The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi...

114
The Farey graph, continued fractions and SL 2 -tilings Ian Short Thursday 4 October 2018 Work in preparation with Peter Jørgensen (Newcastle)

Transcript of The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi...

Page 1: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

The Farey graph, continued fractionsand SL2-tilings

Ian Short

Thursday 4 October 2018

Work in preparation with Peter Jørgensen (Newcastle)

Page 2: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s friezes

Page 3: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s friezes

· · ·

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 1 2 4 1 2 2 3 1

1 3 5 2 1 7 3 1 3 5 2 1

2 1 7 3 1 3 5 2 1 7 3 1

1 2 4 1 2 2 3 1 2 4 1 2

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

· · ·

b

a d

c

ad− bc = 1

H.S.M. Coxeter, Frieze patterns, 1971

Page 4: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s friezes

· · ·

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 1 2 4 1 2 2 3 1

1 3 5 2 1 7 3 1 3 5 2 1

2 1 7 3 1 3 5 2 1 7 3 1

1 2 4 1 2 2 3 1 2 4 1 2

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

· · ·

b

a d

c

ad− bc = 1

H.S.M. Coxeter, Frieze patterns, 1971

Page 5: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s friezes

· · ·

0 0 0 0 0

1 1 1 1 1

2 1 2 1 2

1 1 1 1 1

0 0 0 0 0

· · ·b

a d

c

Theorem (Coxeter) Every infinite strip of positive integers borderedby 0s that satisfies the unimodular rule ad− bc = 1 is periodic.

Definition An infinite strip of integers of this type is called a positiveinteger frieze.

Theorem (Coxeter) Every positive integer frieze is invariant under aglide reflection.

H.S.M. Coxeter, Frieze patterns, 1971

Page 6: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s friezes

· · ·

0 0 0 0 0

1 1 1 1 1

2 1 2 1 2

1 1 1 1 1

0 0 0 0 0

· · ·b

a d

c

Theorem (Coxeter) Every infinite strip of positive integers borderedby 0s that satisfies the unimodular rule ad− bc = 1 is periodic.

Definition An infinite strip of integers of this type is called a positiveinteger frieze.

Theorem (Coxeter) Every positive integer frieze is invariant under aglide reflection.

H.S.M. Coxeter, Frieze patterns, 1971

Page 7: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s friezes

· · ·

0 0 0 0 0

1 1 1 1 1

2 1 2 1 2

1 1 1 1 1

0 0 0 0 0

· · ·b

a d

c

Theorem (Coxeter) Every infinite strip of positive integers borderedby 0s that satisfies the unimodular rule ad− bc = 1 is periodic.

Definition An infinite strip of integers of this type is called a positiveinteger frieze.

Theorem (Coxeter) Every positive integer frieze is invariant under aglide reflection.

H.S.M. Coxeter, Frieze patterns, 1971

Page 8: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s friezes

· · ·

0 0 0 0 0

1 1 1 1 1

2 1 2 1 2

1 1 1 1 1

0 0 0 0 0

· · ·b

a d

c

Theorem (Coxeter) Every infinite strip of positive integers borderedby 0s that satisfies the unimodular rule ad− bc = 1 is periodic.

Definition An infinite strip of integers of this type is called a positiveinteger frieze.

Theorem (Coxeter) Every positive integer frieze is invariant under aglide reflection.

H.S.M. Coxeter, Frieze patterns, 1971

Page 9: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Integer friezes

· · ·

0 0 0 0 0

−1 −1 −1 −1 −12 1 2 1 2

−1 −1 −1 −1 −10 0 0 0 0

· · ·

· · ·

0 0 0 0 0

1 1 1 1 1

0 a 0 b 0

−1 −1 −1 −1 −1c 0 d 0 e

1 1 1 1 1

0 0 0 0 0

· · ·

Page 10: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Integer friezes

· · ·

0 0 0 0 0

−1 −1 −1 −1 −12 1 2 1 2

−1 −1 −1 −1 −10 0 0 0 0

· · ·

· · ·

0 0 0 0 0

1 1 1 1 1

0 a 0 b 0

−1 −1 −1 −1 −1c 0 d 0 e

1 1 1 1 1

0 0 0 0 0

· · ·

Page 11: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s question

· · ·

0 0 0 0 0

1 1 1 1 1

2 1 2 1 2

1 1 1 1 1

0 0 0 0 0

· · ·b

a d

c

Theorem Each positive integer frieze is specified by a finite sequence ofpositive integers.

Question (Coxeter) Characterise positive integer friezes!

H.S.M. Coxeter, Frieze patterns, 1971

Page 12: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s question

· · ·

0 0 0 0 0

1 1 1 1 1

2 1 2 1 2

1 1 1 1 1

0 0 0 0 0

· · ·b

a d

c

Theorem Each positive integer frieze is specified by a finite sequence ofpositive integers.

Question (Coxeter) Characterise positive integer friezes!

H.S.M. Coxeter, Frieze patterns, 1971

Page 13: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Coxeter’s question

· · ·

0 0 0 0 0

1 1 1 1 1

2 1 2 1 2

1 1 1 1 1

0 0 0 0 0

· · ·b

a d

c

Theorem Each positive integer frieze is specified by a finite sequence ofpositive integers.

Question (Coxeter) Characterise positive integer friezes!

H.S.M. Coxeter, Frieze patterns, 1971

Page 14: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Conway’s insight

· · ·

0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 1 2 4 1 2 2 3 11 3 5 2 1 7 3 1 3 5 2 1

2 1 7 3 1 3 5 2 1 7 3 11 2 4 1 2 2 3 1 2 4 1 2

1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

· · ·

width = 7period = 7

Theorem (Conway & Coxeter) There is a one-to-one correspondencebetween positive integer friezes of period n and triangulated n-gons.

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973

Page 15: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Conway’s insight

· · ·

0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 1 2 4 1 2 2 3 11 3 5 2 1 7 3 1 3 5 2 1

2 1 7 3 1 3 5 2 1 7 3 11 2 4 1 2 2 3 1 2 4 1 2

1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

· · ·

width = 7period = 7

Theorem (Conway & Coxeter) There is a one-to-one correspondencebetween positive integer friezes of period n and triangulated n-gons.

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973

Page 16: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Counting friezes

Theorem There are Cn =1

n+ 1

(2n

n

)positive integer friezes of

width n.

...

R.P. Stanley, Enumerative Combinatorics, vol. 2, 1999

Page 17: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

SL2-tilings

Page 18: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

SL2-tilings

0 0 0 0 01 1 1 1 1

2 1 2 1 21 1 1 1 1

0 0 0 0 0

rotate 45◦−−−−−−→

0 1 1 1 0

0 1 2 1 0

0 1 1 1 0

0 1 2 1 0

· · ·

...

0 1 1 1 0 −1 −1 −1 0 1 1 1 0

0 1 2 1 0 −1 −2 −1 0 1 2 1 0

0 1 1 1 0 −1 −1 −1 0 1 1 1 0

0 1 2 1 0 −1 −2 −1 0 1 2 1 0

...

· · ·

Page 19: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

SL2-tilings

0 0 0 0 01 1 1 1 1

2 1 2 1 21 1 1 1 1

0 0 0 0 0

rotate 45◦−−−−−−→

0 1 1 1 0

0 1 2 1 0

0 1 1 1 0

0 1 2 1 0

· · ·

...

0 1 1 1 0 −1 −1 −1 0 1 1 1 0

0 1 2 1 0 −1 −2 −1 0 1 2 1 0

0 1 1 1 0 −1 −1 −1 0 1 1 1 0

0 1 2 1 0 −1 −2 −1 0 1 2 1 0

...

· · ·

Page 20: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

SL2-tilings

Definition SL2(Z) =

{(a bc d

): a, b, c, d ∈ Z, ad− bc = 1

}

Definition An SL2-tiling is an infinite array of integers such that anytwo-by-two submatrix satisfies ad− bc = 1.

· · ·

...

5 9 4 7 17

1 2 1 2 5

2 5 3 7 18

1 3 2 5 13

3 10 7 18 47...

· · · · · ·

...

13 8 3 4 5

8 5 2 3 4

3 2 1 2 3

4 3 2 5 8

5 4 3 8 13...

· · ·

Page 21: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

SL2-tilings

Definition SL2(Z) =

{(a bc d

): a, b, c, d ∈ Z, ad− bc = 1

}

Definition An SL2-tiling is an infinite array of integers such that anytwo-by-two submatrix satisfies ad− bc = 1.

· · ·

...

5 9 4 7 17

1 2 1 2 5

2 5 3 7 18

1 3 2 5 13

3 10 7 18 47...

· · ·

· · ·

...

13 8 3 4 5

8 5 2 3 4

3 2 1 2 3

4 3 2 5 8

5 4 3 8 13...

· · ·

Page 22: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

SL2-tilings

Definition SL2(Z) =

{(a bc d

): a, b, c, d ∈ Z, ad− bc = 1

}

Definition An SL2-tiling is an infinite array of integers such that anytwo-by-two submatrix satisfies ad− bc = 1.

· · ·

...

5 9 4 7 17

1 2 1 2 5

2 5 3 7 18

1 3 2 5 13

3 10 7 18 47...

· · · · · ·

...

13 8 3 4 5

8 5 2 3 4

3 2 1 2 3

4 3 2 5 8

5 4 3 8 13...

· · ·

Page 23: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

A selection of results on SL2-tilings

Classification of tame SL2-tilings (Bergeron, Reutenauer)

Classification of positive integer SL2-tilings (Bessenrodt, Holm, Jørgensen)

Classification of infinite friezes (Baur, Parsons, Tschabold)

· · ·

...

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

...

· · · And much more!

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010C. Bessenrodt, P. Jørgensen & T. Holm, All SL2-tilings come from infinitetriangulations, 2017K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Page 24: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

A selection of results on SL2-tilings

Classification of tame SL2-tilings (Bergeron, Reutenauer)

Classification of positive integer SL2-tilings (Bessenrodt, Holm, Jørgensen)

Classification of infinite friezes (Baur, Parsons, Tschabold)

· · ·

...

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

...

· · · And much more!

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010C. Bessenrodt, P. Jørgensen & T. Holm, All SL2-tilings come from infinitetriangulations, 2017K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Page 25: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

A selection of results on SL2-tilings

Classification of tame SL2-tilings (Bergeron, Reutenauer)

Classification of positive integer SL2-tilings (Bessenrodt, Holm, Jørgensen)

Classification of infinite friezes (Baur, Parsons, Tschabold)

· · ·

...

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

...

· · ·

And much more!

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010C. Bessenrodt, P. Jørgensen & T. Holm, All SL2-tilings come from infinitetriangulations, 2017K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Page 26: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

A selection of results on SL2-tilings

Classification of tame SL2-tilings (Bergeron, Reutenauer)

Classification of positive integer SL2-tilings (Bessenrodt, Holm, Jørgensen)

Classification of infinite friezes (Baur, Parsons, Tschabold)

· · ·

...

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

4 3 2 1 0

...

· · · And much more!

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010C. Bessenrodt, P. Jørgensen & T. Holm, All SL2-tilings come from infinitetriangulations, 2017K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Page 27: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

The Farey graph

Page 28: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Triangles

Page 29: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Triangles

Page 30: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Triangles

Page 31: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Triangles

Page 32: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Triangles

Page 33: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey graph

Definition The Farey graph is the graph with vertices Q ∪ {∞}, andwith an edge (represented by a hyperbolic line) from a/b to c/d if andonly if |ad− bc| = 1.

Page 34: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey graph

Definition The Farey graph is the graph with vertices Q ∪ {∞}, andwith an edge (represented by a hyperbolic line) from a/b to c/d if andonly if |ad− bc| = 1.

Page 35: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey graph

Definition The Farey graph is the graph with vertices Q ∪ {∞}, andwith an edge (represented by a hyperbolic line) from a/b to c/d if andonly if |ad− bc| = 1.

Page 36: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey graph

Definition The Farey graph is the graph with vertices Q ∪ {∞}, andwith an edge (represented by a hyperbolic line) from a/b to c/d if andonly if |ad− bc| = 1.

Page 37: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey graph

Definition The Farey graph is the graph with vertices Q ∪ {∞}, andwith an edge (represented by a hyperbolic line) from a/b to c/d if andonly if |ad− bc| = 1.

Page 38: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey graph

Definition The Farey graph is the graph with vertices Q ∪ {∞}, andwith an edge (represented by a hyperbolic line) from a/b to c/d if andonly if |ad− bc| = 1.

Page 39: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey addition

Page 40: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey addition

Page 41: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey sequences

Farey’s observation The Farey sequence of level n,

0

1,1

6,1

5,1

4,1

3,2

5,1

2,3

5,2

3,3

4,4

5,5

6,1

1

(for n = 6), has the property that term k is the Farey sum of term k − 1 andterm k + 1.

Page 42: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey sequences

Farey’s observation The Farey sequence of level n,

0

1,1

6,1

5,1

4,1

3,2

5,1

2,3

5,2

3,3

4,4

5,5

6,1

1

(for n = 6), has the property that term k is the Farey sum of term k − 1 andterm k + 1.

Page 43: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey sequences

Farey’s observation The Farey sequence of level n,

0

1,1

6,1

5,1

4,1

3,2

5,1

2,3

5,2

3,3

4,4

5,5

6,1

1

(for n = 6), has the property that term k is the Farey sum of term k − 1 andterm k + 1.

Page 44: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey sequences

Farey’s observation The Farey sequence of level n,

0

1,1

6,1

5,1

4,1

3,2

5,1

2,3

5,2

3,3

4,4

5,5

6,1

1

(for n = 6), has the property that term k is the Farey sum of term k − 1 andterm k + 1.

Page 45: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey sequences

Farey’s observation The Farey sequence of level n,

0

1,1

6,1

5,1

4,1

3,2

5,1

2,3

5,2

3,3

4,4

5,5

6,1

1

(for n = 6), has the property that term k is the Farey sum of term k − 1 andterm k + 1.

Page 46: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey sequences

Farey’s observation The Farey sequence of level n,

0

1,1

6,1

5,1

4,1

3,2

5,1

2,3

5,2

3,3

4,4

5,5

6,1

1

(for n = 6), has the property that term k is the Farey sum of term k − 1 andterm k + 1.

Page 47: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Automorphisms of the Farey graph

Automorphism group ∼= C2 ∗ C3

Page 48: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Automorphisms of the Farey graph

Automorphism group ∼= C2 ∗ C3

Page 49: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Automorphisms of the Farey graph

Automorphism group ∼= C2 ∗ C3

Page 50: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Automorphisms of the Farey graph

Automorphism group ∼= C2 ∗ C3

Page 51: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Automorphisms of the Farey graph

Automorphism group ∼= C2 ∗ C3

Page 52: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Modular group

Definition The modular group is the group

Γ =

{z 7−→ az + b

cz + d: a, b, c, d ∈ Z, ad− bc = 1

},

which is generated by −1/(1 + z) and −1/z.

Observe that Γ ∼= PSL2(Z).

Key property The modular group is the group of automorphisms of theFarey graph.

Page 53: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Modular group

Definition The modular group is the group

Γ =

{z 7−→ az + b

cz + d: a, b, c, d ∈ Z, ad− bc = 1

},

which is generated by −1/(1 + z) and −1/z.

Observe that Γ ∼= PSL2(Z).

Key property The modular group is the group of automorphisms of theFarey graph.

Page 54: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Modular group

Definition The modular group is the group

Γ =

{z 7−→ az + b

cz + d: a, b, c, d ∈ Z, ad− bc = 1

},

which is generated by −1/(1 + z) and −1/z.

Observe that Γ ∼= PSL2(Z).

Key property The modular group is the group of automorphisms of theFarey graph.

Page 55: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Modular group

Definition The modular group is the group

Γ =

{z 7−→ az + b

cz + d: a, b, c, d ∈ Z, ad− bc = 1

},

which is generated by −1/(1 + z) and −1/z. Observe that Γ ∼= PSL2(Z).

Key property The modular group is the group of automorphisms of theFarey graph.

Page 56: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Modular group

Definition The modular group is the group

Γ =

{z 7−→ az + b

cz + d: a, b, c, d ∈ Z, ad− bc = 1

},

which is generated by −1/(1 + z) and −1/z. Observe that Γ ∼= PSL2(Z).

Key property The modular group is the group of automorphisms of theFarey graph.

Page 57: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Integer continued fractions

Page 58: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Euclid’s algorithm

31

13

= 2 +5

13

= 2 +1135

= 2 +1

2 +153

= 2 +1

2 +1

1 +132

Page 59: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Euclid’s algorithm

31

13= 2 +

5

13

= 2 +1135

= 2 +1

2 +153

= 2 +1

2 +1

1 +132

Page 60: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Euclid’s algorithm

31

13= 2 +

5

13

= 2 +1135

= 2 +1

2 +153

= 2 +1

2 +1

1 +132

Page 61: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Euclid’s algorithm

31

13= 2 +

5

13

= 2 +1135

= 2 +1

2 +3

5

= 2 +1

2 +1

1 +132

Page 62: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Euclid’s algorithm

31

13= 2 +

5

13

= 2 +1135

= 2 +1

2 +153

= 2 +1

2 +1

1 +132

Page 63: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Euclid’s algorithm

31

13= 2 +

5

13

= 2 +1135

= 2 +1

2 +153

= 2 +1

2 +1

1 +2

3

Page 64: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Euclid’s algorithm

31

13= 2 +

5

13

= 2 +1135

= 2 +1

2 +153

= 2 +1

2 +1

1 +132

Page 65: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Euclid’s algorithm

31

13= 2 +

1

2 +1

1 +1

1 +1

2

Page 66: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

The nearest-integer algorithm

31

13

= 2 +1135

= 2 +1

3 +1

−52

= 2 +1

3 +1

−3 +1

2

Page 67: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

The nearest-integer algorithm

31

13= 2 +

1135

= 2 +1

3 +1

−52

= 2 +1

3 +1

−3 +1

2

Page 68: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

The nearest-integer algorithm

31

13= 2 +

1135

= 2 +1

3−2

5

= 2 +1

3 +1

−3 +1

2

Page 69: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

The nearest-integer algorithm

31

13= 2 +

1135

= 2 +1

3 +1

−52

= 2 +1

3 +1

−3 +1

2

Page 70: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

The nearest-integer algorithm

31

13= 2 +

1135

= 2 +1

3 +1

−52

= 2 +1

3 +1

−3 +1

2

Page 71: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Another expansion

31

13= 3 +

1

−2 +1

3 +1

−3

Question How many integer continued fraction expansions of 31/13 arethere?

Page 72: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Another expansion

31

13= 3 +

1

−2 +1

3 +1

−3

Question How many integer continued fraction expansions of 31/13 arethere?

Page 73: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Continued fraction approximants

Approximants

An

Bn= b1 +

1

b2 +1

b3 +1

b4 + · · ·+1

bn

Calculating approximants(An An−1

Bn Bn−1

)=

(b1 11 0

)(b2 11 0

)· · ·

(bn 11 0

)|AnBn−1 −An−1Bn| = 1

Crucial observation The approximants An−1/Bn−1 and An/Bn areadjacent in the Farey graph.

Page 74: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Continued fraction approximants

Approximants

An

Bn= b1 +

1

b2 +1

b3 +1

b4 + · · ·+1

bn

Calculating approximants(An An−1

Bn Bn−1

)=

(b1 11 0

)(b2 11 0

)· · ·

(bn 11 0

)

|AnBn−1 −An−1Bn| = 1

Crucial observation The approximants An−1/Bn−1 and An/Bn areadjacent in the Farey graph.

Page 75: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Continued fraction approximants

Approximants

An

Bn= b1 +

1

b2 +1

b3 +1

b4 + · · ·+1

bn

Calculating approximants(An An−1

Bn Bn−1

)=

(b1 11 0

)(b2 11 0

)· · ·

(bn 11 0

)|AnBn−1 −An−1Bn| = 1

Crucial observation The approximants An−1/Bn−1 and An/Bn areadjacent in the Farey graph.

Page 76: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Continued fraction approximants

Approximants

An

Bn= b1 +

1

b2 +1

b3 +1

b4 + · · ·+1

bn

Calculating approximants(An An−1

Bn Bn−1

)=

(b1 11 0

)(b2 11 0

)· · ·

(bn 11 0

)|AnBn−1 −An−1Bn| = 1

Crucial observation The approximants An−1/Bn−1 and An/Bn areadjacent in the Farey graph.

Page 77: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4=

1

1 +1

2 +1

1

A1

B1= 0,

A2

B2=

1

1= 1,

A3

B3=

1

1 +1

2

=2

3,

A4

B4=

1

1 +1

2 +1

1

=3

4

Page 78: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4=

1

1 +1

2 +1

1

A1

B1= 0,

A2

B2=

1

1= 1,

A3

B3=

1

1 +1

2

=2

3,

A4

B4=

1

1 +1

2 +1

1

=3

4

Page 79: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4=

1

1 +1

2 +1

1

A1

B1= 0,

A2

B2=

1

1= 1,

A3

B3=

1

1 +1

2

=2

3,

A4

B4=

1

1 +1

2 +1

1

=3

4

Page 80: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4=

1

1 +1

2 +1

1

A1

B1= 0,

A2

B2=

1

1= 1,

A3

B3=

1

1 +1

2

=2

3,

A4

B4=

1

1 +1

2 +1

1

=3

4

Page 81: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4=

1

1 +1

2 +1

1

A1

B1= 0,

A2

B2=

1

1= 1,

A3

B3=

1

1 +1

2

=2

3,

A4

B4=

1

1 +1

2 +1

1

=3

4

Page 82: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4=

1

1 +1

2 +1

1

Theorem There is a one-to-one correspondence between integer continued fractionsand paths starting from ∞ in the Farey graph.

Page 83: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4=

1

1 +1

3

Theorem There is a one-to-one correspondence between integer continued fractionsand paths starting from ∞ in the Farey graph.

Page 84: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4= 1 +

1

−4

Theorem There is a one-to-one correspondence between integer continued fractionsand paths starting from ∞ in the Farey graph.

Page 85: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4= 2 +

1

−3 +1

1 +1

−2 +1

6

Theorem There is a one-to-one correspondence between integer continued fractionsand paths starting from ∞ in the Farey graph.

Page 86: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Paths in the Farey graph

3

4= 2 +

1

−3 +1

1 +1

−2 +1

6

Theorem There is a one-to-one correspondence between integer continued fractionsand paths starting from ∞ in the Farey graph.

Page 87: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Navigating the Farey graph

Page 88: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Biinfinite continued fractions

[. . . , 1, 1, 3,−2, 2,−1, 6,−2, 1,−3, 2, . . .]

Page 89: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Classifying integer tilings usingthe Farey graph

Page 90: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Conway’s insight

· · ·

0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 1 2 4 1 2 2 3 11 3 5 2 1 7 3 1 3 5 2 1

2 1 7 3 1 3 5 2 1 7 3 11 2 4 1 2 2 3 1 2 4 1 2

1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

· · ·

width = 7period = 7

Theorem (Conway & Coxeter) There is a one-to-one correspondencebetween positive integer friezes of period n and triangulated n-gons.

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973

Page 91: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Conway’s insight

· · ·

0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 1 2 4 1 2 2 3 11 3 5 2 1 7 3 1 3 5 2 1

2 1 7 3 1 3 5 2 1 7 3 11 2 4 1 2 2 3 1 2 4 1 2

1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

· · ·

width = 7period = 7

Theorem (Conway & Coxeter) There is a one-to-one correspondencebetween positive integer friezes of period n and triangulated n-gons.

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973

Page 92: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Triangulated polygons in the Farey graph

Key observation Any triangulated polygon can be embedded in the Fareygraph in essentially one way.

S. Morier-Genoud, V. Ovsienko & S. Tabachnikov, SL2(Z)-tilings of the torus,Coxeter–Conway friezes and Farey triangulations, 2015

Page 93: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Triangulated polygons in the Farey graph

Key observation Any triangulated polygon can be embedded in the Fareygraph in essentially one way.

S. Morier-Genoud, V. Ovsienko & S. Tabachnikov, SL2(Z)-tilings of the torus,Coxeter–Conway friezes and Farey triangulations, 2015

Page 94: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Proving the Conway–Coxeter theorem

Theorem (Conway & Coxeter) There is a one-to-one correspondencebetween positive integer friezes and triangulated polygons.

0 1 1 1 1 0

0 1 2 3 1 0

0 1 2 1 1 0

0 1 1 2 1 0

0 1 3 2 1 0

0 1 1 1 1 0

Page 95: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Tame SL2-tilings

Definition Recall that an SL2-tiling is an infinite array of integers suchthat any two-by-two submatrix satisfies ad− bc = 1.

· · ·

...

5 9 4 7 17

1 2 1 2 5

2 5 3 7 18

1 3 2 5 13

3 10 7 18 47

...

· · · · · ·

...

−13 −8 −3 −4 −5−8 −5 −2 −3 −4−3 −2 −1 −2 −3−4 −3 −2 −5 −8−5 −4 −3 −8 −13

...

· · ·

Definition An SL2-tiling is tame if the determinant of eachthree-by-three submatrix is 0.

Theorem Positive integer SL2-tilings are tame.

Page 96: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Tame SL2-tilings

Definition Recall that an SL2-tiling is an infinite array of integers suchthat any two-by-two submatrix satisfies ad− bc = 1.

· · ·

...

5 9 4 7 17

1 2 1 2 5

2 5 3 7 18

1 3 2 5 13

3 10 7 18 47

...

· · · · · ·

...

−13 −8 −3 −4 −5−8 −5 −2 −3 −4−3 −2 −1 −2 −3−4 −3 −2 −5 −8−5 −4 −3 −8 −13

...

· · ·

Definition An SL2-tiling is tame if the determinant of eachthree-by-three submatrix is 0.

Theorem Positive integer SL2-tilings are tame.

Page 97: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Tame SL2-tilings

Definition Recall that an SL2-tiling is an infinite array of integers suchthat any two-by-two submatrix satisfies ad− bc = 1.

· · ·

...

5 9 4 7 17

1 2 1 2 5

2 5 3 7 18

1 3 2 5 13

3 10 7 18 47

...

· · · · · ·

...

−13 −8 −3 −4 −5−8 −5 −2 −3 −4−3 −2 −1 −2 −3−4 −3 −2 −5 −8−5 −4 −3 −8 −13

...

· · ·

Definition An SL2-tiling is tame if the determinant of eachthree-by-three submatrix is 0.

Theorem Positive integer SL2-tilings are tame.

Page 98: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Tame SL2-tilings

Theorem An SL2-tiling is tame if and only if there are integers ki,i ∈ Z, such that

rowi+1 + rowi−1 = ki rowi, for i ∈ Z.

Comments on tame tilings

• This row recurrence relation resembles the continued fractionsrecurrence relation.

• Tame tilings can have zeros and negative integers.

• Tame tilings have rigidity.

• More general tilings unknown.

Page 99: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Tame SL2-tilings

Theorem An SL2-tiling is tame if and only if there are integers ki,i ∈ Z, such that

rowi+1 + rowi−1 = ki rowi, for i ∈ Z.

Comments on tame tilings

• This row recurrence relation resembles the continued fractionsrecurrence relation.

• Tame tilings can have zeros and negative integers.

• Tame tilings have rigidity.

• More general tilings unknown.

Page 100: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Classification of tame SL2-tilings

Theorem There is a one-to-one correspondence between tameSL2-tilings and pairs of biinfinite paths in the Farey graph.

Remark Really we consider tame SL2-tilings modulo ±, and weconsider pairs of biinfinite paths in the Farey graph modulo the action ofthe modular group.

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010

Page 101: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Classification of tame SL2-tilings

Theorem There is a one-to-one correspondence between tameSL2-tilings and pairs of biinfinite paths in the Farey graph.

Remark Really we consider tame SL2-tilings modulo ±, and weconsider pairs of biinfinite paths in the Farey graph modulo the action ofthe modular group.

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010

Page 102: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Classification of tame SL2-tilings

Theorem There is a one-to-one correspondence between tameSL2-tilings and pairs of biinfinite paths in the Farey graph.

Remark Really we consider tame SL2-tilings modulo ±, and weconsider pairs of biinfinite paths in the Farey graph modulo the action ofthe modular group.

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010

Page 103: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Classification of positive integer SL2-tilings

Theorem There is a one-to-one correspondence between positiveinteger SL2-tilings and pairs of monotonic biinfinite paths in the Fareygraph that do not intersect.

C. Bessenrodt, P. Jørgensen & T. Holm, All SL2-tilings come from infinitetriangulations, 2017

Page 104: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Classification of infinite friezes

Theorem There is a one-to-one correspondence between infinite friezesand biinfinite paths in the Farey graph.

Corollary There is a one-to-one correspondence between positiveinteger infinite friezes and monotonic biinfinite paths in the Farey graph.

K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Page 105: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Classification of infinite friezes

Theorem There is a one-to-one correspondence between infinite friezesand biinfinite paths in the Farey graph.

Corollary There is a one-to-one correspondence between positiveinteger infinite friezes and monotonic biinfinite paths in the Farey graph.

K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

Page 106: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Classification of tame friezes

Theorem There is a one-to-one correspondence between tame integerfriezes of period n and closed paths in the Farey graph of length n.

· · ·

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 1 −1 1 1 3 1 1

2 0 −2 −2 0 2 2 0

−1 −1 −3 −1 −1 1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0

· · ·

Page 107: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

The Farey graph modulo n

Page 108: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey graph modulo n

Definition Let Zn = {0, 1, 2, . . . , n}.The Farey graph modulo n is the graph with vertices

{(a, b) : a, b ∈ Zn, gcd(a, b, n) = 1}/ ∼,

where (a, b) ∼ (a′, b′) if (a′, b′) ≡ −(a, b) (mod n), and such that vertices(a, b) and (c, d) are joined by an edge if and only if ad− bc ≡ ±1 (mod n).

I. Ivrissimtzis & D. Singerman, Regular maps and principal congruencesubgroups of Hecke groups, 2005

Page 109: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Farey graph modulo n

Definition Let Zn = {0, 1, 2, . . . , n}.The Farey graph modulo n is the graph with vertices

{(a, b) : a, b ∈ Zn, gcd(a, b, n) = 1}/ ∼,

where (a, b) ∼ (a′, b′) if (a′, b′) ≡ −(a, b) (mod n), and such that vertices(a, b) and (c, d) are joined by an edge if and only if ad− bc ≡ ±1 (mod n).

I. Ivrissimtzis & D. Singerman, Regular maps and principal congruencesubgroups of Hecke groups, 2005

Page 110: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Ivrissimtzis and Singerman’s regular maps

· · ·

0 0 0 0 01 1 1 1 1

2 4 2 4 21 1 1 1 1

0 0 0 0 0

· · ·

Definition The vertices of the form (a, 0) are said to be a set of poles,as is any image of this set under Γ(n). There are φ(n)/2 vertices in a setof poles.

Theorem There is a one-to-one correspondence between tame integerfriezes modulo n and paths on the Farey graph modulo n from one vertexin a set of poles to another.

Page 111: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Ivrissimtzis and Singerman’s regular maps

· · ·

0 0 0 0 01 1 1 1 1

2 4 2 4 21 1 1 1 1

0 0 0 0 0

· · ·

Definition The vertices of the form (a, 0) are said to be a set of poles,as is any image of this set under Γ(n). There are φ(n)/2 vertices in a setof poles.

Theorem There is a one-to-one correspondence between tame integerfriezes modulo n and paths on the Farey graph modulo n from one vertexin a set of poles to another.

Page 112: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Ivrissimtzis and Singerman’s regular maps

· · ·

0 0 0 0 01 1 1 1 1

2 4 2 4 21 1 1 1 1

0 0 0 0 0

· · ·

Definition The vertices of the form (a, 0) are said to be a set of poles,as is any image of this set under Γ(n). There are φ(n)/2 vertices in a setof poles.

Theorem There is a one-to-one correspondence between tame integerfriezes modulo n and paths on the Farey graph modulo n from one vertexin a set of poles to another.

Page 113: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

Ivrissimtzis and Singerman’s regular maps

· · ·

0 0 0 0 01 1 1 1 1

2 4 2 4 21 1 1 1 1

0 0 0 0 0

· · ·

Definition The vertices of the form (a, 0) are said to be a set of poles,as is any image of this set under Γ(n). There are φ(n)/2 vertices in a setof poles.

Theorem There is a one-to-one correspondence between tame integerfriezes modulo n and paths on the Farey graph modulo n from one vertexin a set of poles to another.

Page 114: The Farey graph, continued fractions and SL2-tilings · 2-tilings (Bergeron, Reutenauer) Classi cation of positive integer SL 2-tilings (Bessenrodt,Holm,J˝rgensen) Classi cation

References

H.S.M. Coxeter, Frieze patterns, 1971

J.H. Conway & H.S.M. Coxeter, Triangulated polygons and frieze patterns, 1973

R.P. Stanley, Enumerative Combinatorics, vol. 2, 1999

F. Bergeron & C. Reutenauer, SLk-tilings of the plane, 2010

C. Bessenrodt, P. Jørgensen & T. Holm, All SL2-tilings come from infinitetriangulations, 2017

K. Baur, M.J. Parsons & M. Tschabold, Infinite friezes, 2016

J. Farey, Philosophical Magazine, 1816

S. Morier-Genoud, V. Ovsienko & S. Tabachnikov, SL2(Z)-tilings of the torus,Coxeter–Conway friezes and Farey triangulations, 2015

I. Ivrissimtzis & D. Singerman, Regular maps and principal congruence subgroups ofHecke groups, 2005