The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

download The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

of 11

Transcript of The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    1/11

    The general problem of elastic wave propagation in multilayeredanisotropic mediaAdnanH. NayfehDepartment f 4erospacengineeringndEngineering echanics, niversityof incinnati, incinnati, hio45221( Received 5 February1990; evised 6September 990; ccepted 0October1990)Exact analytical reatmentof the interactionof harmonicelasticwaveswith n-layeredanisotropic lates s presented. ach ayer of the plate can possessp to as ow as monoclinicsymmetryand thus allowing results or higher symmetrymaterialssuchas orthotropic,transverselysotropic,cubic,and isotropic o be obtainedas special ases. he wave s allowedto propagate longan arbitraryangle rom the normal o the plateas well as alonganyazimuthalangle.Solutions re obtained y using he transfermatrix method.According o thismethod ormalsolutionsor each ayerare derivedand expressedn termsof waveamplitudes.By eliminating heseamplitudes he stressesnd displacementsn onesideof the layer arerelated o thoseof the otherside.By satisfying ppropriate ontinuity onditions t interlayerinterfaces global ransfermatrix canbe constructed hichrelates he displacementsndstressesn one sideof the plate to thoseon the other. nvoking appropriateboundaryconditions n the platesouterboundaries largevarietyof importantproblems anbe solved.Of thesemention s madeof the propagation f free waveson the plateand the propagation fwavesn a periodicmediaconsistingf a periodic epetition f the plate.Confidences theapproach nd results re confirmed y comparisons ith whatever s available rom specializedsolutions.A varietyof numerical llustrations re included.PACS numbers: 43.20.Bi, 43.20.Fn, 43.30.Ma

    INTRODUCTION

    Studiesof the propagation f elasticwaves n layeredmediahave ongbeenof interest o researchersn the fieldsofgeophysics,coustics,ndelectromagnetics.pplications fthese tudiesnclude uch echnologicallymportant reas searthquakerediction, ndergroundaultmapping, il andgas exploration,architecturalnoise eduction,and the re-centlyevolving oncernof the analysis nd designof ad-vanced ibrousand layeredcompositematerials.Commonto all of these tudiess he degree f the nteractions etweenthe layers,which manifest hemselvesn the form of reflec-tion and transmission gents nd hencegiverise o geomet-ric dispersion.hese nteractions epend, mongmany ac-tors, upon the properties, direction of propagation,frequency nd number,and nature of the interfacialcondi-tions.Extensiveeviewof workson thissubject ntil the mid60'shasbeen eported n the literatureas s evidencedromthebook y Ewing t al.1andup to theearly80'sby Brek-hovskikh.For more ecentworks n hegeneral ubjectfwave propagation n layered media we refer the reader toRefs.3-5 asrepresentativeeferences.Typically a layeredmediumconsists f two or more ma-terial components ttachedat their interface n some ash-ion. A body made up of an arbitrary numberof differentmaterialcomponents nd whoseouterboundaries re eitherfree or supportedby semi-infinitemedia constitutes gen-eral layered medium. Often the abovedefinition s relaxed toinclude semi-infinite olids,single-layer lates,and twosemi-infinite olids n contactas degenerate ases f layeredmedia.

    Most of the available iterature on layered media is re-stricted to the study of situationswhere the individual mate-rial layers re sotropic.Generally peaking,or wavepropa-gation n suchmedia, solutions re obtainedby expressingthe displacements nd stressesn each layer in terms of itswave potentialamplitudes.By satisfying ppropriate nter-facial conditions, haracteristicquations re constructedthat involve he amplitudes f all layers; his constituteshedirectapproach. he degree f complicationn thealgebraicmanipulation f theanalysiswill thusdepend pon he num-berof layers.For relatively ew ayers he directapproachsappropriate.However, as the numberof layers ncreaseshedirect approachbecomes umbersome, nd one may resortto the alternative ransfer propagator)matrix techniqueintroduced riginally y Thomsonand somewhatateronby Haskell and Gilbert and BackusfiAccordingo thistechnique neconstructshe propagationmatrix for a stackof an arbitrary numberof layersby extending he solutionfrom one ayer to the next while satisfyinghe appropriateinterfacialcontinuityconditions.To narrow down our discussion f problems elating tothe interactionof elasticwaveswith periodicmedia we notethatRytov utilizedhedirect pproach ethod ndderi edsomeanalyticalexpressionsor characteristic quations f aperiodicarray of two isotropic ayers.However,Rytov wasonly able o present olutionsor propagation itheralongornormalo the ayers. ayfehmderived n exact xpressionfor the characteristic quationof wavespropagating ormalto a periodic rrayof an arbitrarynumberof sotropicayers.Sve extendedhe esults f Rytov o anyobliquencidenceandderived hecharacteristicquationor theperiodic rray

    1521 d. Acoust.Soc. Am. 89 (4), Pt. 1, April 1991 0001-4966/91/041521-11 $00.80 1991 AcousticalSocietyof America 1 521

    ded 01 Jul 2011 to 150.140.149.189. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    2/11

    of two sotropicayersn the ormof thevanishing etermi-nant of an 8X8 matrix.Schoenberg2 utilized he matrixtransfermethod ndpresentedesultsor obliquencidenceon an alternating luid-isotropic olid medium.Gilbert 3discussedhe utility of the propagatormatrix formalismofGilbertandBackusto the studyof wavepropagationnstratifiedmediaand obtained xplicitexpressionsor thesimplecaseof a periodically ayered luid.For casesnvolvingperiodic nisotropicmediawe men-tion that Yamada and Nemat-Nasser 4 extended the resultsof Sve o the case f orthotropic ayers.This resulted, ue otheadded oupling f thehorizontally olarized omponentof the wave, o the vanishing f the determinant f a 12 12matrix. n a recently eldspecial ymposiumnwavepropa-gation n structural omposites, several aperswerepre-sented n guidedwaves n laminatedanisotropic latesaswellason periodicallyaminated nisotropic edia.The pa-perspresentednclude,either ndividuallyor collectively,the most comprehensiveurveysof the relevant iterature.The most elevantworks or the presentwork are givenbyBraga ndHerrmann, TingandChadwick,6andNayfehet al.7Braga ndHermann5sedhepropagator atrixmethodand presentedesults or a periodicarray of an arbi-trary numberof orthotropic ayers.Their work is restrictedhowever o the caseof propagation long ayer interfaces(no oblique ncidence)and also for propagation long anaxisof symmetry f each ayer.This mplies hat their ayer-ing is restrictedsuch that the symmetryaxesof all layerscoincide. Thus, their model does not account for the cou-pling between he in-planemotion (SH) and that of the sa-gittalplane. ingandChadwick6alsousedhepropagatormatrix approach (in conjunctionwith a formalism devel-oped for steadyplane motionsof anisotropic odiesbyStroh ) andderived characteristicquationorharmonicwaves n periodically nisotropicmedia.Their analysiswascarried nitially for waves ravelingalong he layeringandthentheyoutlinedhow t canbe generalizedo an arbitrarydirectionof propagationn the sagittalplane.Nayfeh taL,17with hehelp f inear rthogonalrans-formations,ere ble o derive xact nalyticalxpressionsfor thereflectionoefficientroma fluid-loadedrbitrarilyoriented ultilayeredrthotropiclate. heapproachsedin Ref. 17 was introduced in their earlier works that dealtwithsingleayeranisotropiclates. 9,2ohe useof the ineartransformation,which facilitatesand leads o executioneaseoftheanalysis, asmotivated y the mportant bservationthat the wave vectors of the incident and reflected waves alllie n thesame lane. 7.19-21heanalysis as hereforeon-ducted n a coordinate ystemormedby incident nd re-flectedplanes ather than by material axes.In thispaperwe utilize combinations f the inear rans-formationapproach nd the transfermatrix methodand ex-tend the resultsof Reft 17 to the study of the interactionoffree harmonicwaveswith multilayeredanisotropicmedia.Our solutionswill be generaland include esultspertainingto several pecial ases. f thesewe mention: a) dispersioncharacteristicsor a multilayered lateconsistingf an arbi-trary numberof arbitrarily orientedanisotropicayers; b)dispersion f an infinitemediumbuilt from repetitionof the

    multilayered late the resultingmediumwill thusbea peri-odic one with respect o the individualcomponentsf theplate); and (c) slownessesults or eitherhomogeneousrperiodicmedia. t is obvious hat the layeredplate consti-tutes the repeatingcell of the infinite medium.Besideshe advantages ainedby the useof the lineartransformationpproach, nother mportant eatureof ouranalysis oncernshemanner n which heoblique ropaga-tion direction s ntroduced nd he way t modifieshe crite-rion necessaryo insureperiodicity.f wedesignateheangle0 (measured rom the normal to the interfaces) to define hepropagation irection, hen this will lead to an explicitde-pendence f the characteristic quations pon0. Confidencein our results s established y comparingwith the limitedavailablenumericalexamples f the special asemodelsofRefs. 1 1 and 14.

    I. FORMULATION OF THE PROBLEM

    Considera plate consisting f an arbitrary numbern ofmonoclinic ayers rigidly bonded at their interfacesandstackednormal o the x3 axisof a globalorthogonalCarte-siansystem = (x,x2,x3)as llustratedn Fig. 1.Hence heplaneof each ayer s parallel o thex-x,_planewhich s alsochosen o coincidewith the bottom surfaceof the layeredplate. To maintain generalitywe assumeeach layer to bearbitrarily oriented n the x-x 2 plane. n order to be able todescribehe relativeorientationof the layers,we assign oreach ayerk, k = 1,2 ....n, a localcartesian oordinate x,)ksuch hat tsorigin s ocatedn thebottomplaneof the ayerwith (x) normal to it. Thus layer k extends from0< (x)

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    3/11

    2

    3

    4

    n-2

    n-In

    XX2

    FIG. 1.Modelgeometry.

    r3

    'Ctl, 0;2 C3 0 0Ct12 C52 C53 0 0 C56C;3 C53 C.3 0 0 C_

    0 0 0 C,h C;s 00 0 0 Ci C 0

    c', ck c; o o

    e'e2e3

    I.Yi2(3)

    wherewe used he contracting ubscript otations 11,2-22, 3-33,4-23, 5-.13, and6-12 to relate jktoC, ij.k,l = 1.2.3 ndp,q- 1,2.... ). Herea,i,,o[sanduare the componentsf stress, train,and displacement,e-spectively,ndp'andck,are hematerial ensityndelasticconstants,espectively.n Eq. (3), Y,5' 2e (with %j) de-fines heengineeringhear traincomponents.

    Sincer, e},andc,5.are ensorsndsincewearecon-ducting uranalysisn theglobal i coordinate,nyorthog-onal ransformationf theprimed o thenonprimedoordi-nates,.e., (x[) k to x,., hey ransform ccordingorr ... = fi,,,ifi,,o',, (4a)eop 15'o,15'pe,, (4b)c .... = fi,,,,fi,,jfio&,c.,, ()

    whereri s he osinesf he ngleetween[ and , respec-tively.For a rotation f angleO n thex{ -x5 plane, he rans-formationensorie reducesoriO= --sin& cos& , (5)

    0 0which, f appliedo Eq. (2) throughherelation f Eq. (3)yields the known constitutiverelations:

    "/ /c,= ,;cl, o 0 G6 e,; o 0 cq ,/ o 0 (6)1523 J. Acoust. oc.Am.,Vol.89, No.4, Pt.1, April 991 Adrian . Nayfeh:Multilayeredrtisttopic edia 1523

    ded 01 Jul 2011 to 150.140.149.189. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    4/11

    wherehe ransformationelationsetweenheC,qandC qentries re isted n AppendixA. Notice that no matter whatrotationalangle 6 is used, he zero entries n Eq. (3) willremainzero n (6). In fact, even f the matrix of Eq. (3) isparticularizedo orthotropicmedia, ts transformedmatrixwill resemble that ofmonoclinic media. In terms of the rotat-ed coordinatesystemx,, the momentum equation trans-forms to

    &r;j 8 2u;-- _p -- (7)axj atII. ANALYSIS

    Substituting rom Eq. (6) into Eq. (7) results n a sys-tem of three coupledequations or the displacements , u2,and u3. If we now identify the plane of incidence o be thex x3,as n Fig. I then or an angleof incidence , we proposea solution or the displacements in the form(Ul,//2,U3) --- 1,V,W) U exp[i(x sin O+ ax 3 -- ct) ],

    (8)where is the wave number, c is the phase velocity( = co/), w is the circular requency, is still an unknownparameter, nd V and W are ratiosof the displacementm-plitudes f u2 and u3 to that of u , respectively. otice that,althoughsolutions 8) are explicitly ndependent f x 2, animplicitdependences containedn the transformation. ur-thermore, notice the nonvanishingof the transversedis-placement omponent 2 n Eq. (8). This choice f solutionsleads o the threecoupledequationsK,,, (a) U, = O, m,n = 1,2,3, (9a)

    where he summationconvention s mplied,K,,, is symmet-ric, namelyKin,, = K ..... andKll = Cll sin 19-pc2 d-C5515g,K2 = Cl6sin 0 + C452,K3 = (C3 + C55)a sin 0,K22= C66 in 19- pc + C442,K23= (C36d- C45)a sin 0,K33 C55 in 19--pc + C332. (9b)The existenceof nontrivial solutions or Ul, U2, and U3

    demands he vanishingof the determinant n Eq. (9a), andyields he sixth-degree olynomial quationa 6 d- 41 4 d-A2 2 d-/13= 0, (10)

    relating to c, where he coefficients , 42,and 43aregivenin Appendix B. Equation (10) admitssix solutions or a(having the properties)

    For each , q = 1,2....6, wecanuse herelations9) andexpress the displacement atios V=U2/U;q andWq= U3q/U;q sKll(aq)K23(sq)-K13(aq)KI2(aq)12)VqK3(aqK:(aq- K:(CtqKe3(aK(aq)Ke3(aq)Ke(aq)K3(aq)13)Wq-K:(aqK33(aq--Ke3(aqKi3(

    CombiningEqs. (12) and (13) with the stress-strainrelations 6), and usingsuperposition, e finally write theformal solutions or the displacementsnd stressesn theexpandedmatrix orm,

    (14)

    whereEq= e gctqx',

    Dq= i(Cl3sin0 + C36 inOVq C33aWq,= + wqsin0) +

    D3q i [C4s(aq - Wqsin19) CCtqVq],q = 1,2....6. (15)

    Notice hat the specific elationsn the entriesof the squarematrix of Eq. (14), suchas W: = -- W and V6 = V, forexamples, an be seenby inspection f the ratios (12) and(13) in conjunctionwith the restrictions 11 .Equation (14) can be used o relate he displacementsandstressest (x). = 0 to those t (x), = d (). This sdoneby specializing14) to these wo ocations, liminatingthe commonamplitudesU, ..... U,6 and getting

    P[ = AP F , k=1,2 .....n, (16a)where

    pff = {[Ul,U2,U3,O.33,O.3,O.23T_+k (16b)defines he variablescolumn specialized o the upper andlower surfaces f the layer, k, respectively, nd

    A. = XDX , (17)whereX is the 6 X 6 squarematrixof Eq. (14) andD is a6 X 6 diagonalmatrixwhose ntries reThe matrix / constituteshe transfermatrix for themonoclinicayer k. It allows he wave o be ncidenton thelayer at an arbitrary angle 0 from the normal x 3 or equiv-alently (xg) and at any azimuthalangle4. By applying heabove rocedureor each ayer ollowed y nvoking hecon-tinuity of the displacementnd stress omponents16b) atthe layer interfaces,we can finally relate the displacementsandstressest the top of the ayeredplate,x = d, to those tits bottom,x> = 0, via the transfermatrix multiplicationA =A.,,_ '"A (18)

    resulting nP+ =.4P-, (19)

    1524 J. Aoust. oc.Am.,Vol.89, No. 4, Pt. 1, April1991 AdnanH. Nayfeh:Multilayered nistropic edia 1524

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    5/11

    where owP * andP - are hedisplacementndstressol-umnvectorst the op,x3 = d, and ower, 3 = 0, of the otalplate,respectively.III. PROPERTIES OF THE TRANSFER MATRIX

    The global ransfermatrix A has severalpropertieswhich, f exploited, aneaseheexecution f theanalysis ndlead o simple nalytical epresentationf the results.Beforeweproceedo listanddiscusshese roperties, e now ndi-cate hat suchpropertis re alsocharacteristicsf the trans-fer matrices f the ndividual ayers. n fact,sinceEq. (19)holds or any numberof layersn, then t holds or a singlelayer n particular seeEq. (16) ], and husA canbe repre-sented y Ak for k = 1,2 ....n. Accordingly,we hypothesizethat any generalpropertyof Ak is alsoa propertyof A.With thiswe now concentrate n listingand discussingproperties f the ndividual ransfermatrixA k-

    (a) det (Ak) = 1. (20)This propertycanbe easilyprovenby employinghe well-known esult hat thedeterminant f the product s equal othe productof the determinants,which togetherwith therelation 17), implies hat

    det(Ak = det(X )det(XF )det(D )= det(XX')det(Dk)= det(Dk). (21)

    Thisconclusionanalsobearrivedat by noting hatAk andD are similarand hence heir determinantsre equal.2SinceDk isdiagonal,tsdeterminantsequal o theproductof itsentrieswhich,by employing 11 , is seen o beunity.(b) As a consequencef their similarity,A and D alsohave he sameeigenvalues.his means hat the six possibleeigenvaluessay q,q= 1,2....6) ofA aregiven y hediag-onal elements f Dk. By inspection e see hat these igen-valuesconsistof three pairs with the entriesof each pairbeing he inverseof each other. thus, if A,/L 3, and 25 areeigenvaluesof A k, so are 22= 1/21,24= 1/23, and26 = 1/25.(c) The resultsof (b), and the fact that the eigenvaluesofAff are he nversef thecorrespondingigenvaluesfAk, lead o theconclusionhat 4&and 4 ff have hesamesetof eigenvalues.As a consequencef ( a )- ( c ) and the definition 18 weconclude that:

    (i) det(A) = det(A,)det(A_, )... det(A) = 1.(22)(ii) TheeigenvaluesfA - areequal o theeigenvaluesof.4. To show his, et usassumehat the eigenvalue f A is r.It followshen hat heeigenvaluefA - is 1/r.By substi-tuting from (17) into (18) and carrying he inverse ra we

    getdet(X.D.. "'X2D2X2 XD,X - rI) = 0, (23a)det(X,D F X ,- XD c X ' "X.,

    XD ff X,, - r-I) = 0. (23b)Now, using he fact hat the products f the two equal anksquare matrices M,M2 and M2M (although

    MM2 M2M have hesame igenvalues,2bycyclic er-mutation, we can rewrite the relation (23a) asdet(XDX5 IX2D2X '"X,,D. X ff -- crI)= O.

    (23c)By inspecting 23b) and (23c), we conclude hat (23c) canbe obtained rom (23b) by merely nverting he diagonalmatricesD and the eigenvalue . Since he entriesof D aremade up of pairs that are inverseof each other, then it isobvioushatD andD ff have hesame ntrieseigenval-ues). husweconcludehat heeigenvalues, q = 1,2....6and 1/aq constitutehesame et.(iii) The property escribednder ii) canonly mplythat he% consistsf three airswhereheentries f eachpair are the nverse f eachother. n our subsequentnalysiswe choose o arrange hesesix eigenvaluess a, l/a, ,1/or3,as, and 1/as(iv) In thedegenerateasewhere ll layers remadeupof the samematerial (but not necessarilyaveequal hick-nesses), and hesixvalues q are hesameor every .Now, substitutingrom (17) into (18) and recognizinghatX -_t = I (identity) or = 1,2....n, theglobalmatrixAcollapseso

    A: XtDX t, (24)wherewe used he fact that hereX,, = X and

    D = D.D,, _ "'D (:25)isa diagonal atrixwhosentriesregiven yexp(ictqd),q = 1,2 ....6 and d is the total thickness.Thus, we haveshown hat the global ransfermatrix correctly educesothe correspondingmatrix of the singlematerial plate whenall layer properties re the same.

    (v) A very important consequencef the above istedproperties s the resulting elations hat exist between heinvarientserA. To this end, if we expand he characteristicequation der (A -- rrI) = 0, write it in terms of both theeigenvaluesrqand nvarients of A, q = 1,2....6 format,and compare the resulting expressions,we conclude thesymmetric elationsIs=I, I4=12, I=1. (26)

    The result16 = 1 alsoconfirms he fact that det(A) = 1.Equation 19) will nowbe used o present olutionsora variety of situations.n the first, we consider singlecellmedium, namely a free n-layeredplate. The characteristicequation or sucha situation s obtainedby choosing := 0and invoking the stress-free pper and bottom surfaces nEq. (19) that lead to the characteristic quation

    241`442 43`451 45 .453 0. (27)'461 `462 263A second mportant situation s that of a periodicmediumconsisting f a repetitionof the unit cell (plate). Here wegeneralize he classicalFloquct periodicity condition to re-quire

    p + = p - eigao (28)which is consistentwith the formal solution (8). Combina-

    1525 J. Acoust.Sec. Am., Vol. 89, No. 4, Pt. 1, April 1991 AdnanH. Nayfeb:Multilayered nistropicmedia 1525ded 01 Jul 2011 to 150.140.149.189. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    6/11

    tionsof (26) and (19) yields he characteristic quationdet (A -- Ie ac)= 0. (29)

    Equation 29) canalsobeexpanded ndwritten n termsofthe nvariants. of A which, fteralgebraic anipulationreduce tocos[3dcos0 ] - I cos 2d cos0 ] + 12cosiedcos0 ]

    - 13/2 = 0. (30)In terms fthe ndividualntriesAofA theinvariantslqregiven n Ref. 22 by

    ( -- 1)rI. = i < i'''

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    7/11

    Wqpea-C, in0- CCtq (38)(Cl3+ C)Ctqsin0Diq= i( Ci3sin0 + C33ctqq ,Dzq ---Css(ctq- IVq in 9). (39)

    Accordingly,ormalsolutionsor propagationlong n axisof symmetry f an orthotropicmaterial regivenby

    (40a)where

    E = eg", q --- ,2,3,4. (40b)Onceagain,Eq. (40) canbe used o relate hedisplace-mentsnd tressestx}kl = 0 to hosetx}k)= d (n) orsucha restricteddirectionof propagation. his can be donebyspecializingq. (40) to x3n 0 and o x}l= d (nandeliminatinghecommon mplitude olumn f Ul, U12,U3,and U4 esultingn an equation imilar o (27) with X& nowgivenby the 4X4 matrix of Eq. (40) and D is again he4X4diagonalatrix hosentriesregivenseg"t'",q = 1,2,3,4or heaq definedn Eq. (35). Henceheglobaltransfermatrix s againconstructed y multiplication f theindividualmaterial transfermatrices.The propertiesof theresulting X 4 matrix (here eferred o asA' to avoidconfus-ing t with 4 of themonoclinicase)are denticalwith hoseof the 6X6 matrixA of (18), except or the fact that`4 hasonly two pairsof eigenvaluesather than three.Utilizing`4 , thecorrespondingharacteristicquationsfor the reewaves n a singleayeredplateandon theperiod-ic media or propagationlong n axisof symmetry f eachlayerare given, espectively,yA A3=0 (41)

    andcos[2dcos0 ] --I cos['dcosg ] +I/2 =0. (42)Vl. DISCUSSIONS AND NUMERICAL ILLUSTRATION

    In this section,we illustrate he analytical esults 27),(30), (41), and (42) with a limited selection f numericalexamples.While thecases e present erearecertainly ypi-cal, they are by no means xhaustive f the varietyof thephenomenology ontained n the analysis.Once the numberof layers, heirproperties,ndgeometric tacking respeci-fied,we present ur numerical esults n two categories.nthe first, we demonstratehe variations f phasevelocitycwith angleof incidence for specifiedrequenciesand ori-entation ngles; his seffectively formof demonstrationof the dependence f wave ront (inverseof slowness curveswith frequencyor specified rientation ngles.n the sec-ond, we present hase elocitydispersion urvesplottedasfunctions f theproduct f frequencyndunitcell hickness,namelyFd, for specified ngles f incidence . The proper-

    tiesof a representativerthotropicmaterial hat we used nour calculations re given n GPa by C h = 128, C ] = 7,Ch=6, C=72, C=5, C3=32, C=18,C[s = 12.25, 6 = 8,andp= 2 g/cm . Here, ifferentay-ers can be constructedrom this chosenmaterial by assign-ing appropriateotational ngles. his choice s not restric-tive and has he advantage f saving pace y not having olist differentmaterialproperties. hus, for examples com-binationof 0 ,90 ,60 ,and -- 60 ayupconstitutes four-layered ell whereas combination f 0 0,0 ,0 ,and0 cellsdefines single omogeneousaterial.Withoutany oss ngenerality he thickness of the representativenit cell iskeptconstant, nd ts constituentslayers)are assignedol-ume fractionsadding o unity.To show he extentof generality n the results,we nowdiscusshe case n which all layersare the same. This isexpectedo undoubtedlyesultn a descriptionf thebehav-ior of single omogeneousnisotropic aterials. s wasdis-cussed arlier, he global ransfermatrix for sucha situationcollapseso the form given n (24}. Using hismatrix, o-getherwith the fact that for thiscaseD and 4 are similar,dictates hat the characteristic q. (29) admits he solution

    a=cos 0, q=1,2 .... , (43)which alsospecializeshe formal solution 8) to the oneappropriateor thesingle omogeneousedium.With ref-erence o Eq. (10) and or a fixedO, he results 43) admitthree roots or the phasevelocityc correspondingo onequasilongitudinalnd wo quasishear otions. hus, or avariable ,Eq. (43) describeshevariation f he hree hasevelocities ith the ncidentangleand hence onstitutewavefront curves. or thisspecializedinglemedium ase, hesecurveswill be ndependent f frequency, owever.For an sotropicmaterial, or example, q. (10) uncou-plesandgives

    ct= ea/c - sin 0; a z = c2/ear- sin 19, (44).5whereCLandCr are he ongitudinalndshearwavespeedsin themedium espectively.hus,combinationf Eqs. 43}and 44) giveshe oots = cL andc = CTyieldingwocon-centtic pherical ave rontcurves s s expected.or theanisotropic ase,however, he threesolutions ill be cou-pled esultingn nonsphericalave ronts.For the ayeredmediacase, he situations muchmorecomplicatedue o the dependencef thephase elocities,not onlyon the ndividualayerproperties,ut most mpor-tantlyon hewave umber or frequency (morepreciselyon the parameter d). However, or a fixed requency, ecan constructwave front curvesand hence,by varying thefrequencyn a discretemanner, emonstratefrequency-dependentdispersive"haracter f the wave ronts.ForFd = 0 MHz ram, the curveswill thus constitute he wavefronts or an effective omogenized ediumwhoseproper-tiesare volume ractionweighted roperties f the individ-ual layers.Conventionalispersionurvesn the formsof varia-tions of wave velocities with wavenumber can also be con-structed sing itherEq. (29) or (30). This s done,how-ever, for fixed valuesof 8. Here we mention hat further

    1527 J. Acoust. oc.Am.,Vol.89, No.4, Pt. 1, April1991 AdnanH. Nayfeh:Multilayerednistropic edia 1527aded 01 Jul 2011 to 150.140.149.189. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.j

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    8/11

    confidencen our analyticaland computational rocedurewas established y reproducinghe numerical esultsofRefs. 6 and 9 that constitutespecialcasesof the presentwork.Sample xamples, hichdemonstratehedependenceof such curveson the number of layers and their orienta-tions, regiven or he epresentativengle, = 45 , n Figs.2-5. They correspondo (0 ,90 ); (0 ,90 ,45 , -- 45 );(60 ,0 , -- 60 ); and (0 , 15 , 30 ,45 , 60 , 75 , 90 ),periodicmedia layup configurations,espectively. oteonce gain hatall of these lates ave hesamehickness.In theseigureshephase elocity sgiven y km/s and hewave umber' by mm .Closeexamination f these igures eveals everal nter-esting eatures. t the zerowave-numberimit, each iguredisplayshreevaluesof wavespeeds orrespondingo onequasilongitudinalnd wo quasishear.t is obvioushat thelargest aluecorrespondso thequasilongitudinalode.Atrelatively ow values f the wavenumber, ittle changes seento take place n thesevalues.As increases, ther higher-ordermodes ppear; neof these eemso beassociateditha rapid changen the slopeof the quasilongitudinal ode.Furthermore, heisotropiclikebehaviorsuggestedbytheclosenessf the two quasitransverse odesof Figs.4 and 5 ascompared ith thoseof Fig. 3 ), isworthcommenting pon.It is consistentwith the static predictionof the quasi-iso-tropy of the (0 ,90 ,45 , -- 45 ) and (60 ,0 , -- 60 )layups.In Fig. 6(a)-(c) we depict, for the selectedvaluesFd = 0,2, and 4 MHz mm, wave front curves n the K-K 2planewhereKl = c sin 0and K 2 = CCOS, using (60 ,0 ,--60 ) layup periodic medium as a representative ase.These curves demonstrate the inverse of the slowness curvesas unctions f frequency ndhencedisplayanddemonstratewavefrontdispersion ehavior.The complicated eatures

    4

    I I I I I I I I0 i 2 3 4. .5 6 7

    FIG. 3. Sameas Fig. 2 with (0 90 ,45 , -- 45 ) layup.

    shown n Fig. 6(c) and to a lesserdegree n 6(b) are due tomultivaluedbehaviorshown n Fig. 4 especially t Fd = 4MHz mm broughtaboutby the presence f the higher-ordermodes. Notice in contrast that the "clean" behavior dis-played n Fig. 6(a) reflects he variationsof effectivewavespeed (namely at Fd = 0) with the angleof incidence.To furthershow he versatility f the analyses e alsogenerate, sing he characteristic q. (27), the dispersioncurves f Fig. 7 for freewaveson a finite hickness ulti-

    C4

    I' I I I I II 2 3 5 6 7 8

    FIG. 2. Variation of phasevelocityc with wavenumber for angleof inci-dence0 = 45 ; 0 ,90 ) layup.

    4

    I I I I I I I I0 t 2 3 4 5 6 7 8

    FIG. 4. Sameas Fig. 2 with (60 ,0 -- 60 ) layup.1528 J. Acoust.Soc. Am.,Vol. 89, No. 4, Pt. 1, April1991 AdnanH. Nayfeh:Multilayered nistropicmedia 1528

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    9/11

    4

    3

    IL I I I I I I IO I 2 3 5 ? 8

    FIG. 5. SameasFig. 2 with (0 , 15,30 ,45 ,60 ,75 ,00 ) layup.

    layered plate consisting f ( --60 , 0 , 60 ) layup. Thecurvesdisplayedon this figureare typical of free waves nanisotropiclates.'711.GONC/U$1ON

    We have derivedanalyticalexpressionshat are easilyadaptable o numerical illustrationsof the interactionofelasticwaveswith multilayeredanisotropicmedia. A plateconsisting f an arbitrarynumberof layerseachpossessingas ow asmonoclinic ymmetry s chosen sa representativecell of the medium.Waves are allowed to propagate longarbitrary directions n both azimuthal as well as incidenceplanes.Characteristic quationsor a varietyof physical ys-temsarediscussed.hese nclude hecases f propagation ffreeharmonicwaves n a multilayeredplatesand n periodicmedia constructed rom a repetitionof the layered plate.Results n the formsof dispersion urves re given or severalrepresentativeayering.Wave ront curves or fixed requen-ciesare also ncluded o demonstrateheir dispersive eha-viors.

    K2

    '" "'61 ..'"a)K1

    K

    , KI9

    K

    , KIIO

    FIG. 6. (a) Wavertonicurves or Fd = 0 MHz mm and a (60 *, 0 , -- 60 )layup. b) Same s (a) repeatedt Fd = 2 MHz ram. c) Same s (a) re-peatedat Fd = 4 MHz mm.

    1529 J. Acoust.Soc. Am., Vol. 69, No. 4, Pt. 1, April 1991 AdnanH. Nayfeb:Multilayered nistropicmeclla 1529aded 01 Jul 2011 to 150.140.149.189. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.j

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    10/11

    3

    I I I I I I I0 I 2 3 4 5 6 7 8

    FIG. 7. Variation f phase elocity withwavenumber' for a (60 ,0 ,60 ) layup ree plate.

    ACKNOWLEDGMENTThis work hasbeensupported y AFOSR.

    APPENDIX ACombination of the transformation matrix (5) with the

    constitutive elations (3) yields the following transformedproperties:

    Cii -Ci2 Ci3 Ci6

    C22:C23:C26

    C33C36=C4s=C44=C55=C66=

    C ;, G 4 q- C2S4 q-2(C '2+ 2C,652G2,(C;i q- C2 -4C,6) S2G2q- C2(S4q- G4),C3G2q- C3X2,( C iI -- C '2 - 2C$,6)SG+ (C '2 C2 + 2C,oGS3,c;,s 4 + 2(ci: + 2C,6)S2G- + C2G4,C3G2q-(C; - C'2 2C;6)GS3q- (C ;2 -- C-52 - 2C;6 SG3,C;3,(C3 -- C'3 SG,( C 4 -- C )SG,C402 q- C55 2,C;5G 2 q- C4S2,(CI + C2 -- 2C'2 - 2C,6)S2Gq- C'16(84q-G4),

    where G = cos& and S = sin .

    APPENDIX BThe variouscoefficients fEq. (10) are givenby

    A ---(0,1C33044- C3 44 -2013036045- 20,3044055-013025- 20,6033045-C3305s066- C]6C55)sinO2 2A2= [ (C 03306 - C, C 6 - 2C, C3605 C, GCss C, C4s C ,3G6 + 2C,,C,60362C,3C,605

    - 2030506 - C6G, + 2C,6C36Css)sin0 - (C,,033 C,,G4 -- C3 - 2C,,Css 20,605 36

    a3= [ (c,,GsG- cGs) sine - (c, ,%. + c,,Go+ c + G.G.)pc2sin 0+ (Cll + 55 + C66)Pc4 in2 --p3c6]/A,with

    W. M. Ewing,W. S. Jardel:sky,nd F. Press, lasticWavesn LayeredMedia(McGraw-Hill, New York, 1957).:L. M. Brekhovskikh,Wavesn LayeredMedia (Academic,New York,1966).'B. L. N. Kennett,SeismicWavePropagationn StratifiedMedia (Cam-bridgeU. P., Cambridge,UK, 1983).40. J. Fryer and L. N. Frazer, "SeismicWaves n StratifiedMedia--ll.Elastodynamic igensolutionsor SomeAnisotropic ystems," eephys.J. R. Astron. Sec. 91, 73-101 (1987).SA.K. Mal andT. C. T. Ting Eds.), Wave ropagationnStructural om-posites American Societyof MechanicalEngineers,New York, 1988),AMD-Vol. 90.

    'W.T. Thomson,Transmissionf ElasticWaves hroughStratifiedSolid medium,"J. Appl. Phys.21, 89 (1950).N. A. Haskell, The Dispersion SurfaceWaves n MultilayeredMe-dia," Bull. Seismol. Sec. Am. 43, 17 (1953).F. Gilbert and G. E. Backus, PropagatorMatrices n ElasticWave andVibration Problems," Geophysics 1, 326-332 (1966)."S.M. Rytov,"Acoustical roperties ra Thinly LaminatedMedia," Phys.Accoust. 2, 68-80 (1956).mA.H. Nayfeh, Time-HarmonicWavesPropagation ormal o the Lay-ersoMulti-layered eriodicMedia," J. Appl. Mech. 42, 92-96 (1974).C. Sve,"Time-HarmonicWavesTravellingObliquelyn a PeriodicallyLaminated Medium," J. Appl. Mech. 38, 677-682 ( 1971 .

    1530 J. Acoust.Sec. Am.,Vol. 89, No. 4, Pt. 1, April1991 AdrianH. Nayfeh:Multilayered nistropicmedia 1530

  • 8/13/2019 The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media

    11/11

    2M.Schoenberg,Wave ropagationnAlternatingolid ndFluid-Lay-ers," Wave Motion 6, 303-320 (1984).3K.E.Gilberg,A PropagatoratrixMethodorPeriodicallytratifiedMedia," J. Acoust. SOc.Am. 73, 137-162 (1983).4M.YamadandS. Nemat-Nasser,Harmonic aves ithArbitraryPropagation irection n layeredOrthotropicElasticComposites,".Composite ater, 15, 531-542 1981 .A. M. B.BragandG. Herrmann,PlaneWavesnAnisotropicayeredComposites,"n Ref. 5, pp.69-80.r. C. T. TingandP. Chadwick,Harmonic avesn PeriodicallyLayeredAnisotropic lasticComposites,n Ref. 5, pp. 53-68."A. H. Nayfeb, . W. Taylor, ndD. E. Chimenti,Theoretical avePropagationn Multilayered rthotropic edia," n Ref.5, pp. 17-28.SA. . Stroh,DislocationsndCracksnAnisotropiclasticity,"hilos.Mag. 3, 625-649 (1958).mA.H. Nayfeb ndD. E. Chimenti,Ultrasonic aveReflectionrom

    Liquid-Loaded rthotropic lateswith Pdpplicationso FibrousCompo-sites," . Appl. Mech. 55, 863 (1988).2D.E. Chimenti ndA. H. Nayfeb, Experimentalltrasonic eflectionandGuidedWavePropagationn FibrousCompositeaminates,"n Ref.5, pp. 29-38.2A.H. Nayfeb ndD. E. Chimenti,FreeWavePropagationn Plates fGeneralAnisotropicMedia," J. Appl. Mech. 56, 881 (1990).22j. N. Franklin,Matrix Theory Prentice-Hall, nglewood liffs,NJ,1968).23D. . ChimentindA. H. Nayfeh, Ultrasoniceflectionndguided avepropagationn biaxially aminatedcomposite lates," o appear n J.Acoast. SOc. Am. 87, 1409-1415(1990).24A.H. Nayfeh, ThePropagationf Horizontally olarized hearWavesin MultilayeredAnisotropicMedia," J. Acoust.Soc. Am. 88, Z007(1989).

    1531 J. Acoust. oc.Am.,Vol.89, No.4, Pt. 1, April 991 Adrian l_ layfeh: ultilayerodnistropic edia 1531