > 2π3

) + (π3< σ < 2π

3),

A2 =(σ > 2π

3)− (σ < π

3)

(σ > 2π3

) + (σ < π3

)

A3 =(σ > 5π

6)− ( 2π

3< σ < 5π

6)

(σ > 5π6

) + ( 2π3< σ < 5π

6).

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 12 / 19

Page 36: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

∆Φjj in weak boson fusion

20

30

40

50

60

70

80

90

100

0 1.0472 2.0944 3.1416

∆Φjj

Even

ts/b

in

SM Higgs

fWW

/Λ2=-f

BB/Λ

2=20TeV

-2

fWW

/Λ2=-f

BB/Λ

2=-20TeV

-2

γγ jj

0 π/3 2π/3 π10

102

ATLAS H → γγ differential study (1407.4222)

• Dimension-6 contributions peak at 0or π.

• Keep in mind

�WBF better for WW and ττ ,� No WFB specific cuts: both GGFand VH mess up

Thus, power dramatically diminished.• Combination: again, fix normalization

and define sensitive asymmetries:

A1 =(σ < π

3) + (σ > 2π

3)− (π

3< σ < 2π

3)

(σ < π3

) + (σ > 2π3

) + (π3< σ < 2π

3),

A2 =(σ > 2π

3)− (σ < π

3)

(σ > 2π3

) + (σ < π3

)

A3 =(σ > 5π

6)− ( 2π

3< σ < 5π

6)

(σ > 5π6

) + ( 2π3< σ < 5π

6).

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 12 / 19

Page 37: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

∆Φjj in weak boson fusion

• Dimension-6 contributions peak at 0or π.

• Keep in mind

�WBF better for WW and ττ ,� No WFB specific cuts: both GGFand VH mess up

Thus, power dramatically diminished.

• Combination: again, fix normalizationand define sensitive asymmetries:

A1 =(σ < π

3) + (σ > 2π

3)− (π

3< σ < 2π

3)

(σ < π3

) + (σ > 2π3

) + (π3< σ < 2π

3),

A2 =(σ > 2π

3)− (σ < π

3)

(σ > 2π3

) + (σ < π3

)

A3 =(σ > 5π

6)− ( 2π

3< σ < 5π

6)

(σ > 5π6

) + ( 2π3< σ < 5π

6).

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 12 / 19

Page 38: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

∆Φjj in weak boson fusion

20

30

40

50

60

70

80

90

100

0 1.0472 2.0944 3.1416

∆Φjj

Even

ts/b

in

SM Higgs

fWW

/Λ2=-f

BB/Λ

2=20TeV

-2

fWW

/Λ2=-f

BB/Λ

2=-20TeV

-2

γγ jj

0 π/3 2π/3 π10

102

ATLAS H → γγ differential study (1407.4222)

• Dimension-6 contributions peak at 0or π.

• Keep in mind

�WBF better for WW and ττ ,� No WFB specific cuts: both GGFand VH mess up

Thus, power dramatically diminished.• Combination: again, fix normalization

and define sensitive asymmetries:

A1 =(σ < π

3) + (σ > 2π

3)− (π

3< σ < 2π

3)

(σ < π3

) + (σ > 2π3

) + (π3< σ < 2π

3),

A2 =(σ > 2π

3)− (σ < π

3)

(σ > 2π3

) + (σ < π3

)

A3 =(σ > 5π

6)− ( 2π

3< σ < 5π

6)

(σ > 5π6

) + ( 2π3< σ < 5π

6).

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 12 / 19

Page 39: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

Full dimension-6 analysis

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 13 / 19

Page 40: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

Full dimension-6 analysis

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 13 / 19

Page 41: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

Full dimension-6 analysis

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 13 / 19

Page 42: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

EFT from Effective?

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 14 / 19

Page 43: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

EFT from Effective?

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

fWW/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

-10 -5 0 5 10 15 20-20

-15

-10

-5

0

5

10

fW/Λ2 [TeV

-2]

fB/Λ2

[TeV-2

]

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

-20 -10 0 10 20 30-80

-60

-40

-20

0

20

40

fB/Λ2 [TeV

-2]

fBB/Λ2

[TeV-2

]

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

-80 -60 -40 -20 0 20 40-20

-15

-10

-5

0

5

10

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 14 / 19

Page 44: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

1dimensional results

-50

-40

-30

-20

-10

0

OGG

OW

W

OBB

OW

OB

Oφ2

0.15

0.2

0.25

0.3

0.5∞

0.5

f/Λ2

[TeV-2

]Λ/√|f|[TeV]

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

rate only

rate+distributions

-15

-10

-5

0

5

Ot

Ob

0.3

0.4

0.5

1∞1

0.5

f/Λ2

[TeV-2

]Λ/√|f|[TeV]

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 15 / 19

Page 45: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

m4` from off–shell measurements

t

1 + ∆t/ftΛ2

1 + ∆Z/fφ,2Λ2 ∆g/

fGGΛ2 1 + ∆Z/

fφ,2Λ2

Continuum background qq (gg)→ ZZ (left) and Higgs signal gg → H → ZZ (right).

Mgg→ZZ = (1 + ∆Z) [(1 + ∆t)Mt + ∆gMg ] +Mc

dm4`= (1 + ∆Z)

[(1 + ∆t)

dσtc

dm4`+ ∆g

dσgc

dm4`

]+ (1 + ∆Z)2

[(1 + ∆t)

2 dσtt

dm4`+ (1 + ∆t)∆g

dσtg

dm4`+ ∆2

g

dσgg

dm4`

]+dσc

dm4`.

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 16 / 19

Page 46: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

m4` from off–shell measurements

[GeV]4lm300 400 500 600 700 800

1

10

ZZ→qqZZ→gg)=(1,-1)t∆,g∆()=(0,-2)t∆,g∆(

data

Events/binZZ→pp

CMS-1L=5.1 (7 TeV) + 19.7 (8 TeV) fb

• Here we can use ATLAS and CMS• Bins directly into the analysis

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 17 / 19

Page 47: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

m4` from off–shell measurements

[GeV]4lm300 400 500 600 700 800

1

10

ZZ→qqZZ→gg)=(1,-1)t∆,g∆()=(0,-2)t∆,g∆(

data

Events/binZZ→pp

CMS-1L=5.1 (7 TeV) + 19.7 (8 TeV) fb

• Here we can use ATLAS and CMS• Bins directly into the analysis

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 17 / 19

Page 48: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

m4` from off–shell measurements

[GeV]4lm300 400 500 600 700 800

1

10

ZZ→qqZZ→gg)=(1,-1)t∆,g∆()=(0,-2)t∆,g∆(

data

Events/binZZ→pp

CMS-1L=5.1 (7 TeV) + 19.7 (8 TeV) fb

• Here we can use ATLAS and CMS• Bins directly into the analysis

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

∆g

∆t

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 17 / 19

Page 49: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

ΓH from off–shell measurements

σon-shelli→H→f ∝

g2i (mH ) g2

f (mH )

ΓHvrs. σoff-shell

i→H∗→f ∝ g2i (m4`) g

2f (m4`) .

• ΓH < 9.3ΓSMH 68% CL

• May allow to bound the Higgs total decaywidth under certain assumptions.

• Here including effective operators (andnot only the gluon fusion top-loop inducedproduction).

0 10 20 300

2

4

6

8

10

SMHΓ/HΓ

(-2 ln L)∆ SM+dim6

68% CL

95% CL

Run I LHC - ATLAS+CMS

L = LSM + ∆W gmWH WµWµ + ∆Z

g

2cwmZH Z

µZµ −

∑τ,b,t

∆fmf

vH(fRfL + h.c.

)+ ∆gFG

H

vGµνG

µν+ ∆γFA

H

vAµνA

µν+ invisible decays + unobservable decays .

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 18 / 19

Page 50: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Kinematic distributions

ΓH from off–shell measurements

σon-shelli→H→f ∝

g2i (mH ) g2

f (mH )

ΓHvrs. σoff-shell

i→H∗→f ∝ g2i (m4`) g

2f (m4`) .

• ΓH < 9.3ΓSMH 68% CL

• May allow to bound the Higgs total decaywidth under certain assumptions.

• Here including effective operators (andnot only the gluon fusion top-loop inducedproduction).

0 10 20 300

2

4

6

8

10

SMHΓ/HΓ

(-2 ln L)∆ SM+dim6

68% CL

95% CL

Run I LHC - ATLAS+CMS

L = LSM + ∆W gmWH WµWµ + ∆Z

g

2cwmZH Z

µZµ −

∑τ,b,t

∆fmf

vH(fRfL + h.c.

)+ ∆gFG

H

vGµνG

µν+ ∆γFA

H

vAµνA

µν+ invisible decays + unobservable decays .

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 18 / 19

Page 51: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Outlook

ConclusionsarXiv:1505.05516

• So far the Higgs boson seems completely SM–like.∆–framework aligned with experimental measurements: test different analysis features.

• Moving to Effective Lagrangian analysis: Kinematic distributions essential.Restricting to the Higgs sector: biggest differences between EFT and ∆–framework areanomalous momentum dependence on some vertices.

• Optimal implementation of kinematic distributions in a global analysis is feasible:� Increased sensitivity.� Remove correlations.

We start being sensitive to more and more deviations: for instance OWW and OBB inweak sector.Drawback: consistenty of EFT will need to be carefully checked.

• Off-shell distributions are also starting to be sensitive to gluon and top operators.� Disentangle OGG from Ot (and sign of top-Yukawa!).� Total width ΓH < 9.3ΓSMH 68% CL.

Thank you!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 19 / 19

Page 52: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

Outlook

ConclusionsarXiv:1505.05516

• So far the Higgs boson seems completely SM–like.∆–framework aligned with experimental measurements: test different analysis features.

• Moving to Effective Lagrangian analysis: Kinematic distributions essential.Restricting to the Higgs sector: biggest differences between EFT and ∆–framework areanomalous momentum dependence on some vertices.

• Optimal implementation of kinematic distributions in a global analysis is feasible:� Increased sensitivity.� Remove correlations.

We start being sensitive to more and more deviations: for instance OWW and OBB inweak sector.Drawback: consistenty of EFT will need to be carefully checked.

• Off-shell distributions are also starting to be sensitive to gluon and top operators.� Disentangle OGG from Ot (and sign of top-Yukawa!).� Total width ΓH < 9.3ΓSMH 68% CL.

Thank you!

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 19 / 19

Page 53: The Higgs Legacy of the LHC Run I - Max Planck SocietyThe Higgs Legacy of the LHC Run I Juan González Fraile Universität Heidelberg Tyler Corbett, O. J. P. Éboli, Dorival Gonçalves,

∆–framework: results

∆–framework: results II� Correlated theory uncertainties:

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

SM exp. (corr.)

data

data (corr.)

� Gaussian theory uncertainties:

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp.

SM exp. (Gaussian)

data

data (Gaussian)

� N3LO for gluon fusion:

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp. (NNNLO GF)

data

data (NNNLO GF)

� Passarino estimate:

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

∆γSM

+NP

∆gSM

+NP

∆Z/W

∆b/τ

∆b/W

gx = gxSM

(1+∆x)

L=4.5-5.1(7 TeV)+19.4-20.3(8 TeV) fb-1

, 68% CL: ATLAS + CMS

SM exp. + Passarino shift

data

data + Passarino shift

Juan González Fraile (ITP-Heidelberg) WIN15 MPIK-Heidelberg, June 2015 20 / 19